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Abstract – Graph partitioning is a key problem to en-
able efficient solving of a wide range of computational tasks
and querying over large-scale graph data, such as computing
node centralities using iterative computations, and person-
alized recommendations. In this work, we introduce a uni-
fying framework for graph partitioning which enables a well
principled design of scalable, streaming graph partitioning
algorithms that are amenable to distributed implementa-
tion. We show that many previously proposed methods are
special instances of this framework, we derive a novel one-
pass, streaming graph partitioning algorithm and show that
it yields significant benefits over previous approaches, using
a large set of real-world and synthetic graphs.

Surprisingly, despite the fact that our algorithm is a one-
pass streaming algorithm, we found its performance to be
overall comparable to the de-facto standard offline software
METIS, and it even outperforms it on numerous real-world
graphs. For instance, for the Twitter graph with more than
1.4 billion of edges, our method partitions the graph in about
40 minutes achieving a balanced partition that cuts as few
as 6.8% of edges, whereas it took more than 8 1

2
hours by

METIS to produce a balanced partition that cuts 11.98%
of edges. Furthermore, modularity–a popular measure for
community detection [21, 47, 46]–is also a special instance
of our framework. We establish the first rigorous approxi-
mation algorithm, achieving a guarantee of O(log(k)/k) for
partitioning into k clusters.

Finally, we evaluate the performance gains by using our
graph partitioner while solving standard PageRank compu-
tation in a graph processing platform, and observe signifi-
cant gains in terms of the communication cost and runtime.

Keywords
Graph partitioning, Clustering, Streaming, Distributed Com-
puting, Community Detection

1. INTRODUCTION
Nowadays, the scale of graph data that needs to be pro-

cessed is massive. For example, in the context of online
services, the Web graph amounts to at least one trillion of
links [1], Facebook recently reported more than 1 billion of
users and 140 billion of friend connections [2], and, in 2009,
Twitter reported more than 40 million of users and about
1.5 billion of social relations [39]. The unprecedented pro-
liferation of data provides us with new opportunities and
benefits but also poses hard computational challenges. Fre-
quent graph computations such as community detection [18],
finding connected components [25], counting triangles [43],
iterative computations using graph input data such as com-
puting PageRank and its variations [48], shortest path and
radius computations [11, 26] become challenging computa-
tional tasks in the realm of big graph data. An appeal-
ing solution to improve upon scalability is to partition mas-
sive graphs into smaller partitions and then use a large dis-
tributed system to process them. The sizes of the partitions
have to be balanced to exploit the speedup of parallel com-
puting over different partitions. Furthermore, it is critical
that the number of edges between distinct partitions is small
in order to minimize the communication cost incurred due
to messages that are exchanged among different partitions.
Many popular graph processing platforms such as Pregel
[42] that builds on MapReduce [15], and its open source

cousin Apache Giraph, PEGASUS [25] and GraphLab [41]
use as a default partitioner Hash Partition of vertices, which
corresponds to assigning each vertex to one of the k parti-
tions uniformly at random. This heuristic would balance the
number of vertices over different clusters, but being entirely
oblivious to the graph structure, it may well result in sub-
optimal edge cuts. In fact, the expected fraction of edges
cut by a random partition of vertices into k ≥ 1 clusters is
equal to 1−1/k. Given the fact that real-world graphs tend
to have sparser cuts [9], it is important to discover methods
that are computationally efficient, practical, and yet yield
high quality graph partitioning.

The problem of finding a balanced graph partition that
minimizes the number of edges cut is known as the balanced
graph partitioning problem, which has a rich history in the
context of theoretical computer science. This problem is
known to be NP-hard [37] and several approximation algo-
rithms have been derived in previous work, which we review
in Section 2. In practice, systems aim at providing good par-
titions in order to enhance their performance, e.g., [42, 50].
It is worth emphasizing that the balanced graph partition-
ing problem appears in various guises in numerous domains.
For instance, it is critical for efficiently solving large-scale
computational fluid dynamics and computational mechan-
ics problems [59] and sparse linear systems [31].

Another major challenge in the area of big graph data
is efficient processing of dynamic graphs. For example, new
accounts are created and deleted every day in online services
such as Facebook, Skype and Twitter. Furthermore, graphs
created upon post-processing datasets such as Twitter posts
are also dynamic, see for instance [7]. It is crucial to have
efficient graph partitioners of dynamic graphs. For exam-
ple, in the Skype service, each time a user logs in, his/her
online contacts get notified. It is expensive when messages
have to be sent across different graph partitions since this
would typically involve using network infrastructure. The
balanced graph partitioning problem in the dynamic setting
is known as streaming graph partitioning [54]. Vertices (or
edges) arrive and the decision of the placement of each ver-
tex (edge) has to be done “on-the-fly” in order to incur as
little computational overhead as possible.

It is worth noting that the state-of-the-art work on graph
partitioning seems to roughly divide in two main lines of re-
search. Rigorous mathematically work and algorithms that
do not scale to massive graphs, e.g., [38], and heuristics that
are used in practice [29, 30, 49, 54]. Our work contributes
towards bridging the gap between theory and practice.

Summary of our Contributions. Our contributions
can be summarized in the following points:
• We introduce a framework for graph partitioning that

overcomes the computational complexity of the traditional
balanced graph partitioning problem. Specifically, in the
traditional balanced graph partitioning problem, the goal is
to minimize the number of edges cut subject to hard con-
straints on the number of vertices in a cluster [8, 38]. We
relax the hard cardinality constraints by formulating the
graph partitioning objective function to consist of two el-
ements: an element that accounts for the cost of edges cut
and an element that that accounts for the cost related to the
sizes of individual clusters.
• Our formulation provides a unifying framework that ac-

commodates many of previously proposed heuristics as spe-
cial cases. For example, the folklore heuristic of [49] which



Fennel Best competitor Hash Partition METIS
# Clusters (k) λ ρ λ ρ λ ρ λ ρ

2 6.8% 1.1 34.3% 1.04 50% 1 11.98% 1.02
4 29% 1.1 55.0% 1.07 75% 1 24.39% 1.03
8 48% 1.1 66.4% 1.10 87.5% 1 35.96% 1.03

Table 1: Fraction of edges cut λ and the maximum load ρ for Fennel, the previously best-known heuristic
(linear weighted degrees [54]) and hash partitioning of vertices for the Twitter graph with approximately 1.5
billion edges. Fennel and best competitor require around 40 minutes, METIS more than 8 1

2
hours.

places a vertex to the cluster with the fewest non-neighbors,
and the degree-based heuristic of [54], which serves as the
current state-of-the-art method with respect to performance.
• We show that interpolating between the non-neighbors

heuristic [49] and the neighbors heuristic [54] provides im-
proved performance for the balanced partitioning problem.
• A special case of interest is that of a modularity objec-

tive [21, 46, 5] for which we provide the first rigorous ap-

proximation guarantee. Specifically, we provide a O( log (k)
k

)
approximation algorithm, for given number k of clusters. It
is noteworthy that this result stands in a stark contrast to
the best known approximation ratio for the traditional bal-
anced graph partition, which becomes worse with the total
number of vertices [38].
• We evaluate our proposed streaming graph partitioning

method, Fennel, on a wide range of graph datasets, both real-
world and synthetic graphs, showing that it produces high
quality graph partitioning. Table 1 shows the performance
of Fennel versus the best previously-known heuristic, which
is the linear weighted degrees [54], and the baseline Hash
Partition of vertices. We observe that Fennel achieves, si-
multaneously, significantly smaller fraction of edges cut and
balanced cluster sizes.
• We also demonstrate the performance gains with re-

spect to communication cost and run time while running
iterative computations over partitioned input graph data in
a distributed cluster of machines. Specifically, we evalu-
ated Fennel and other partitioning methods by computing
PageRank in the graph processing platform Apache Giraph.
We observe significant gains with respect to the byte count
among different clusters and run time in comparison with the
baseline Hash Partition of vertices, and the best-performing
competitor.

Structure of the Paper. The remainder of the paper is
organized as follows. Section 2 discusses the related work.
In Section 3, we introduce our graph partitioning frame-
work and present our main theoretical result. In Section 4,
we present our scalable, streaming algorithm. In Section 5,
we evaluate our method versus the state-of-the-art work on
a broad set of real-world and synthetic graphs, while in Sec-
tion 6 we provide our experimental results in the Apache
Giraph. In Section 7 we discuss certain aspects of Fennel.
In Section 8, we conclude.

2. RELATED WORK
Graph partitioning is an NP-hard problem [20] with nu-

merous applications in various domains, with a long history
and a very active present. Here, we discuss related work
to graph partitioning in two major different settings. The
first setting which serves as our initial motivation is the bal-
anced graph partitioning problem [37]. The second setting
is related to community detection [18].

Balanced graph partitioning problem: A fundamental prob-
lem in every parallel and distributed application is data
placement since it typically affects significantly the execu-
tion efficiency of jobs, e.g., [60, 32]. This is particularly
true for graphs, as interaction locality can easily be in-
ferred from the graph edges. One class of examples are
social graphs [27, 50], where operations are user interac-
tions, defined through social engagements represented with
graph edges. However, many other graph algorithms bene-
fit from careful graph partitioning and placement, such as
machine learning and data mining [23, 25, 54]. The goal of
balanced graph partitioning is to minimize an application’s
overall runtime. This is achieved by assigning to each pro-
cessor/machine an equal amount of data and concurrently
minimizing the parallel/distributed overhead by minimizing
the number of edges cut by the corresponding partition. For-
mally, the (k, ν)-balanced graph partitioning asks to divide
the vertices of a graph in components each of size less than
ν n
k

. The case k = 2, ν = 1 is equivalent to the minimum
bisection problem, an NP-hard problem [20]. Several approx-
imation algorithms, e.g., [16], and heuristics, e.g., [17, 33] ex-
ist for this problem. When ν = 1+ε for any desired but fixed
ε there exists a O(ε−2 log1.5 n) approximation algorithm [37].
When ν = 2 there exists an O(

√
log k logn) approximation

algorithm based on semidefinite programming (SDP) [38].
Due to the practical importance of k-partitioning there exist
several heuristics, among which METIS [52] and its parallel
version [53] stand out for their fine performance. METIS is
widely used in many existing systems [27]. There are also
heuristics that improve efficiency and partition quality of
METIS in a distributed system [51]. An extensive summary
of existing heuristics can be found in [3].

The methods above are offline. Recently, Stanton and
Kliot worked on the online partitioning problem [54]. This
setting is also well adapted to dynamic graphs, where offline
methods incur an expensive computational cost, requiring to
repartition the entire graph. Moreover, the newly obtained
partitioning can significantly differ from the old one. This
in turn implies a large reshuffle of the data, which is very
costly in a distributed system. Online algorithms assign ver-
tices to components as they arrive and never reassign them
later. One of the earliest online algorithm was proposed by
Kernighan and Lin [33], which is also used as a subroutine
in METIS. Currently the most advanced online partitioning
algorithm is by Stanton and Kliot [54], which we extensively
compare our approach against.

It is also worth noting a separate line of work whose goal is
to optimize small dynamic graph queries [34, 50, 55]. In this
setting queries are small and are ideally executed on a single
machine, and dynamic replication is used to make sure that
most of the data is available locally. Our case is different as
queries are large and each query is executed on many or all



of the sites. We note that our partitioning algorithm can be
deployed in parallel with the replication methods.

Community Detection: Finding communities, i.e., groups
of vertices within which connections are dense, but between
which connections are sparser, is a central problem of net-
work science [44]. The difference between the balanced graph
partitioning problem is that there exists no no restriction on
the number of vertices per subset. Another difference that
also arises frequently in practice is that we do not know
the true number of clusters a priori, or even their existence.
The notion of a community has been formalized in vari-
ous ways, see [40]. Of interest to our work is the popular
modularity measure [21, 47, 46]. Modularity measures the
number of within-community edges relative to a null ran-
dom graph model that is usually considered to be a random
graph with the same degree distribution. Despite the pop-
ularity of modularity, a few rigorous results exist. Specifi-
cally, Brandes et al. [10] proved that maximizing modularity
is NP-hard. Approximation algorithms without theoretical
guarantees whose performance is evaluated in practice also
exist [5]. We advance this line of work.

3. PROPOSED METHOD
In this section we introduce our framework for graph par-

titioning and our main theoretical result. We first present
our general graph partitioning framework in Section 3.1, and
then discuss the classic balanced graph partitioning in Sec-
tion 3.2 as a special instance of our framework. We discuss
the intuition behind our approach and state our main theo-
retical result which provides the first rigorous approximation
algorithm for computing the modularity of a graph under an
Erdös-Rényi null model.

Notation. Throughout the paper we use the following no-
tation. Let G(V,E) be a simple, undirected graph. Let the
number of vertices and edges be denoted as |V | = n and
|E| = m. For a subset of vertices S ⊆ V , let e(S, S) be
the set of edges with both end vertices in the set S, and let
e(S, V \ S) be the set of edges whose one end-vertex is in
the set S and the other is not. For a given vertex v let tS(v)
be the number of triangles (v, w, z) such that w, z ∈ S. We
define a partition of vertices P = (S1, . . . , Sk) to be a family
of pairwise disjoint sets vertices, i.e., Si ⊆ V , Si∩Sj = ∅ for
every i 6= j. We call Si to be a cluster of vertices. Finally,
for a graph G = (V,E) and a partition P = (S1, S2, . . . , Sk)
of the vertex set V , let ∂e(P) be the set of edges that cross
partition boundaries, i.e. ∂e(P) = ∪ki=1e(Si, V \ Si).

3.1 Our Graph Partitioning Framework
We formulate a graph partitioning framework that is based

on accounting for the cost of internal edges and the cost of
edges cut by a partition of vertices in a single global objec-
tive function.

The size of individual partitions. We denote with σ(Si)
the size of the cluster of vertices Si, where σ is a mapping to
the set of real numbers. Special instances of interest are (1)
edge cardinality where the size of the cluster i is proportional
to the total number of edges with at least one end-vertex
in the set Si, i.e. |e(Si, Si)| + |e(Si, V \ Si)|, (2) interior-
edge cardinality where the size of cluster i is proportional
to the number of internal edges |e(Si, Si)|, and (3) vertex
cardinality where the size of partition i is proportional to
the total number of vertices |Si|. The edge cardinality of
a cluster is an intuitive measure of cluster size. This is of

interest for computational tasks over input graph data where
the computational complexity within a cluster of vertices is
linear in the number of edges with at least one vertex in
the given cluster. For example, this is the case for iterative
computations such as solving the power iteration method.
The vertex cardinality is a standard measure of the size of
a cluster and for some graphs may serve as a proxy for the
edge cardinality, e.g. for the graphs with bounded degrees.

The global objective function. We define a global objec-
tive function that consists of two elements: (1) the inter-
partition cost cOUT : Nk → R+ and (2) the intra-partition
cost cIN : Nk → R+. These functions are assumed to be
increasing and super-modular (or convex, if extended to the
set of real numbers). For every given partition of vertices
P = (S1, S2, . . . , Sk), we define the global cost function as

f(P) = cOUT(|e(S1, V \ S1)|, . . . , |e(Sk, V \ Sk)|)
+cINT(σ(S1), . . . , σ(Sk)).

It is worth mentioning some particular cases of interest.
Special instance of interest for the inter-partition cost is the
linear function in the total number of cut edges |∂e(P)|.
This case is of interest in cases where an identical cost is
incurred per each edge cut, e.g. in cases where messages are
exchanged along cut edges and these messages are trans-
mitted through some common network bottleneck. For the
intra-partition cost, a typical goal is to balance the cost
across different partitions and this case is accommodated
by defining cINT(σ(S1), . . . , σ(Sk)) =

∑k
i=1 c(σ(Si)), where

c(x) is a convex increasing function such that c(0) = 0. In
this case, the intra-partition cost function, being defined as
a sum of convex functions of individual cluster sizes, would
tend to balance the cluster sizes, since the minimum is at-
tained when sizes are equal.

We formulate the graph partitioning problem as follows.

Optimal k-Graph Partitioning

Given a graph G = (V,E), find a partition
P∗ = {S∗1 , . . . , S∗k} of the vertex set V , such
that f(P∗) ≥ f(P), for all partitions P such
that |P| = k.

We refer to the partition P∗ as the optimal k
graph partition of the graph G.

Streaming setting. The streaming graph partitioning prob-
lem can be defined as follows. Let G = (V,E) be an input
graph and let us assume that we want to partition the graph
into k disjoint subsets of vertices. The vertices arrive in some
order, each one with the set of its neighbors.We consider
three different stream orders, as in [54].

• Random: Vertices arrive according to a random per-
mutation.

• BFS: This ordering is generated by selecting a ver-
tex uniformly at random and performing breadth first
search starting from that vertex.

• DFS: This ordering is identical to the BFS ordering,
except that we perform depth first search.

A k-partitioning streaming algorithm has to decide when-
ever a new vertex arrives to which cluster it is going to be
placed. A vertex is never moved after it has been assigned
to a cluster. The formal statement of the problem follows.



3.2 Classic Balanced Graph Partitioning
In this section we consider the traditional instance of a

graph partitioning problem that is a special case of our
framework by defining the inter-partition cost to be equal
to the total number of edges cut and the intra-partition cost
defined in terms of the vertex cardinalities.

The starting point in the existing literature, e.g., [37, 38],
is to admit hard cardinality constraints, so that |S∗i | ≤ ν n

k
for i = 1, . . . , k , where ν ≥ 1 is a fixed constant. This set of
constraints makes the problem significantly hard. Currently,
state-of-the-art work depends on the impressive ARV barrier
[8] which results in a O(

√
logn) approximation factor. The

typical formulation is the following:

minimizeP=(S1,...,Sk) |∂e(P)|
subject to |Si| ≤ ν nk , ∀i ∈ {1, . . . , k}

Our approach: Just Relax ! The idea behind our approach
is to relax the hard cardinality constraints by introducing a
term in the objective cIN(P) whose minimum is achieved
when |Si| = n

k
for all i ∈ {1, . . . , k}. Therefore, our frame-

work is based on a well-defined global graph partitioning
objective function, which allows for a principled design of
approximation algorithms and heuristics as shall be demon-
strated in Section 4. Our graph partitioning method is based
on solving the following optimization problem:

minimizeP=(S1,...,Sk) |∂e(P)|+ cIN(P) (1)

Intra-partition cost: With the goal in mind to favor bal-
anced partitions, we may define the intra-partition cost func-
tion by cIN(P) =

∑k
i=1 c(|Si|) where c(x) is an increas-

ing function chosen to be super-modular, so that the fol-
lowing increasing returns property holds c(x + 1) − c(x) ≥
c(y + 1)− c(y), for every 0 ≤ y ≤ x.

We shall focus our attention to the following family of
functions c(x) = αxγ , for α > 0 and γ ≥ 1. By the choice
of the parameter γ, this family of cost functions allows us
to control how much the imbalance of cluster sizes is ac-
counted for in the objective function. In one extreme case
where γ = 1, we observe that the objective corresponds to
minimizing the number of cut-edges, thus entirely ignoring
any possible imbalance of the cluster sizes. On the other
hand, by taking larger values for the parameter γ, the more
weight is put on the cost of partition imbalance, and this
cost may be seen to approximate hard constraints on the
imbalance in the limit of large γ. Parameter α is also impor-
tant. We advocate a principled choice of α independently of
whether it is suboptimal compared to other choices. Specif-

ically, we choose α = m kγ−1

nγ
. This provides us a proper

scaling, since for this specific choice of α, our optimization
problem is equivalent to minimizing a natural normalization

of the objective function
∑k
i=1 e(Si,V \Si)

m
+ 1

k

∑k
i=1

(
|Si|
n
k

)γ
.

An equivalent maximization problem. We note that the
optimal k graph partitioning problem admits an equivalent
formulation as a maximization problem. It is of interest to
consider this alternative formulation as it allows us to make
a connection with the concept of graph modularity, which
we do later in this section. For a graph G = (V,E) and

S ⊆ V , we define the function h : 2V → R as:

h(S) = |e(S, V \ S)| − c(|S|)

where h(∅) = h({v}) = 0 for every v ∈ V . Given k ≥ 1 and
a partition P = {S1, . . . , Sk} of the vertex set V , we define
the function g as

g(P) =

k∑
i=1

h(Si).

Now, we observe that maximizing the function g(P) over all
possible partitions P of the vertex set V such that |P| = k
corresponds to the k graph partitioning problem. Indeed,
this follows by noting that

g(P) =

k∑
i=1

|e(Si, Si)| − c(|Si|)

= (m−
k∑
i=1

|e(Si, V \ Si)|)− c(|Si|)

= m− f(P).

Thus, maximizing function g(P) corresponds to minimizing
function f(P), which is precisely the objective of our k graph
partitioning problem.

Modularity: We note that when the function c(x) is taken
from the family c(x) = αxγ , for α > 0 and γ = 2, our
objective has a combinatorial interpretation. Specifically,
our problem is equivalent to maximizing the function

k∑
i=1

[|e(Si, Si)| − p

(
|Si|
2

)
]

where p = α/2. In this case, each summation element
admits the following interpretation: it corresponds to the
difference between the realized number of edges within a
cluster and the expected number of edges within the clus-
ter under the null-hypothesis that the graph is an Erdös-
Rényi random graph with parameter p. This is intimately
related to the concepts of graph modularity [21, 47, 46] and
quasi-cliques [4]. For this special case, because of the com-
binatorial meaning of the objective function, we design a
non-trivial, semidefinite programming (SDP) algorithm and
show that it provides provides the following guarantee.

Theorem 1. There exists a polynomial time algorithm
which provides an Ω( log k

k
)-approximation guarantee for the

Optimal k Graph Partitioning.

The proof is based on a partitioning algorithm that is
derived by using a randomized rounding of a solution to our
SDP relaxation of the original combinatorial optimization
problem.

Notice that compared to the existing literature we avoid
any dependence on the number of vertices n, exactly because
we avoid the hard cardinality constraints. Compared to the
random assignment baseline, where a vertex is assigned ran-
domly to a cluster, which we analyze [56], we improve by
a logarithmic factor. This suggests that the offline SDP
solver will yield significantly better performance for small
values of k. It is worth noting that we conjecture that our
approximation factor is the best possible, see Appendixfor
the grounds of this conjecture. Finally, we outline that de-
spite the fact that semidefinite programming has been used



to approximate “in-practice” modularity [5], to the best of
our knowledge, Theorem 2 would provide the first rigorous
approximation guarantee for the given problem.

4. ONE-PASS STREAMING ALGORITHM
We derive a streaming algorithm by using a greedy assign-

ment of vertices to partitions as follows: assign each arriving
vertex to a partition such that the objective function of the
k graph partitioning problem, defined as a maximization
problem, is increased the most. Formally, given that cur-
rent vertex partition is P = (S1, S2, . . . , Sk), a vertex v is
assigned to partition i such that

g(S1, . . . , Si ∪ {v}, . . . , Sj , . . . , Sk)

≥ g(S1, . . . , Si, . . . , Sj ∪ {v}, . . . , Sk), for all j ∈ [k].

Defining δg(v, Si) = g(S1, . . . , Si ∪ {v}, . . . , Sj , . . . , Sk) −
g(S1, . . . , Si, . . . , Sj , . . . , Sk), the above greedy assignment
of vertices corresponds to that in the following algorithm.

Greedy vertex assignment

• Assign vertex v to partition i such that
δg(v, Si) ≥ δg(v, Sj), for all j ∈ [k]

Special case: edge-cut and balanced vertex cardinality. This
is a special case of introduced that we discussed in Sec-
tion 3.1. In this case, δg(v, Sl) = |N(v) ∩ Sl| − δc(|Sl|),
where δc(x) = c(x + 1) − c(x), for x ∈ R+, and N(v) de-
notes the set of neighbors of vertex v. The two summation
elements in the greedy index δg(v, Sl) account for the two
underlying objectives of minimizing the number of cut edges
and balancing of the partition sizes. Notice that the compo-
nent |N(v)∩Si| corresponds to the number of neighbours of
vertex v that are assigned to partition Si. In other words,
this corresponds to the degree of vertex v in the subgraph
induced by Si. On the other hand, the component δc(|Si|)
can be interpreted as the marginal cost of increasing the
partition i by one additional vertex.

For our special family of cost functions c(x) = αxγ , we
have δc(x) = αγxγ−1. For γ = 1, the greedy index rule
corresponds to assigning a new vertex v to partition i with
the largest number of neighbours in Si, i.e |N(v)∩Si|. This is
one of the greedy rules considered by Stanton and Kliot [54],
and is a greedy rule that may result in highly imbalanced
partition sizes.

On the other hand, in case of quadratic cost c(x) = 1
2
x2,

the greedy index is |N(v)∩Si|− |Si|, and the greedy assign-
ment corresponds to assigning a new vertex v to partition i
that minimizes the number of non-neighbors of v inside Si,
i.e. |Si \ N(v)|. Hence, this yields the following heuristic:
place a vertex to the partition with the least number of non-
neighbors [49]. This assignment accounts for both the cost
of cut edges and the balance of partition sizes.

Finally, we outline that in many applications there exist
very strict constraints on the load balance. Despite the fact
that we investigate the effect of the parameter γ on the
load balance, one may apply the following algorithm, which
enforces to consider only machines whose load is at most
ν×n

k
. This algorithm for 1 ≤ γ ≤ 2 amounts to interpolating

between the basic heuristics of [54] and [49]. The overall
complexity of our algorithm is O(n+m).

Nodes Edges Description
amazon0312 400 727 2 349 869 Co-purchasing
amazon0505 410 236 2 439 437 Co-purchasing
amazon0601 403 364 2 443 311 Co-purchasing

as-735 6 474 12 572 Auton. Sys.
as-Skitter 1 694 616 11 094 209 Auton. Sys.
as-caida 26 475 53 381 Auton. Sys.

ca-AstroPh 17 903 196 972 Collab.
ca-CondMat 21 363 91 286 Collab.

ca-GrQc 4 158 13 422 Collab.
ca-HepPh 11 204 117 619 Collab.
ca-HepTh 8 638 24 806 Collab.
cit-HepPh 34 401 420 784 Citation
cit-HepTh 27 400 352 021 Citation
cit-Patents 3 764 117 16 511 740 Citation
email-Enron 33 696 180 811 Email
email-EuAll 224 832 339 925 Email

epinions 119 070 701 569 Trust
Epinions1 75 877 405 739 Trust

LiveJournal1 4 843 953 42 845 684 Social
p2p-Gnutella04 10 876 39 994 P2P
p2p-Gnutella05 8 842 31 837 P2P
p2p-Gnutella06 8 717 31 525 P2P
p2p-Gnutella08 6 299 20 776 P2P
p2p-Gnutella09 8 104 26 008 P2P
p2p-Gnutella25 22 663 54 693 P2P
p2p-Gnutella31 62 561 147 878 P2P

roadNet-CA 1 957 027 2 760 388 Road
roadNet-PA 1 087 562 1 541 514 Road
roadNet-TX 1 351 137 1 879 201 Road

Slashdot0811 77 360 469 180 Social
Slashdot0902 82 168 504 230 Social

Slashdot081106 77 258 466 661 Social
Slashdot090216 81 776 495 661 Social
Slashdot090221 82 052 498 527 Social

usroads 126 146 161 950 Road
wb-cs-stanford 8 929 2 6320 Web
web-BerkStan 654 782 6 581 871 Web

web-Google 855 802 4 291 352 Web
web-NotreDame 325 729 1 090 108 Web

web-Stanford 255 265 1 941 926 Web
wiki-Talk 2 388 953 4 656 682 Web

Wikipedia-20051105 1 596 970 18 539 720 Web
Wikipedia-20060925 2 935 762 35 046 792 Web

Twitter 41 652 230 1 468 365 182 Social

Table 2: Datasets used in our experiments.

Greedy vertex assignment with threshold ν

• Let Iν = {i : µi ≤ ν n
k
}. Assign vertex

v to partition i ∈ Iν such that δg(v, Si) ≥
δg(v, Sj), for all j ∈ Iν

5. EXPERIMENTAL EVALUATION
In this section we present results of our experimental eval-

uations of the quality of graph partitions created by our
method and compare with alternative methods. We first
describe our experimental setup in Sections 5.1, and then
present our findings using synthetic and real-world graphs,
in Section 5.2 and 5.3, respectively.

5.1 Experimental Setup
The real-world graphs used in our experiments are shown

in Table 2. Multiple edges, self loops, signs and weights were
removed, if any. Furthermore, we considered the largest
connected component from each graph in order to ensure
that there is a non-zero number of edges cut. All graphs
are publicly available on the Web. All algorithms have been
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Figure 1: Fraction of edges cut λ and maximum load normalized ρ as a function of γ, ranging from 1 to 4
with a step of 0.25, over five randomly generated power law graphs with slope 2.5. The straight lines show
the performance of METIS.

BFS Random
Method λ ρ λ ρ

H 96.9% 1.01 96.9% 1.01
B [54] 97.3% 1.00 96.8% 1.00
DG [54] 0% 32 43% 1.48
LDG [54] 34% 1.01 40% 1.00
EDG [54] 39% 1.04 48% 1.01
T [54] 61% 2.11 78% 1.01
LT [54] 63% 1.23 78% 1.10
ET [54] 64% 1.05 79% 1.01
NN [49] 69% 1.00 55% 1.03
Fennel 14% 1.10 14% 1.02

METIS [29] 8% 1.00 8% 1.02

Table 3: Performance of various existing methods
on amazon0312, k is set to 32, illustrating the typi-
cal performance of various methods: Fennel outper-
forms one-pass, streaming competitors and has per-
formance inferior but comparable to METIS.

implemented in java, and all experiments were performed
on a single machine, with Intel Xeon cpu at 3.6GHz, and
16GB of main memory. Wall-clock times include only the
algorithm execution time, excluding the required time to
load the graph into memory.

In our synthetic experiments, we use two random graph
models. The first model is the hidden partition model [13].
It is specified by four parameters parameters: the number
of vertices n, the number of clusters k, the intercluster and
intracluster edge probabilities p and q, respectively. First,
each vertex is assigned to one of k clusters uniformly at
random. We add an edge between two vertices of the same
(different) cluster(s) with probability p (q) independently
of the other edges. We denote this model as HP(n, k, p, q).
The second model we use is a standard model for generating
random power law graphs. Specifically, we first generate
a power-law degree sequence with a given slope δ and use
the Chung-Lu random graph model to create an instance
of a power law graph [12]. The model CL(n, δ) has two

parameters: the number of vertices n and the slope δ of the
expected power law degree sequence.

We evaluate our algorithms by measuring two quantities
from the resulting partitions. In particular, for a fixed par-
tition P we use the measures of the fraction of edges cut λ
and the normalized maximum load ρ, defined as

λ =
# edges cut by P

# total edges
=
|∂e(P)|
m

, and

ρ =
maximum load

n
k

.

Throughout this section, we also use the notation λM and
µM to indicate the partitioning method M used in a par-
ticular context. In general, we omit indices whenever it is
clear to which partition method we refer to. Notice that
k ≥ ρ ≥ 1 since the maximum load of a cluster is at most n
and there always exists at least one cluster with at least n

k
vertices.

In Section 5.2, we use the greedy vertex assignment with-
out any threshold. Given that we are able to control ground
truth, we are mainly interested in understanding the effect
of the parameter γ on the tradeoff between the fraction of
edges cut and the normalized maximum load. In Section 5.3,
the setting of the parameters we use throughout our exper-
iments is γ = 3

2
, α =

√
k m

n3/2 , and ν = 1.1. The choice of
γ is based on our findings from Section 5.2 and of α based
on Section 3. Finally, ν = 1.1 is a reasonable load balancing
factor for real-world settings.

As our competitors we use state-of-the-art heuristics. Specif-
ically, in our evaluation we consider the following heuristics
from [54], which we briefly describe here for completeness.
Let v be the newly arrived vertex.

• Balanced (B): place v to the cluster Si with minimal
size.

• Hash partitioning (H): place v to a cluster chosen uni-
formly at random.

• Deterministic Greedy (DG): place v to Si that maxi-
mizes |N(v) ∩ Si|.



Fennel METIS
m k λ ρ λ ρ

7 185 314 4 62.5 % 1.04 65.2% 1.02
6 714 510 8 82.2 % 1.04 81.5% 1.02
6 483 201 16 92.9 % 1.01 92.2% 1.02
6 364 819 32 96.3% 1.00 96.2% 1.02
6 308 013 64 98.2% 1.01 97.9% 1.02
6 279 566 128 98.4 % 1.02 98.8% 1.02

Table 4: Fraction of edges cut λ and normalized
maximum load ρ for Fennel and METIS [29] averaged
over 5 random graphs generated according to the
HP(5000,0.8,0.5) model. As we see, Fennel despite
its small computational overhead and deciding on-
the-fly where each vertex should go, achieves com-
parable performance to METIS.

• Linear Weighted Deterministic Greedy (LDG): place v

to Si that maximizes |N(v) ∩ Si| × (1− |Si|n
k

).

• Exponentially Weighted Deterministic Greedy (EDG):

place v to Si that maximizes |N(v)∩Si|×
(

1−exp
(
|Si| − n

k

))
.

• Triangles (T): place v to Si that maximizes tSi(v).

• Linear Weighted Triangles (LT): place v to Si that

maximizes tSi(v)×
(

1− |Si|n
k

)
.

• Exponentially Weighted Triangles (ET): place v to Si

that maximizes tSi(v)×
(

1− exp
(
|Si| − n

k

))
.

• Non-Neighbors (NN): place v to Si that minimizes |Si\
N(v)|.

In accordance with [54], we observed that LDG is the best
performing heuristic. Even if Stanton and Kliot do not com-
pare with NN, LDG outperforms it also. Non-neighbors typ-
ically have very good load balancing properties, as LDG as
well, but cut significantly more edges. Table 3 shows the
typical performance we observe across all datasets. Specif-
ically, it shows λ and ρ for both BFS and random order
for amazon0312. DFS order is omitted since qualitatively it
does not differ from BFS. We observe that LDG is the best
competitor, Fennel outperforms all existing competitors and
is inferior to METIS, but of comparable performance. In
whatever follows, whenever we refer to the best competi-
tor, unless otherwise mentioned we refer to LDG. Time-wise
METIS is the fastest, taking 11.4 seconds to run. Hashing
follows with 12 seconds and the rest of the methods except
for T, LT, ET take the same time up the integer part, i.e., 13
seconds. Triangle based methods take about 10 times more
time. Existing approximate counting methods can mitigate
this [57, 58]. It is also worth emphasizing that for larger
graphs Fennel is faster than METIS.

5.2 Synthetic Datasets
Before we delve into our findings, it is worth summarizing

the main findings of this section. (a) For all synthetic graphs
we generated, the value γ = 3

2
achieves the best performance

pointwise, not in average. (b) The effect of the stream or-
der is minimal on the results. Specifically, when γ ≥ 3

2
all

orders result in the same qualitative results. When γ < 3
2

BFS and DFS orders result in the same results which are
worse with respect to load balancing –and hence better for
the edge cuts– compared to the random order. (c) Fennel’s
performance is comparable to METIS.

Hidden Partition: We report averages over five randomly
generated graphs according to the model HP(5000, k, 0.8, 0.5)
for each value of k we use. We study (a) the effect of the
parameter γ, which parameterizes the function c(x) = αxγ ,
and (b) the effect of the number of clusters k.

We range γ from 1 to 4 with a step of 1/4, for six different
values of k shown in the second column of Table 4. For
all k, we observe, consistently, the following behavior: for
γ = 1 we observe that λ = 0 and ρ = k. This means that
one cluster receives all vertices. For any γ greater than 1,
we obtain excellent load balancing with ρ ranging from 1 to
1.05, and the same fraction of edges cut with METIS up the
the first decimal digit. This behavior was not expected a
priori, since in general we expect λ shifting from small to
large values and see ρ shifting from large to small values
as γ grows. Given the insensitivity of Fennel to γ in this
setting, we fix γ = 3

2
and present in Table 4 our findings. For

each k shown in the second column we generate five random
graphs. The first column shows the average number of edges.
Notice that despite the fact that we have only 5,000 vertices,
we obtain graphs with several millions of edges. The four
last columns show the performance of Fennel and METIS.
As we see, their performance is comparable and in one case
(k=128) Fennel clearly outperforms METIS.

Power Law: It is well known that power law graphs have
no good cuts [23], but they are commonly observed in prac-
tice. We examine the effect of parameter γ for k fixed to
10. In contrast to the hidden partition experiment, we ob-
serve the expected tradeoff between λ and ρ as γ changes.
We generate five random power law graphs CL(20 000,2.5),
since this value matches the slope of numerous real-world
networks [45]. Figure 1 shows the tradeoff when γ ranges
from 1 to 4 with a step of 0.25 for the random stream order.
The straight line shows the performance of METIS. As we
see, when γ < 1.5, ρ is unacceptably large for demanding
real-world applications. When γ = 1.5 we obtain essentially
the same load balancing performance with METIS. Specifi-
cally, ρFennel = 1.02, ρMETIS = 1.03. The corresponding cut
behavior for γ = 1.5 is λFennel = 62.58%, λMETIS = 54.46%.
Furthermore, we experimented with the random, BFS and
DFS stream orders. We observe that the only major differ-
ence between the stream orders is obtained for γ = 1.25. For
all other γ values the behavior is identical. For γ = 1.25 we
observe that BFS and DFS stream orders result in signifi-
cantly worse load balancing properties. Specifically, ρBFS =
3.81, ρDFS = 3.73, ρRandom = 1.7130. The corresponding
fractions of edges cut are λBFS = 37.83%, λDFS = 38.85%,
and λRandom = 63.51%.

5.3 Real-World Datasets
Again, before we delve into the details of the experimen-

tal results, we summarize the main points of this Section:
(1) Fennel is superior to existing streaming partitioning al-
gorithms. Specifically, it consistently, over a wide range of k
values and over all datasets, performs better than the cur-
rent state-of-the-art. Fennel achieves excellent load balanc-
ing with significantly smaller edge cuts. (2) For smaller val-
ues of k (less or equal than 64) the observed gain is more
pronounced. (c) Fennel is fast. Our implementation scales
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Figure 2: (Left) CDF of the relative difference (λFennel−λc
λc

)× 100% of percentages of edges cut of our method

and the best competitor. (Right) Same but for the absolute difference (λFennel − λc)× 100%.

k Relative Gain ρFennel − ρc
2 25.37% 0.47%
4 25.07% 0.36%
8 26.21% 0.18%
16 22.07% -0.43%
32 16.59% -0.34%
64 14.33% -0.67%
128 13.18% -0.17%
256 13.76% -0.20%
512 12.88% -0.17%
1024 11.24% -0.44%

Table 5: The relative gain (1 − λFennel
λc

) × 100% and
load imbalance, where subindex c stands for the best
competitor, averaged over all datasets in Table 1
as a function of k. Our method consistently yields
sparser edge cut the best competitor. The benefit
is more pronounced for the smaller values of k.

well with the size of the graph. It takes about 40 minutes to
partition the Twitter graph which has more than 1 billion
of edges.

Twitter Graph. Twitter graph is the largest graph in our
collection of graphs, with more than 1.4 billion edges. This
feature makes it the most interesting graph from our collec-
tion, even if, admittedly, is a graph that can be loaded into
the main memory. The results of Fennel on this graph are ex-
cellent. Specifically, Table 1 shows the performance of Fen-
nel, the best competitor LDG, the baseline Hash Partition and
METIS for k = 2, 4 and 8. All methods achieve balanced par-
titions, with ρ ≤ 1.1. Fennel, is the only method that always
attains this upper bound. However, this reasonable perfor-
mance comes with a high gain for λ. Specifically, we see that
Fennel achieves better performance of k = 2 than METIS.
Furthermore, Fennel requires 42 minutes whereas METIS
requires 8 1

2
hours. Most importantly, Fennel outperforms

LDG consistently. Specifically, for k = 16, 32 and 64, Fennel
achieves the following results (λ, ρ) = (59%, 1.1), (67%, 1.1),
and (73%, 1.1), respectively. Linear weighted degrees (LDG)
achieves (76%, 1.13), (80%, 1.15), and (84%, 1.14), respec-

tively. Now we turn our attention to smaller bur reasonably-
sized datasets.

Aggregate View. In Figure 2, we show the distribution
of the difference of the fraction of edges cut of our method
and that of the best competitor, conditional on that the
maximum observed load is at most 1.1. This distribution
is derived from the values observed by partitioning each in-
put graph from our set averaged over a range of values of
parameter k that consists of values 2, 4, . . . , 1024. These
results demonstrate that the fraction of edges cut by our
method is smaller than that of the best competitor in all
cases. Moreover, we observe that the median difference (rel-
ative difference) is in the excess of 20% (15%), thus providing
appreciable performance gains.

Detailed View. We provide a more detailed view in Fig-
ure 3 where we show the empirical distributions of the dif-
ference of the percentage of the edges cut of our method
and that of the best competitor, conditional on the num-
ber of partitions k. These results provide further support
that our method yields appreciable benefits for a wide range
of parameter k. Several values of k are omitted for visual
purposes. Interestingly, we consistently observe that the
datapoints where Fennel and LDG have comparable perfor-
mance, with LDG sometimes performing better by a little,
are roadNet-CA, roadNet-PA, and roadNet-TX.

Furthermore, in Table 5, we present the average perfor-
mance gains conditional on the number of partitions k. These
numerical results amount to an average relative reduction of
the fraction of edges cut in the excess of 18%. Moreover,
the performance gains observed are consistent across dif-
ferent values of parameter k, and are more pronounced for
smaller values of k.

Bicriteria. In our presentation of experimental results so
far, we focused on the fraction of edges cut by condition-
ing on the cases where the normalized maximum load was
smaller than a fixed threshold. We now provide a closer look
at both criteria and their relation. In Figure 4, we consider
the difference of the fraction of edges cut vs. the difference of
normalized maximum loads of the best competitor and our
method. We observe that in all the cases, the differences of
normalized maximum loads are well within 10% while the
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Figure 3: Same as in Figure 2 but conditional on the number of partitions k. Notice that the benefit is more
pronounced for the smaller values of k. See Figure 6for a detailed plot, containing CDFs for all values of k
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Figure 5: Fennel: time vs. number of edges.

fraction of edges cut by our method is significantly smaller.
These results confirm that the observed reduction of the
fraction of edges cut by our method is not at the expense of
an increased maximum load.

Speed of partitioning. We now turn our attention to the
efficiency of our method with respect to the running time
to partition a graph. Our graph partitioning algorithm is
a one-pass streaming algorithm, which allows for fast graph
partitioning. In order to support this claim, in Figure 5,
we show the run time it took to partition each graph from
our dataset vs. the graph size in terms of the number of
edges. We observe that it takes in the order of minutes to
partition large graphs of tens of millions of edges. As we
also mentioned before, partitioning the largest graph from
our dataset collection took about 40 minutes.

6. SYSTEM EVALUATION
As stated in the introduction, one of the key goals of graph

partitioning is to speed up large-scale computations. How-

ever, the partitioning objective may significantly vary de-
pending on system characteristics. One example are large-
scale production data centers. A typical production data
center consists of large oversubscribed clusters [24]. In such
an environment it is more important to balance the traffic
across clusters than the traffic or the amount of computa-
tion executed within a cluster. A different example is a
typical small-scale cluster rented by a customer from a large
cloud provider. There are anecdotal evidences that most
customers of Amazon’s Elastic MapReduce service rent clus-
ters with up to a few tens of nodes. In such a setting it is
important to minimize the network traffic across the nodes
but also to balance well the computational load on each
node.

Each of these settings may require a different tunning of
the partitioning objective. The distinct advantage of Fennel
is that it gives a flexibility in choosing the suitable objective.
We demonstrate the efficiency and flexibility of Fennel with
the typical Elastic MapReduce scenario in mind1. We set
up a cluster and we vary the number of nodes to 4, 8 and 16
nodes. Each node is equipped with Intel Xeon CPU at 2.27
GHz and 12 GB of main memory. On the cluster ,we run
Giraph, a graph processing platform running on the top of
Hadoop. We implemented a PageRank algorithm on Giraph
and we run it on LiveJournal1 dataset2.

Since the complexity of PageRank depends on the num-
ber of edges and not vertices, we use a version of the Fennel
objective (Eq. 1) that balances the number of edges per clus-

ter. In particular, we choose cIN(P) =
∑k
i=1 e(Si, Si)

γ with
γ = 1.5.

We compare with Hash Partition of vertices, the default
partitioner used by Giraph, and LDG. We look at two met-
rics. The first is the average duration of an iteration of the
PageRank algorithm. This metric is directly proportional to
the actual running time and incorporates both the process-
ing and the communication time. The second metric is the

1Exhaustive evaluation on diverse distributed graph process-
ing platforms is out of scope of this paper.
2Twitter data set was too large to fit on a 16-node Giraph
cluster.



−0.1 −0.05 0 0.05 0.1

−20

−15

−10

−5

0

5

10

15

20

δρ(%)

δλ
(%

)

−0.1 −0.05 0 0.05 0.1
−45

−30

−15

0

15

30

45

δρ(%)

R
el

at
iv

e 
ga

in
(%

)

Figure 4: Absolute difference δλ and Relative gain versus the maximum load imbalance δρ.

average number of Megabytes transmitted by a cluster node
in each iteration. This metric directly reflects the quality of
a cut.

The results are depicted in Table 6. We see that Fennel has
the best runtime in all cases. This is because it achieves the
best balance between the computation and communication
load. Hash Partition takes 25% more time than Fennel and
it also has a much higher traffic load. The best competitor
(LDG) has much worse runtime. This is because its objec-
tive is to balance vertices across nodes, and the PageRank
iteration complexity is proportional to the maximal number
of edges per node. However, it also achieves the smallest
traffic load.

It is worth noting that in the evaluation presented in [54],
LDG partitioning outperforms Hash Partition. This is be-
cause in they used a much larger number of partitions (100
and 400), which yield more balanced partitions but also a
smaller difference in the cross-cut sizes (see Section 5). Also,
the evaluation in [54] is performed on a different system
(Spark).

7. DISCUSSION
In this section we discuss some of the extensions that can

be accomodated by our framework and discuss some details
about distributed implementation.

Assymetric edge costs. As discussed in Section 6, in some
application scenarios some edges that cross partition bound-
aries may be more costly than other. For example, this is
the case if individual graph partitions are assigned to ma-
chines in a data center and these machines are connected
with an asymmetric network topology, so that the available
network bandwidth varies across different pairs of machines,
e.g. intra-rack vs. inter-rack machines in standard data
center architectures [24]. Another example are data center
network topologies where the number of hops between differ-
ent pairs of machines vary substantially, e.g. torus topolo-
gies [14]. In such scenarios, it may be beneficial to partition
a graph by accounting for the aforementioned asymmetries
of edge-cut costs. This can be accomodated by appropriately
defining the inter-partition cost function in our framework.

Distributed implementation. Our streaming algorithm re-
quires computing marginal value indices that can be com-

puted in a distributed fashion by maintaining local views
on a global state. For concretness, let us consider the tra-
ditional objective where the inter-partition cost is a linear
function of the total number of cut edges and the intra-
partition cost is a sum of convex functions of vertex cardi-
nalities of individual partitions. In this case, computing the
marginal value indices requires to compute per each vertex
arrival: (1) the number of neighbors of given vertex that
were already assigned to given cluster of vertices, and (2)
the number of vertices that were already assigned per clus-
ter. The former corresponds to a set-intersection query and
can be efficiently implemented by standard methods, e.g.
using data structures such as minwise hashing [51]. The
latter is a simple count tracking problem. Further optimiza-
tions could be made by trading accuracy for reduction of
communication overhead by updating of the local views at a
smaller rate than the rate of vertex arrival. An efficient im-
plementation of the streaming graph partitioning methods
in a distributed environment is out of scope of this paper
and is left as an interesting direction for future work.

8. CONCLUSION
In this work we provide a new perspective on the well-

studied problem of balanced graph partitioning. Specifically,
we introduce a unifying framework that subsumes state-of-
the-art heuristics [49, 54] for streaming graph partitioning.
Furthermore, we show that interpolating between the two
state-of-the-art heuristics [49, 54] provides significantly en-
hanced performance. We evaluate our proposed framework
on a large graph collection where we verify consistently over
a wide range of cluster (k) values the superiority of our
method. On the theory side, we show that a special in-
stance of our objective is the popular modularity measure
[21, 46, 5] with an Erdös-Rényi null model. We prove the
first rigorous approximation guarantee for this special case
of our objective. Finally, we evaluate Fennel in Apache Gi-
raph where we verify its efficiency. In future work, we plan
(1) to test other choices of cost functions and, (2) to create
an offline community detection algorithm using ideas from
our framework.



Runtime [s] Communication [MB]

Data set # Clusters (k) Hash Best competitor Fennel Hash Best competitor Fennel
LiveJournal1 4 32.27 60.57 25.49 321.41 98.3 196.9
LiveJournal1 8 17.26 29.57 15.14 285.35 74.25 180.02
LiveJournal1 16 10.64 16.56 9.05 222.28 68.79 148.67

Table 6: The average duration of a step and the average amount of MB exchanged per node and per step
during the execution of PageRank. Our method has the shortest runtime. All variances are small, except
for the variance of the communication cost of the best competitor (where one heavily loaded node has much
higher communication cost and runtime than the others).
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APPENDIX
A. APPROXIMATION GUARANTEES

We derive hard approximation guarantees for the optimal
k graph partition problem. We shall focus on the case of
quadratic cost function c(x) = α

(
x
2

)
. This is a special case of

interest in view of its underlying graph combinatorial mean-
ing and relation the concept of modularity. We will derive
approximation algorithms using the standard concept of an
approximation guarantee.

Definition 1. Let P∗ be an optimal partition for the k
graph partitioning problem. A partition P is said to be a
ρ-approximation, if the following holds:

g(P) ≥ ρg(P∗)

An algorithm that guarantees to output a ρ-approximation



partitioning is said to be a ρ-approximation algorithm.

An approximation algorithm for a maximization problem
is meaningful as a notion if the optimum solution is positive.
However, in our setting our function g does not results as it
can easily be seen in a non-negative optimum. For instance
if G = En the empty graph on n vertices, any partition
of G in k parts results in a negative objective (except when
k = n where the objective becomes 0). Therefore, we need to
shift our objective in order to come up with approximation
algorithms.

In the remainder of this section, we shall first define a
shifted objective function, which ensures that the optimal
value is positive. Then, we will go on with showing that
uniform random partition of vertices is an Ω(1/k) approx-
imation algorithm. Recall that uniform random partition-
ing essentially corresponds to Hash Partition of vertices, a
method which is commonly used in current practice. We
will then show that one can do better by using an SDP-
based rounding algorithm, which guarantees an Ω(log(k)/k)
approximation.

A.1 Shifted Objective
We define the following shifted objective.

Definition 2. k ≥ 1. Also let P∗ = {S∗1 , . . . , S∗k} be a
partition of the vertex set V . We define the function g̃ as

g̃(P) =

k∑
i=1

|e(Si, Si)|+ α

((
n

2

)
−

k∑
i=1

(
|Si|
2

))
.

We can interpret the shifted objective as the expected
number of edges for given partition P and given that there
are e[Si] edges within partition Si, under a null hypothesis
that the underlying graph is random Erdös-Rényi graph with
parameter α.

Lemma 1. For any partition P, g̃(P) ≥ 0.

Proof. The proof follows directly from the fact that for
any positive-valued s1, s2, . . . , sk such that

∑k
i=1 si = n, the

following holds n2 ≥ s21 + · · ·+ s2k.

The approximation guarantees that hold for the shifted
objective function have the following meaning for the origi-
nal objective function. Suppose that P is a ρ-approximation
with respect to the shifted-objective k graph partitioning
problem, i.e. g̃(P) ≥ ρg̃(P∗). Then, it holds

g(P) ≥ ρg(P∗)− (1− ρ)α

(
n

2

)
.

Notice that this condition is equivalent to

g(P)− g(P∗) ≥ −(1− ρ)[g(P∗) + α

(
n

2

)
].

This approximation guarantee is near to a ρ-approximation
if the parameter α is small enough so that the term g(P∗)
dominates the term α

(
n
2

)
. For example, for an input graph

that consists of k cliques, we have that g(P∗) ≥ α
(
n
2

)
cor-

responds to α
1−α ≤

1
k
n+k
n+1

, from which we conclude that it

suffices that α ≤ 1
k+1

.

A.2 Random Partition
Suppose each vertex is assigned to one of k partitions uni-

formly at random. This simple graph partition is a faithful
approximation of hash partitioning of vertices that is com-
monly used in practice. In expectation, each of the k clus-
ters will have n

k
vertices. Let S1, . . . , Sk be the resulting k

clusters. How well does this simple algorithm perform with
respect to our objective? Let P∗ be an optimal partition for
the optimal k graph partition problem, i.e. g(P∗) ≥ g(P),
for every partition P of the vertex set V into k partitions.
Notice that P∗ is also an optimal partition for the optimal
k graph partition problem with shifted objective function.
Now, note that an edge e = (u, v) has probability 1

k
that

both its endpoints belong to the same cluster. By the lin-
earity of expectation, we obtain by simple calculations:

E [g̃(S1, . . . , Sk)] =
m

k
+ α

k − 1

k

(
n

2

)

≥ 1

k

(
m+ α

(
n

2

))

≥ 1

k
g̃(P∗)

where last inequality comes from the simple upper bound
g̃(P) ≤ m+ α

(
n
2

)
for any partition P.

A.3 An SDP Rounding Algorithm
We define a vector variable xi for each vertex i ∈ V and

we allow xi to be one of the unit vectors e1, . . . , ek, where
ej is a vector of dimension n with all elements equal to zero
except for the j-th element equal to 1.

maximize
∑
e=(i,j) xixj + α

∑
i<j

(
1− xixj

)
subject to xi ∈ {e1, . . . , ek}, ∀i ∈ {1, . . . , n}

(2)

We obtain the following semidefinite programming relax-
ation:

maximize
∑
e=(i,j) yij + α

∑
i<j

(
1− yij

)
subject to yii = 1, ∀i ∈ {1, . . . , n}

yij ≥ 0, ∀i 6= j
Y � 0, Y symmetric

(3)

The above SDP can be solved within an additive error of δ of
the optimum in time polynomial in the size of the input and
log ( 1

δ
) by interior point algorithms or the ellipsoid method

[6]. In what follows, we refer to the optimal value of the
integer program as OPTIP and of the semidefinite program
as OPTSDP. Our algorithm is the following:



SDP-Relax

• Relaxation: Solve the semidefinite pro-
gram [6] and compute a Cholesky decom-
position of Y . Let v0, v1, . . . , vn be the re-
sulting vectors.

• Randomized Rounding: Randomly choose
t = dlog ke unit length vectors ri ∈ Rk, i =
1, . . . , t. These t random vectors define
2t = k possible regions in which the vec-
tors vi can fall: one region for each dis-
tinct possibility of whether rjvi ≥ 0 or
rjvi < 0. Define a cluster by adding all
vertices whose vector vi fall in a given re-
gion.

We now state our main theoretical result, which is for the
the k graph partition problem with the objective function
given by Definition 2.

Theorem 2. Algorithm SDP-Relax is a Ω( log k
k

) approxi-
mation algorithm for the optimal k graph partition problem.

Proof. Let Ck be the score of the partition produced by
our randomized rounding. Define Ai,j to be the event that
vertices i and j are assigned to the same partition. Then,

E [Ck] =
∑

e=(i,j)

Pr [Ai,j ] + α
∑
i<j

(
1−Pr [Ai,j ]

)

As in Goemans-Williamson [22], given a random hyper-
plane with normal vector r that goes through the origin, the
probability of sgn(vTi r) = sgn(vTj r), i.e., i and j fall on the

same side of the hyperplane, is 1 − arccos(vTi vj)

π
. Since we

have t independent hyperplanes

Pr [Ai,j ] =

(
1− arccos(vTi vj)

π

)t
.

Let us define, for t ≥ 1,

f1(θ) =

(
1− θ

π

)t
cos(θ)

, θ ∈ [0,
π

2
)

and

ρ1 = min
0≤θ<π

2

f1(θ).

Similarly, define for t ≥ 1,

f2(θ) =
1−

(
1− θ

π

)t
1− cos(θ)

, θ ∈ [0,
π

2
)

and

ρ2 = min
0≤θ<π

2

f2(θ).

We wish to find a ρ such that E [Ck] ≥ ρOPTSDP. Since,
OPTSDP ≥ OPTIP, this would then imply E [Ck] ≥ ρOPTIP.

We note that

f ′1(θ) =
− t
π

(
1− θ

π

)t−1
cos(θ) +

(
1− θ

π

)t
sin(θ)

cos2(θ)
.

It follows that f ′1(θ(t)) = 0 is equivalent to

t = (π − θ(t)) tan(θ(t)).

Notice that the following two hold

lim
t→∞

θ(t) =
π

2

and
π

2
tan(θ(t)) ≤ t ≤ π tan(θ(t)). (4)

We next show that f1(θ(t)) ≥ 1
π
t2−t, by the the following

series of relations

f1(θ(t)) =

(
1− θ(t)

π

)t
cos(θ(t))

=
√

1 + tan2(θ(t))

(
1− θ(t)

π

)t
≥

√
1 + tan2(θ(t))2−t ≥

√
1 +

(
t

π

)2

2−t

≥ 1

π
t2−t

where the second equality is by the fact cos(θ) = 1√
1+tan2(θ)

,

the first inequality is by the fact θ(t) ≤ π
2

, and the second
inequality is by (4).

Thus, for t = log2(k), we conclude

ρ1 ≥
1

π log(2)

log(k)

k
.

Now, we show that ρ2 = 1
2
. First we show that for any

t ≥ 1, f2(θ) ≥ 1/2. To this end, we note

1−
(
1− θ

π

)t
1− cos(θ)

≥ 1

2
⇔ 1

2

(
1 + cos(θ)

)
≥
(

1− θ

π

)t
.

Notice that for all θ ∈ [0, π/2), if t1 ≥ t2 ≥ 1, then
(

1 −
θ
π

)t1
≤
(

1 − θ
π

)t2
. Hence, it suffices 1

2

(
1 + cos(θ)

)
≥(

1− θ
π

)
. With the use of simple calculus, the latter is true

and is also tight for θ = 0 and θ = π/2. It is worth observing
the opposite trend of the values of ρ1 and ρ2. The reason
is that Pr [Ai,j ] drops as we use more hyperplanes and, of
course, 1−Pr [Ai,j ] grows.

We are now in a position to establish the following lower
bound on the expected score of our randomized rounding
procedure. Let θi,j = arccos(vTi vj).

E [Ck] =
∑

e=(i,j)

Pr [Ai,j ] + α
∑
i<j

(
1−Pr [Ai,j ]

)
=

∑
e=(i,j)

(
1− θi,j

π

)t
+ α

∑
i<j

(
1−

(
1− θi,j

π

)t )
≥

∑
e=(i,j)

ρ1 cos(θi,j) + α
∑
i<j

ρ2
(

1− cos(θi,j)
)

≥ min{ρ1, ρ2}OPTSDP

≥ min{ρ1, ρ2}OPTIP

It suffices to set ρ = min{ρ1, ρ2}. The above analysis
shows that our algorithm is a ρ-approximation algorithm,

where ρ = Ω( log(k)
k

).



A.4 An Alternative Approach
One may ask whether the relaxation of Frieze and Jerrum

[19], Karger, Motwani and Sudan [28] can improve signifi-
cantly the approximation factor. Before we go into further
details, we notice that the main “bottleneck” in our approx-
imation is the probability of two vertices being in the same
cluster, as k grows. The probability that i, j are in the same
cluster in our rounding is p(θ) where

p(θ) =
(

1− θ
π

)log k
.

Suppose θ = π
2

(1− ε). Then,

p(θ) =
(

1− θ
π

)log k
=
(1 + ε

2

)log k
=

1

k
+ ε

log k

k
+O(ε2).

As we see from Lemma 5 in [19], for this θ, the asymptotic
expression of Nk(cos (θ)), which is equal to ours p(θ) but
with their rounding scheme, matches ours:

Nk(cos(θ)) ≈ 1

k
+

2 log k

k
cos
(π

2
(1− ε)

)
=

1

k
+ πε

log k

k
+O(ε2).

This suggests that our approximation factor may be the
best optimal assuming the unique games conjecture [36, 35].

B. DETAILED DISTRIBUTION FUNCTIONS
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Figure 6: Same as in Figure 3 but for all values of k
used.


