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0 Introduction

In this paper we apply the method of ultraproducts to the study of graph
combinatorics associated with measure preserving actions of infinite, count-
able groups, continuing the work in Conley-Kechris [CK].

We employ the ultraproduct construction as a flexible method to produce
measure preserving actions a of a countable group Γ on a standard measure
space (X,µ) (i.e., a standard Borel space with its σ-algebra of Borel sets and
a Borel probability measure) starting from a sequence of such actions an on
(Xn, µn), n ∈ N. One uses a non-principal ultrafilter U on N to generate the
ultraproduct action

∏
n an/U of (an) on a measure space (XU , µU), obtained

as the ultraproduct of ((Xn, µn))n∈N via the Loeb measure construction. The
measure algebra of the space (XU , µU) is non-separable, but by taking appro-
priate countably generated subalgebras of this measure algebra one generates
factors a of the action

∏
n an/U which are now actions of Γ on a standard

measure space (X,µ) and which have various desirable properties.
In §2, we discuss the construction of the ultrapower (XU , µU) of a sequence

of standard measure spaces (Xn, µn), n ∈ N, with respect to a non-principal
ultrafilter U on N, via the Loeb measure construction. We follow largely the
exposition in Elek-Szegedy [ES], which dealt with the case of finite spaces
Xn with µn the counting measure.

In §3, we define the ultraproduct action
∏

n an/U on (XU , µU) associated
with a sequence an, n ∈ N, of measure preserving actions of a countable group
Γ on (Xn, µn) and discuss its freeness properties. When an = a for all n, we
put aU =

∏
n an/U .

In §4, we characterize the factors of the action
∏

n an/U associated with
countably generated σ-subalgebras of the measure algebra of (XU , µU).
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For a measure space (X,µ) and a countable group Γ, we denote by
A(Γ, X, µ) the space of measure preserving actions of Γ on (X,µ) (where,
as usual, actions are identified if they agree a.e.). This space carries the weak
topology generated by the maps a ∈ A(Γ, X, µ) 7→ γa·A (γ ∈ Γ, A ∈ MALGµ),
from A(Γ, X, µ) into the measure algebra MALGµ (with the usual metric
dµ(A,B) = µ(A∆B)), and where we put γa · x = a(γ, x). When (X,µ) is
standard, A(Γ, X, µ) is a Polish space.

If a ∈ A(Γ, X, µ), an ∈ A(Γ, Xn, µn), n ∈ N, and U is a non-principal
ultrafilter on N, we say that a is weakly U-contained in (an), in symbols

a ≺U (an),

if for every finite F ⊆ Γ, A1, . . . , AN ∈ MALGµ, ε > 0, for U -almost all n:

∃B1,n . . . ∃BN,n ∈ MALGµn∀γ ∈ F∀i, j ≤ N

|µ(γa · Ai ∩ Aj)− µn(γan ·Bi,n ∩Bj,n)| < ε,

(where a property P (n) is said to hold for U-almost all n if {n : P (n)} ∈ U).
In case an = b for all n, then a ≺U (an) ⇔ a ≺ b (in the sense of weak
containment of actions, see Kechris [Ke2]).

If a, bn ∈ A(Γ, X, µ), n ∈ N, we write

lim
n→U

bn = a

if for each open nbhd V of a in A(Γ, X, µ), bn ∈ V , for U -almost all n. Finally
a ∼= b denotes isomorphism (conjugacy) of actions.

We show the following (in 4.3):

Theorem 1 Let U be a non-principal ultrafilter on N. Let (X,µ), (Xn, µn),
n ∈ N be non-atomic, standard measure spaces and let a ∈ A(Γ, X, µ), an ∈
A(Γ, Xn, µn). Then the following are equivalent:

(1) a ≺U (an),

(2) a is a factor of
∏

n an/U ,

(3) a = limn→U bn, for some sequence (bn), with

bn ∈ A(Γ, X, µ), bn ∼= an, ∀n ∈ N,
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In particular, for a ∈ A(Γ, X, µ), b ∈ A(Γ, Y, ν), a ≺ b is equivalent to “a is
a factor of bU”. Moreover one has the following curious compactness property
of A(Γ, X, µ) as a consequence of Theorem 1: If an ∈ A(Γ, X, µ), n ∈ N, then
there is n0 < n1 < n2 < . . . and bni

∈ A(Γ, X, µ), bni
∼= ani

, such that (bni
)

converges in A(Γ, X, µ).
In §5, we apply the ultraproduct construction to the study of combinato-

rial parameters associated to group actions. Given an infinite group Γ with a
finite set of generators S, not containing 1, and given a free action a of Γ on
a standard space (X,µ), the (simple, undirected) graph G(S, a) has vertex
set X and edge set E(S, a), where

(x, y) ∈ E(S, a)⇔ x 6= y & ∃s ∈ S(sa · x = y or sa · y = x).

As in Conley-Kechris [CK], we define the associated parameters χµ(S, a)
(the measurable chromatic number), χapµ (S, a) (the approximate chromatic
number) and iµ(S, a) (the independence number), as follows:
• χµ(S, a) is the smallest cardinality of a standard Borel space Y for which

there is a (µ−)measurable coloring c : X → Y of G(S, a) (i.e., xE(S, a)y ⇒
c(x) 6= c(y)).
• χapµ (S, a) is the smallest cardinality of a standard Borel space Y such

that for each ε > 0, there is a Borel set A ⊆ X with µ(X \ A) < ε and
a measurable coloring c : A → Y of the induced subgraph G(S, a)|A =
(A,E(S,A) ∩ A2).
• iµ(S, a) is the supremum of the measures of Borel independent sets,

where A ⊆ X is independent if no two elements of A are adjacent.
Given a (simple, undirected) graph G = (X,E), where X is the set of

vertices and E the set of edges, a matching in G is a subset M ⊆ E such
that no two edges in M have a common vertex. We denote by XM the set
of matched vertices, i.e., the set of vertices belonging to an edge in M . If
XM = X we say that M is a perfect matching.

For a free action a of Γ as before, we also define the parameter

m(S, a) = the matching number,

where m(S, a) is 1/2 of the supremum of µ(XM), with M a Borel (as a subset
of X2) matching in G(S, a). If m(S, a) = 1/2 and the supremum is attained,
we say that G(S, a) admits an a.e. perfect matching.

The parameters iµ(S, a),m(S, a) are monotone increasing with respect to
weak containment, while χapµ (S, a) is decreasing. Below we let a ∼w b denote
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weak equivalence of actions, where a ∼w b⇔ a ≺ b & b ≺ a, and we let a v b
denote that a is a factor of b. We now have (see 5.2)

Theorem 2 Let Γ be an infinite, countable group and S a finite set of gen-
erators. Then for any free action a of Γ on a non-atomic, standard measure
space (X,µ), there is a free action b of Γ on (X,µ) such that

(i) a ∼w b and a v b,

(ii) χapµ (S, a) = χapµ (S, b) = χµ(S, b),

(iii) iµ(S, a) = iµ(S, b) and iµ(S, b) is attained,

(iv) m(S, a) = m(S, b) and m(S, b) is attained.

In §6, we study analogs of the classical Brooks’ Theorem for finite graphs,
which asserts that the chromatic number of a finite graph G with degree
bounded by d is ≤ d unless d = 2 and G contains an odd cycle or d ≥ 3 and
G contains the complete subgraph with d+ 1 vertices.

Let Γ, S be as in the preceding discussion, so that the graph G(S, a)
associated with a free action a of Γ on a standard space (X,µ) has degree
d = |S±1|, where S±1 = S ∪ S−1. It was shown in Conley-Kechris [CK] that
χapµ (S, a) ≤ d, so one has an “approximate” version of Brooks’ Theorem.
Using this and the results of §5, we now have (see 6.11):

Theorem 3 Let Γ be an infinite group and S a finite set of generators. Then
for any free action a of Γ on a non-atomic, standard space (X,µ), there is a
free action b on (X,µ) such that a ∼w b and χµ(S, b) ≤ d (= |S±1|).

It is not the case that for every free action a of Γ we have χµ(S, a) ≤ d,
but the only counterexamples known are Γ = Z or (Z/2Z) ∗ (Z/2Z) (with
the usual sets of generators) and Conley-Kechris [CK] show that these are
the only counterexamples if Γ has finitely many ends.

The previous result can be used to answer a question in probability the-
ory (see Aldous-Lyons [AL]), namely whether for any Γ, S, there is an in-
variant, random d-coloring of the Cayley graph Cay(Γ, S) (an earlier result
of Schramm (unpublished, 1997) shows that this is indeed the case with d
replaced by d+1). A random d-coloring is a probability measure on the Borel
sets of the space of d-colorings of the Cayley graph Cay(Γ, S) and invariance
refers to the canonical shift action of Γ on this space.

We now have (see 6.4):
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Theorem 4 Let Γ be an infinite group and S a finite set of generators with
d = |S±1|. Then there is an invariant, random d-coloring. Moreover for any
free action a of Γ on a non-atomic, standard space (X,µ), there is such a
coloring weakly contained in a.

Let AutΓ,S be the automorphism group of the Cayley graph Cay(Γ, S)
with the pointwise convergence topology. This is a Polish locally compact
group containing Γ as a closed subgroup. One can consider invariant, random
colorings under the canonical action of AutΓ,S on the space of colorings, which
we call AutΓ,S-invariant, random colorings. This appears to be a stronger
notion but we note in 6.6 that the existence of a AutΓ,S-invariant, random
d-coloring is equivalent to the existence of an invariant, random d-coloring,
so Theorem 4 works as well for AutΓ,S-invariant, random colorings.

One can also ask whether the last statement in Theorem 4 can be im-
proved to “is a factor of” instead of “weakly contained in”. This again fails
for Γ = Z or (Z/2Z) ∗ (Z/2Z) and a the shift action of Γ on [0, 1]Γ, a case
of primary interest, but holds for all other Γ that have finitely many ends.
Moreover in the case of the shift action one has also AutΓ,S-invariance (see
6.7).

Theorem 5 Let Γ be an infinite group and S a finite set of generators with
d = |S±1|. If Γ has finitely many ends but is not isomorphic to Z or (Z/2Z)∗
(Z/2Z), then there is a AutΓ,S-invariant, random d-coloring which is a factor
of the shift action of AutΓ,S on [0, 1]Γ.

In §7, we discuss various results about a.e. perfect matchings and invari-
ant, random matchings. Lyons-Nazarov [LN] showed that if Γ is a non-
amenable group with a finite set of generators S and Cay(Γ, S) is bipartite
(i.e., has no odd cycles), then there is a AutΓ,S-invariant, random perfect
matching of its Cayley graph, which is a factor of the shift action of AutΓ,S

on [0, 1]Γ. This also implies that m(S, sΓ) = 1
2
, where sΓ is the shift action

of Γ on [0, 1]Γ, and in fact the graph associated with this action has an a.e.
perfect matching. We do not know if m(S, a) = 1

2
actually holds for every

Γ, S and every free action a. We note in 7.5 that the only possible counterex-
amples are those Γ, S for which Γ is not amenable and S consists of elements
of odd order. However we show in 7.6 the following:

Theorem 6 Let Γ = (Z/3Z) ∗ (Z/3Z) with the usual set of generators S =
{s, t}, where s3 = t3 = 1. Then for any free action a of Γ on a non-atomic,
standard measure space (X,µ), G(S, a) admits an a.e. perfect matching.
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In §8, we study independence numbers. In Conley-Kechris [CK], the
following was shown: Let Γ, S be as before. Then the set of independence
numbers iµ(S, a), as a varies over all free actions of Γ, is a closed interval.
The question was raised about the structure of the set of all iµ(S, a), where
a varies over all free, ergodic actions of Γ. We show the following (in 8.1).

Theorem 7 Let Γ be an infinite group with S a finite set of generators. If
Γ has property (T), the set of iµ(S, a) as a varies over all the free, ergodic
actions of Γ is closed.

We do not know what happens in general if Γ does not have property (T)
but we show in 8.2 that for certain groups of the form Z ∗ Γ and generators
S, the set of iµ(S, a), for free, ergodic a, is infinite.

In §9, we discuss the notion of sofic equivalence relations and sofic actions,
recently introduced in Elek-Lippner [EL1]. We use ultraproducts and a result
of Abért-Weiss [AW] to give (in 9.6) an alternative proof of the theorem of
Elek-Lippner [EL1] that the shift action of an infinite countable sofic group
in sofic and discuss some classes of groups Γ for which every free action is
sofic.

Elek-Lippner [EL1] raised the question of whether every free action of a
sofic group is sofic.

Addendum. After receiving a preliminary version of this paper, Miklós
Abért informed us that he and Gábor Elek have independently developed
similar ideas concerning the use of ultraproducts in studying group actions
and their connections with weak containment and combinatorics. Their re-
sults are included in [AE]. In particular, [AE] contains versions of 4.7 and
Theorem 5.2 (i), (ii) below.

Acknowledgements. The research of ASK and RDT-D was partially sup-
ported by NSF Grant DMS-0968710 and of CTC by Marie Curie grant no.
249167 from the European Union. We would like to thank Russell Lyons for
many useful conversations.

1 Preliminaries

We review here some standard terminology and notation that will be used
throughout the paper.
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(A) A standard measure space is a measure space (X,µ), where X is
standard Borel space (i.e., a Polish space with its σ-algebra of Borel sets)
and µ a probability measure on the σ-algebra B(X) of Borel sets. We do
not assume in this paper that (X,µ) is non-atomic, since we do want to
include in this definition also finite measure spaces. If (X,µ) is supposed to
be non-atomic in a given context, this will be stated explicitly.

The measure algebra MALGµ of a measure space (X,µ) is the Boolean
σ-algebra of measurable sets modulo null sets equipped with the measure µ.

As a general convention in dealing with measure spaces, we will often
neglect null sets, if there is no danger of confusion.

(B) If (X,µ) is a standard measure space and E ⊆ X2 a countable Borel
equivalence relation on X (i.e., one whose equivalence classes are countable),
we say that E is measure preserving if for all Borel bijections ϕ : A → B,
where A,B are Borel subsets of X, such that ϕ(x)Ex, µ-a.e.(x ∈ A), we have
that ϕ preserves the measure µ.

Such an equivalence relation is called treeable if there is a Borel acyclic
graph on X whose connected components are the equivalence classes.

(C) If Γ is an infinite, countable group and S a finite set of generators,
not containing 1, the Cayley graph Cay(Γ, S), is the (simple, undirected)
graph with set of vertices Γ and in which γ, δ ∈ Γ are connected by an edge
iff ∃s ∈ S(γs = δ or δs = γ).

Finally for such Γ, S the number of ends of Cay(Γ, S) is the supremum of
the number of infinite components, when any finite set of vertices is removed.
This number is independent of S and it is equal to 1, 2 or ∞.

2 Ultraproducts of standard measure spaces

(A) Let (Xn, µn), n ∈ N, be a sequence of standard measure spaces and
denote by B(Xn) the σ-algebra of Borel sets of Xn. Let U be a non-principal
ultrafilter on N. For P ⊆ N×X (X some set) we write

UnP (n, x)⇔ {n : P (n, x)} ∈ U .

If UnP (n, x) we also say that for U -almost all n, P (n, x) holds. On
∏

nXn

define the equivalence relation

(xn) ∼U (yn)⇔ Un(xn = yn),
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let [(xn)]U be the (∼U)-equivalence class of (xn) and put

XU = (
∏
n

Xn)/U = {[(xn)]U : (xn) ∈
∏
n

Xn}.

Given now (An) ∈
∏

n B(Xn), we define [(An)]U ⊆ XU by

[(xn)]U ∈ [(An)]U ⇔ Un(xn ∈ An).

Note that

[(∼ An)]U =∼ [(An)]U

[(An ∪Bn)]U = [(An)]U ∪ [(Bn)]U

[(An ∩Bn)]U = [(An)]U ∩ [(Bn)]U ,

where ∼ denotes complementation. Put

B0
U = {[(An)]U : (An) ∈

∏
n

B(Xn)},

so that B0
U is a Boolean algebra of subsets of XU .

For [(An)]U ∈ B0
U , put

µU([(An)]U) = lim
n→U

µn(An),

where limn→U rn denotes the ultrafilter limit of the sequence (rn). It is easy
to see that µU is a finitely additive probability Borel measure on B0

U . We
will extend it to a (countably additive) probability measure on a σ-algebra
containing B0

U .

Definition 2.1 A set N ⊆ XU is null if ∀ε > 0∃A ∈ B0
U (N ⊆ A and

µU(A) < ε). Denote by N the collection of nullsets.

Proposition 2.2 The collection N is a σ-ideal of subsets of XU .

Proof. It is clear that N is closed under subsets. We will now show that
it is closed under countable unions.

Lemma 2.3 Let Ai ∈ B0
U , i ∈ N, and assume that limm→∞ µU(

⋃m
i=0 A

i) = t.
Then there is A ∈ B0

U with µU(A) = t and
⋃
iA

i ⊆ A.
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Granting this let N i ∈N , i ∈ N, ε > 0 be given. Let N i ⊆ Ai ∈ B0
U with

µU(Ai) ≤ ε/2i. Then µU(
⋃m
i=0A

i) ≤ ε and µU(
⋃m
i=0A

i) increases with m. So

lim
m→U

µU(
m⋃
i=0

Ai) = t ≤ ε

and by the lemma there is A ∈ B0
U with µU(A) ≤ ε and

⋃
iN

i ⊆
⋃
iA

i ⊆ A.
So
⋃
iN

i is null.

Proof of 2.3. Put Bm =
⋃m
i=0A

i, so that µU(Bm) = tm → t. Let
Ai = [(Ain)]U , so that Bm = [(Bm

n )]U , with Bm
n =

⋃m
i=0A

i
n. Let

Tm =

{
n ≥ m : |µn(Bm

n )− tm| ≤
1

2m

}
,

so that
⋂
m Tm = ∅ and Tm ∈ U , as tm = µU(Bm) = limn→U µn(Bm

n ).
Let m(n) = largest m such that n ∈

⋂
`≤m T`. Then m(n) → ∞ as

n→ U , since for each M , {n : m(n) ≥M} ⊇
⋂M
m=0 Tm ∈ U . Also n ∈ Tm(n).

So

|µm(n)(B
m(n)
n )− tm(n)| ≤

1

2m(n)
,

thus
lim
n→U

µn(Bm(n)
n ) = t.

Let A = [(B
m(n)
n )]U . Then µU(A) = t. Also for each i,

{n : Ain ⊆ Bm(n)
n } ⊇ {n : m(n) ≥ i} ∈ U ,

so Ai = [(Ain)]U ⊆ [(B
m(n)
n )]U = A, thus

⋃
iA

i ⊆ A. a

Put
BU = {A ⊆ XU : ∃A′ ∈ B0

U(A∆A′ ∈N )},

and for A ∈ BU put
µU(A) = µU(A′)

where A′ ∈ B0
U , A∆A′ ∈N . This is clearly well defined and agrees with µU

on B0
U .

Proposition 2.4 The class BU is a σ-algrebra of subsets of XU containing
B0
U and µU is a probability measure on BU .
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Proof. It is easy to see that BU is a Boolean algebra containing B0
U

and µU is a finitely additive probability measure on BU . It only remains to
show that if An ∈ BU , n ∈ N, are pairwise disjoint, then

⋃
nAn ∈ BU and

µU(
⋃
nAn) =

∑
n µU(An).

For A,A′ ∈ BU , let

A ≡ A′ ⇔ A∆A′ ∈N .

Let now A′n ∈ B0
U be such that An ≡ A′n. By disjointifying, we can assume

that the A′n are disjoint. Note also that
⋃
nAn ≡

⋃
nA
′
n. It is thus enough

to find A′ ∈ B0
U with A′ ≡

⋃
nA
′
n and µU(A′) =

∑
n µU(A′n) (=

∑
n µU(An)).

By Lemma 2.3, there is A′ ∈ B0
U with

⋃
nA
′
n ⊆ A′ and µU(A′) =∑

n µU(A′n). Then for each N ,

A′ \
⋃
n

A′n ⊆ A′ \
N⋃
n=0

A′n ∈ B0
U

and

µU(A′ \
N⋃
n=0

A′n) = µU(A′)−
N∑
n=0

µU(A′n)→ 0

as N →∞. So
A′∆

⋃
n

A′n = A′ \
⋃
n

A′n ∈N

i.e., A′ ≡
⋃
nA
′
n. a

Finally, note that for A ∈ BU , µU(A) = 0⇔ A ∈N .

(B) The following is straightforward.

Proposition 2.5 The measure µU is non-atomic if and only if ∀ε > 0
∀(An) ∈

∏
n B(Xn)

(
(Un(µn(An) ≥ ε) ⇒ ∃δ > 0 ∃(Bn) ∈

∏
n B(Xn)

[Un(Bn ⊆ An & δ ≤ µn(Bn), µn(An \Bn))]
)
.

For example, this condition is satisfied if each (Xn, µn) is non-atomic or if
each Xn is finite, µn is normalized counting measure and limn→U card(Xn) =
∞.

Let MALGµU be the measure algebra of (X,BU , µU). If µU is non-atomic,
fix also a function SU : MALGµU → MALGµU such that SU(A) ⊆ A and

µU(SU(A)) =
1

2
µU(A).
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Let now B0 ⊆ MALGµU be a countable subalgebra closed under SU . Let
B = σ(B0) ⊆ MALGµU be the σ-subalgebra of MALGµU generated by B0.
Since every element of B can be approximated (in the sense of the metric
d(A,B) = µU(A∆B)) by elements of B0, it follows that B is countably
generated and non-atomic. It follows (see, e.g., Kechris [Ke1, 17.44]) that
the measure algebra (B, µU |B) is isomorphic to the measure algebra of (any)
non-atomic, standard measure space, in particular MALGρ, where ρ is the
usual product measure on the Borel sets of 2N. Then we can find a Cantor
scheme (Bs)s∈2<N , with Bs ∈ BU , B∅ = X, Bsˆ0∩Bsˆ1 = ∅, Bs = Bsˆ0∪Bsˆ1,
µU(Bs) = 2−n, and (Bs) viewed now as members of MALGµU , belong to B
and generate B. Then define

ϕ : XU → 2N

by

ϕ(x) = α⇔ x ∈
⋂
n

Bα|n.

Then ϕ−1(Ns) = Bs, where Ns = {α ∈ 2N : s ⊆ α} for s ∈ 2<N. Thus ϕ
is BU -measurable (i.e., the inverse image of a Borel set in 2N is in BU) and
ϕ∗µU = ρ, so that (2N, ρ) is a factor of (XU , µU) and A 7→ ϕ−1(A) is an
isomorphism of the measure algebra MALGρ with (B, µU |B).

3 Ultraproducts of measure preserving

actions

(A) Let (Xn, µn),U be as in §2. Let Γ be a countable group and let {αn}
be a sequence of Borel actions αn : Γ × Xn → Xn, such that αn preserves
µn, ∀n ∈ N. We can define then the action αU : Γ×XU → XU by

γαU · [(xn)]U = [(γαn · xn)]U ,

where we let γαU · x = αU(γ, x) and similarly for each αn.

Proposition 3.1 The action αU preserves B0
U , BU and the measure µU .

Proof. First let A = [(An)]U ∈ B0
U . We verify that γαU ·A = [(γαn ·An)]U ,
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from which it follows that the action preserves B0
U . Indeed

[(xn)]U ∈ γαU · [(An)]U ⇔ (γ−1)αU · [(xn)]U ∈ [(An)]

⇔ Un((γ−1)αn · xn ∈ An)

⇔ Un(xn ∈ γαn · An)

⇔ [(xn)]U ∈ [(γαn · An)]U .

Also

µU(γαU · A) = lim
n→U

µn(γαn · An)

= lim
n→U

µn(An) = µU(A),

so the action preserves µU |B0
U .

Next let A ∈ N and for each ε > 0 let A ⊆ Aε ∈ B0
U with µU(Aε) < ε.

Then γαU · A ⊆ γαU · Aε and µU(γαU · Aε) < ε, so γαU · A ∈ N , i.e., N is
invariant under the action.

Finally, let A ∈ BU and let A′ ∈ B0
U be such that A∆A′ ∈ N , so that

γαU (A)∆γαU (A′) ∈N , thus γαU (A) ∈ BU and µU(γαU · A) = µU(γαU · A′) =
µU(A′) = µU(A). a

If (X,µ) is a probability space and α, β : Γ×X → X are measure preserv-
ing actions of Γ, we say the α, β are equivalent if ∀γ ∈ Γ(γα = γβ, µ-a.e.). We
let A(Γ, X, µ) be the space of equivalence classes and we call the elements of
A(Γ, X, µ) also measure preserving actions. Note that if for each n, αn, α

′
n as

above are equivalent, then it is easy to check that αU , α
′
U are also equivalent,

thus if an ∈ A(Γ, Xn, µn), n ∈ N, is a sequence of measure preserving actions
and we pick αn a representative of an, then we can define unambiguously the
ultraproduct action ∏

n

an/U

with representative αU . This is a measure preserving action of Γ on (XU , µU),
i.e.,

∏
n an/U ∈ A(Γ, XU , µU). When an = a for all n, we put

aU =
∏
n

a/U .

(B) Recall that if a ∈ A(Γ, X, µ), b ∈ A(Γ, Y, ν), we say that b is a factor
of a, in symbols

b v a,
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if there is a measurable map ϕ : X → Y such that ϕ∗µ = ν and ϕ(γa · x) =
γb · ϕ(x), µ-a.e.(x). We denote by MALGµ the measure algebra of (X,µ).
Clearly Γ acts on MALGµ by automorphisms of the measure algebra. If
(Y, ν) is a non-atomic, standard measure space, the map A ∈ MALGν 7→
ϕ−1(A) ∈ MALGµ is an isomorphism of MALGν with a countably generated,
non-atomic, σ-subalgebra B of MALGµ, which is Γ-invariant, and this iso-
morphism preserves the Γ-actions. Conversely, we can see as in §1,(B) that
every countably generated, non-atomic, σ-subalgebra B of MALGµ, which
is Γ-invariant, gives rise to a factor of a as follows: First fix an isomorphism
π between the measure algebra (B, µ|B) and the measure algebra of (Y, ν),
where Y = 2N and ν = ρ is the usual product measure. Use this to define the
Cantor scheme (Bs)s∈2<N for B as in §2, (B) and define ϕ : X → Y as before.
Now the isomorphism π gives an action of Γ on the measure algebra of (Y, ν),
which by definition preserves the Γ-actions on (B, µ|B) and MALGν . The
Γ-action on MALGν is induced by a (unique) action b ∈ A(Γ, Y, ν) (see, e.g.,
Kechris [Ke1, 17.46]) and then it is easy to check that ϕ witnesses that b v a
(notice that for each s ∈ 2<N, γ ∈ Γ, ϕ(γa · x) ∈ Ns ⇔ γb · ϕ(x) ∈ Ns, µ-
a.e.(x)).

In particular, the factors b ∈ A(Γ, Y, ν) of a =
∏

n an/U where (Y, ν) is
a non-atomic, standard measure space, correspond exactly to the countably
generated, non-atomic, Γ-invariant (for a) σ-subalgebras of MALGµU . For
non-atomic µU , we can construct such subalgebras as follows: Start with
a countable Boolean subalgebra B0 ∈ MALGµU , which is closed under the
Γ-action and the function SU of §2, (B). Then let B = σ(B0) be the σ-
subalgebra of MALGµU generated by B0. This has all the required properties.

(C) We will next see how to ensure, in the notation of the preceding
paragraph, that the factor corresponding to B is a free action. Recall that
a ∈ A(Γ, X, µ) is free if ∀γ ∈ Γ \ {1}(γa · x 6= x, µ-a.e. (x)).

Proposition 3.2 The action a =
∏

n an/U is free iff for each γ ∈ Γ \ {1},

lim
n→U

µn({x : γan · x 6= x}) = 1.

Proof. Note that, modulo null sets,

{x ∈ XU : γa · x 6= x} = [(An)]U ,

where An = {x ∈ Xn : γan · x 6= x}. a
In particular, if all an are free, so is

∏
n an/U .

13



Proposition 3.3 Suppose the action a =
∏

n an/U is free. Then for each
A ∈ MALGµU , A 6= ∅ and γ ∈ Γ \ {1}, there is B ∈ MALGµU with B ⊆ A,
µU(B) ≥ 1

16
µU(A) and γa ·B ∩B = ∅.

Proof. It is clearly enough to show that if γ 6= 1, A ∈ B0
U , µU(A) > 0,

then there is B ∈ B0
U , B ⊆ A, with µU(B) ≥ 1

16
µU(A) and γa ·B ∩B = ∅.

Let A = [(An)]U and µU(A) = ε > 0. Then there is U ⊆ N, U ∈ U with
n ∈ U ⇒ (µn(An) > ε

2
and µ({x ∈ Xn : γan ·x 6= x}) > 1− ε

4
). We can assume

that each Xn is Polish and γan is represented (a.e.) by a homeomorphism
γαn of Xn. Let

Cn = {x ∈ An : γαn · x 6= x},

so that µn(Cn) > ε
4
. Fix also a countable basis (V n

i )i∈N for Xn.
If x ∈ Cn, let V x

n be a basic open set such that γαn · V x
n ∩ V x

n = ∅ (this
exists by the continuity of γαn and the fact that γαn · x 6= x). It follows that
there is x0 ∈ Cn with µn(Cn∩V x0

n ) > 0 and γαn · (Cn∩V x0
n )∩ (Cn∩V x0

n ) = ∅.
Thus there is C ⊆ Cn with µn(C) > 0 and γan ·C∩C = ∅. By Zorn’s Lemma
or transfinite induction there is an element Bn of MALGµn which is maximal,
under inclusion, among all D ∈ MALGµU satisfying: D ⊆ Cn (viewing Cn as
an element of the measure algebra), µn(D) > 0, γan ·D ∩D = ∅. We claim
that µn(Bn) ≥ ε

16
. Indeed let

En = Cn \ (Bn ∪ γan ·Bn ∪ (γ−1)an ·Bn).

If µn(Bn) < ε
16

, then En 6= ∅, so as before we can find Fn ⊆ En with
µn(Fn) > 0 and γan · Fn ∩ Fn = ∅. Then γan · (Bn ∪ Fn) ∩ (Bn ∪ Fn) = ∅,
contradicting to maximality of Bn. So µn(Bn) ≥ ε

16
. Let now B = [(Bn)]U .a

Remark 3.4 The above argument can be simplified by using [KST, 4.6].
Consider the graph Gn on Xn whose edges consist of all distinct x, y such
that y = (γ±1)αn ·x. It has maximum degree 2, so admits a Borel 3-coloring.
Thus there is an independent (for Gn) set Bn ⊆ Cn with µn(Bn) ≥ µn(Cn)/3.
Then γan ·Bn ∩Bn = ∅ and actually µn(Bn) ≥ ε

12
.

So if the action a =
∏

n an/U is free, let

TU : Γ×MALGµU → MALGµU

be a function such that for each γ 6= 1, A ∈ MALGµU \ {∅}, TU(γ,A) ⊆
A, µ(TU(γ,A)) ≥ 1

16
µ(A) and γa · TU(γ,A) ∩ TU(γ,A) = ∅. Now, if in

14



the earlier construction of countably generated, non-atomic, Γ-invariant σ-
subalgebras of MALGµU , we start with a countable Boolean subalgebra B0

closed under the Γ-action, the function SU of §2, (B) and TU (i.e., ∀γ(A ∈
B0 ⇒ TU(γ,A) ∈ B0)), then the factor b corresponding to B = σ(B0) is a
free action.

4 Characterizing factors of ultraproducts

In sections §4–8 all measure spaces will be non-atomic and standard. Also Γ
is an arbitrary countable infinite group.

(A) For such a measure space (X,µ), Aut(X,µ) is the Polish group of
measure preserving automorphisms of (X,µ) equipped with the weak topol-
ogy generated by the maps T 7→ T (A), A ∈ MALGµ, from Aut(X,µ) into
MALGµ (equipped with the usual metric dµ(A,B) = µ(A∆B)). We can
identify A(Γ, X, µ) with the space of homomorphisms of Γ into Aut(X,µ), so
that it becomes a closed subspace of Aut(X,µ)Γ with the product topology,
thus also a Polish space.

Definition 4.1 Let a ∈ A(Γ, X, µ), an ∈ A(Γ, Xn, µn), n ∈ N. Let U be a
non-principal ultrafilter on N. We say that a is weakly U-contained in (an),
in symbols

a ≺U (an),

if for every finite F ⊆ Γ, A1, . . . , AN ∈ MALGµ, ε > 0, for U-almost all n:

∃B1,n . . . BN,n ∈ MALGµn∀γ ∈ F∀i, j ≤ N

|µ(γa · Ai ∩ Aj)− µn(γan ·Bi,n ∩Bj,n)| < ε.

Note that if an = b for all n, then a ≺U (an)⇔ a ≺ b in the sense of weak
containment of actions, see Kechris [Ke2].

One can also trivially see that a ≺U (an) is equivalent to the statement:

For every finite F ⊆ Γ, A1, . . . AN ∈ MALGµ, ε > 0, there are [(B1,n)]U , . . . ,
[(BN,n)]U ∈ B0

U(XU) such that for U -almost all n:

∀γ ∈ F∀i, j ≤ N |µ(γa · Ai ∩ Aj)− µn(γan ·Bi,n ∩Bj,n)| < ε).
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Definition 4.2 For a, bn ∈ A(Γ, X, µ), we write

lim
n→U

bn = a

if for each open nbhd V of a in A(Γ, X, µ), Un(bn ∈ V ).

Since the sets of the form

V = {b : ∀γ ∈ F∀i, j ≤ N |µ(γa · Ai ∩ Aj)− µ(γb · Ai ∩ Aj)| < ε},

for A1, . . . , AN a Borel partition of X, ε > 0, F ⊆ Γ finite containing 1, form
a nbhd basis of a, limn→U bn = a iff Un(bn ∈ V ), for any V of the above form.

Below ∼= denotes isomorphism of actions.

Theorem 4.3 Let U be a non-principal ultrafilter on N. Let a ∈ A(Γ, X, µ),
and let an ∈ A(Γ, Xn, µn), n ∈ N. Then the following are equivalent

(1) a ≺U (an),

(2) a v
∏

n an/U ,

(3) a = limn→U bn, for some sequence (bn), bn ∈ A(Γ, X, µ) with bn ∼=
an, n ∈ N.

Proof. Below put b =
∏

n an/U .
(1) ⇒ (2): Let 1 ∈ F0 ⊆ F1 ⊆ . . . be a sequence of finite subsets of Γ

with Γ =
⋃
m Fm. We can assume that X = 2N, µ = ρ (the usual product

measure on 2N). Let Ns = {α ∈ 2N : s ⊆ α}, for s ∈ 2<N.
By (1), we can find for each m ∈ N and for each s ∈ 2≤m, [(Bs,m

n )]U ∈ B0
U

such that Um ∈ U , where

Um = {n ≥ m : ∀γ ∈ Fm∀s, t ∈ 2≤m

|µ(γa ·Ns ∩Nt)− µn(γan ·Bs,m
n ∩Bt,m

n )| < εm},
where εm → 0. Since

⋂
m Um = ∅, let m(n) = largest m such that n ∈⋂

i≤m Ui. Then n ∈ Un(m) and limn→U m(n) =∞. Put

Bs = [(Bs,m(n)
n )]U ∈ B0

U .

Since n ∈ Um(n) for all n, it follows (taking γ = 1, s = t in the definition of
Um) that for all n with m(n) > length(s),

|µ(Ns)− µn(Bs,m(n)
n )| < εm(n). (∗)
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So for any ε > 0, if M > length(s) and εM < ε, then Un(m(n) > M), so (∗)
holds with ε replacing εm(n) for U -almost all n, thus

µU(Bs) = lim
n→U

µn(Bs,m(n)
n ) = µ(Ns).

In general, we have that for all γ ∈ Fm(n) and all s, t ∈ 2≤m(n),

|µ(γa ·Ns ∩Nt)− µn(γan ·Bs,m(n)
n ∩Bt,m(n)

n )| < εm(n).

So if γ ∈ F, s, t ∈ 2<N, ε > 0, and if M is large enough so that M >
max{length(s), length(t)}, γ ∈ FM , εM < ε, then on {n : m(n) ≥ M} ∈ U we
have

|µ(γa ·Ns ∩Nt)− µn(γan ·Bs,m(n)
n ∩Bt,m(n)

n )| < ε,

so

µU(γ
Q

n an/U ·Bs ∩Bt) = µ(γa ·Ns ∩Nt). (∗∗)

Viewing each Bs as an element of MALGµU , we have B∅ = XU , Bsˆ0 ∩
Bsˆ1 = ∅, Bs = Bsˆ0 ∪ Bsˆ1 (for the last take γ = 1, t = ŝ i in (∗∗)) and
µU(Bs) = 2−n, if s ∈ 2n. Then the map π(Ns) = Bs gives a measure
preserving isomorphism of the Boolean subalgebra A0 of MALGµ generated
by (Ns) and the Boolean algebra B0 in MALGµU generated by (Bs). Let B
be the σ-subalgebra of MALGµU generated by (Bs). Since π is an isometry
of A0 with B0 (with the metrics they inherit from the measure algebra), and
A0 is dense in MALGµ, B0 is dense in B, it follows that π extends uniquely
to an isometry, also denoted by π, from MALGµ onto B. Since π(∅) = ∅, π
is actually an isomorphism of the measure algebra MALGµ with the measure
algebra B (see Kechris [Ke2, pp. 1-2]). It is thus enough to show that B is
Γ-invariant (for b) and that π preserves the Γ-action (i.e., it is Γ-equivariant).

It is enough to show that π(γa ·Ns) = γb ·Bs (since (Bs) generates B).
Fix γ ∈ Γ, ε > 0, s ∈ 2<N. There is A ∈ A0 with µ(γa · Ns∆A) < ε/2.

Now A =
⊔m1

i=1 Nti ,∼ A =
⊔m2

j=1 Nt′j
and ∼ Ns =

⊔m3

k=1Nsk
(disjoint unions),

so

γa ·Ns∆A = (γa ·Ns ∩ (∼ A)) t (γa · (∼ Ns) ∩ A)

= (

m2⊔
j=1

γa ·Ns ∩Nt′j
) t (

m3⊔
k=1

m1⊔
i=1

(γa ·Nsk
∩Nti)).
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If B = π(A) ∈ B0, then we also have

γb ·Bs∆B =(

m2⊔
j=1

γb ·Bs ∩Bt′j
)t

(

m3⊔
k=1

m1⊔
i=1

(γb ·Bsk
∩Bti)),

so by (∗∗)
µU(γb ·Bs∆B) = µ(γa ·Ns∆A) < ε/2.

Since π preserves measure, we also have µU(π(γa ·Ns)∆B) < ε/2, thus

µU(γb ·Bs∆π(γa ·Ns)) < ε.

Therefore γb ·Bs = π(γa ·Ns).

(2)⇒ (1): Suppose that a v b. Let π : MALGµ → MALGµU be a measure
preserving embedding preserving the Γ-actions (so that the image π(MALGµ)
is a Γ-invariant σ-subalgebra of MALGµU ). Fix F ⊆ Γ finite, A1, . . . , An ∈
MALGµ and ε > 0. Let B1, . . . , BN ∈ B0

U represent π(A1), . . . , π(AN). Let
Bi = [(Bi

n)]U . Then for γ ∈ F, j, k ≤ N ,

µ(γa · Aj ∩ Ak) = µU(γb ·Bj ∩Bk)

= lim
n→U

µn(γan ·Bj
n ∩Bk

n),

so for U -almost all n,

|µ(γa · Aj ∩ Ak)− µn(γan ·Bj
n ∩Bk

n)| < ε,

and thus for U -almost all n, this holds for all γ ∈ F, j, k ≤ N . Thus a ≺U
(an).

(3) ⇒ (1): Fix such bn, and let A1, . . . , AN ∈ MALGµ, F ⊆ Γ finite,
ε > 0. Then there is U ∈ U such that for n ∈ U we have

∀γ ∈ F∀i, j ≤ N(|µ(γa · Ai ∩ Aj)− µ(γbn · Ai ∩ Aj)| < ε).

Let ϕn : (X,µ) → (Xn, µn) be an isomorphism that sends bn to an and put
ϕn(Ai) = Bi

n. Then ϕn(γbn · Ai ∩ Aj) = γan ·Bi
n ∩Bj

n, so for n ∈ U :

∀γ ∈ F∀i, j ≤ N(|µ(γa · Ai ∩ Aj)− µn(γan ·Bi
n ∩Bj

n)| < ε),
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thus a ≺U (an).

(1) ⇒ (3): Suppose a ≺U (an). Let

V = {c ∈ A(Γ, X, µ) : ∀γ ∈ F∀i, j ≤ N(|µ(γa ·Ai∩Aj)−µ(γc ·Ai∩Aj)| < ε)},

where A1, . . . , An ∈ MALGµ is a Borel partition of X, ε > 0 and F ⊆ Γ is
finite with 1 ∈ F , be a basic nbhd of a.

Claim. For any such V , we can find U ∈ U such that for n ∈ U there is
bn ∈ V with bn ∼= an.

Assume this for the moment and complete the proof of (1) ⇒ (3).
Let V0 ⊇ V1 ⊇ V2 ⊇ . . . be a nbhd basis for a consisting of sets of the

above form, and for each m let Um ∈ U be such that for n ∈ Um, there is
bn,m ∈ Vm with bn,m ∼= an. We can also assume that

⋂
m Um = ∅. Let m(n) =

largest m such that n ∈
⋂
i≤m Ui. We have an ∼= bn,m(n) ∈ Vm(n), and for any

nbhd V of a as above, if M is so large that VM ⊆ V , then bn,m(n) ∈ Vm(n) ⊆
VM ⊆ V , for n ∈ {n : m(n) ≥M} ∈ U . So a = limn→U bn,m(n).

Proof of the claim. Since a ≺U (an), for any δ > 0, we can find
[(B1,n)]U , . . . , [(BN,n)]U ∈ B0

U and Uδ ∈ U such that for n ∈ Uδ we have

∀γ ∈ F∀i, j ≤ N(|µ(γa · Ai ∩ Aj)− µn(γan ·Bi,n ∩Bj,n)| < δ).

Taking δ < ε/20N3 and U = Uδ, the proof of Proposition 10.1 in Kechris
[Ke2] shows that for n ∈ U there is bn ∼= an with bn ∈ V . a

Corollary 4.4 Let U be a non-principal ultrafilter on N and consider the
actions a ∈ A(Γ, X, µ), b ∈ A(Γ, Y, ν). Then the following are equivalent:

(1) a ≺ b,

(2) a v bU .

Theorem 4.3 also has the following curious consequence, a compactness
property of the space A(Γ, X, µ).

Corollary 4.5 Let an ∈ A(Γ, X, µ), n ∈ N, be a sequence of actions. Then
there is a subsequence n0 < n1 < n2 < . . . and bni

∈ A(Γ, X, µ), bni
∼= ani

,
such that (bni

) converges in A(Γ, X, µ).
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Proof. Let a ∈ A(Γ, X, µ) be such that a v
∏

n an/U (such exists by §3,
(B)). Then by 4.3, we can find bn ∼= an, with limn→U bn = a. This of course
implies that there is n0 < n1 < . . . with limi→∞ bni

= a. a
Benjy Weiss pointed out that for free actions a stronger version of 4.5

follows from his work with Abért, see Abért-Weiss [AW]. In this paper it is
shown that if sΓ is the shift action of an infinite group Γ on [0, 1]Γ, then
sΓ ≺ a for any free action a of Γ. From this it follows that given free
an ∈ A(Γ, X, µ), n ∈ N, there is bn ∼= an with limn→∞ bn = sΓ.

Another form of compactness for A(Γ, X, µ) that is an immediate conse-
quence of 4.5 is the following:

Any cover of A(Γ, X, µ) by open, invariant under ∼= sets, has a finite
subcover. Equivalently, the quotient space A(Γ, X, µ)/ ∼= is compact.

(B) Consider now a ∈ A(Γ, X, µ) and the action aU on (XU , µU). Clearly
µU is non-atomic as µ is non-atomic. Fix also a countable Boolean subalgebra
A0 of MALGµ which generates MALGµ and is closed under the action a. The
map

π(A) = [(A)]U

(where (A) is the constant sequence (An), An = A,∀n ∈ N) embeds A0 into
a Boolean subalgebra C0 of MALGµU , invariant under aU , preserving the
measure and the Γ-actions (a on A0 and aU on C0).

Let B0 ⊇ C0 be any countable Boolean subalgebra of MALGµU closed
under the action aU and the function SU of §2, (B) and let B = σ(B0) be
the σ-algebra generated by B0. Let b be the factor of aU corresponding to
B, so that b v aU and thus b ≺ a by 4.4. We also claim that a v b and thus
a ∼w b, where

a ∼w b⇔ a ≺ b & b ≺ a.

Indeed, let D0 = σ(C0) be the σ-subalgebra of B generated by C0. Then
D0 is also closed under the action aU . The map π is an isometry of A0

with C0, which are dense in MALGµ, D0, resp., so extends uniquely to an
isometry, also denoted by π, of MALGµ with D0. Since π(∅) = ∅, it follows
that π is an isomorphism of the measure algebra MALGµ with the measure
algebra D0 (see Kechris [Ke2, pp. 1-2]). Fix now γ ∈ Γ. Then γa on MALGµ

is mapped by π to an automorphism π(γa) of the measure algebra D0. Since
π(γa ·A) = γaU ·π(A), for A ∈ A0, it follows that π(γa)|C0 = γaU |C0, so since
C0 generates D0, we have π(γa) = γaU |D0, i.e., π preserves the Γ-actions (a
on MALGµ and aU on D0), thus a v b.
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Recall now that a ∈ A(Γ, X, µ) admits non-trivial almost invariant sets
if there is a sequence (An) of Borel sets such that µ(An)(1 − µ(An)) 6→ 0
but ∀γ(limn→∞ µ(γa ·An∆An) = 0). We call an action a strongly ergodic (or
E0-ergodic) if it does not admit non-trivial almost invariant sets. We now
have:

Proposition 4.6 Let a ∈ A(Γ, X, µ). Then a is strongly ergodic iff ∀b ∼w a
(b is ergodic) iff ∀b ≺ a (b is ergodic).

Proof. Assume first that a is not strongly ergodic and let (An) be a
sequence of Borel sets such that for some δ > 0, δ ≤ µ(An) ≤ 1 − δ and
∀γ(limn→∞ µ(γa · An∆An) = 0). Let U be a non-principal ultrafilter on N
and let A = [(An)]U ∈ B0

U . Then viewing A as an element of MALGµU we
have γaU ·A = A, ∀γ ∈ Γ, and 0 < µU(A) < 1. Let B0 be a countable Boolean
subalgebra of MALGµU containing A and closed under aU , the function SU
and containing C0 as before. Let b be the factor of aU associated with
B = σ(B0), so that a ∼w b. Since A ∈ B, clearly b is not ergodic.

Conversely assume b ≺ a and b is not ergodic. It follows easily then from
the definition of weak containment that a is not strongly ergodic. a

Finally we note the following fact that connects weak containment to
factors.

Proposition 4.7 Let a, b ∈ A(Γ, X, µ). Then the following are equivalent:

(i) a ≺ b,

(ii) ∃c ∈ A(Γ, X, µ)(c ∼w b & a v c).

Proof. (ii) clearly implies (i), since a v c⇒ a ≺ c and ≺ is transitive.
(i) ⇒ (ii) Let U be a non-principal ultrafilter on N. By 4.4, if a ≺ b

then a v bU . Then as in the first two paragraphs of §4, (B), we can find an
appropriate σ-subalgebra of MALGµU invariant under bU , so that if c is the
corresponding factor, then c ∼w b (and in fact moreover b v c) and a v c. a

5 Graph combinatorics of group actions

Let Γ be an infinite group with a finite set of generators S ⊆ Γ for which
we assume throughout that 1 6∈ S. We denote by FR(Γ, X, µ) the set of free
actions in A(Γ, X, µ). If a ∈ FR(Γ, X, µ) we associate with a the (simple,
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undirected) graph G(S, a) = (X,E(S, a)), where X is the set of vertices and
E(S, a), the set of edges, is given by

(x, y) ∈ E(S, a)⇔ x 6= y & ∃s ∈ S±1(sa · x = y),

where S±1 = {s, s−1 : s ∈ S}. We also write xE(S, a)y if (x, y) ∈ E(S, a). As
in Conley-Kechris [CK], we associate with this graph the following parame-
ters:

χµ(S, a) = the measurable chromatic number,

χapµ (S, a) = the approximate chromatic number,

iµ(S, a) = the independence number,

defined as follows:
• χµ(S, a) is the smallest cardinality of a standard Borel space Y for which

there is a (µ−)measurable coloring c : X → Y of G(S, a) (i.e., xE(S, a)y ⇒
c(x) 6= c(y)).
• χapµ (S, a) is the smallest cardinality of a standard Borel space Y such

that for each ε > 0, there is a Borel set A ⊆ X with µ(X \ A) < ε and
a measurable coloring c : A → Y of the induced subgraph G(S, a)|A =
(A,E(S,A) ∩ A2).
• iµ(S, a) is the supremum of the measures of Borel independent sets,

where A ⊆ X is independent if no two elements of A are adjacent.
Given a (simple, undirected) graph G = (X,E), where X is the set of

vertices and E the set of edges, a matching in G is a subset M ⊆ E such
that no two edges in M have a common point. We denote by XM the set
of matched vertices, i.e., the set of points belonging to an edge in M . If
XM = X we say that M is a perfect matching.

For a ∈ FR(Γ, X, µ) as before, we also define the parameter

m(S, a) = the matching number,

where m(S, a) is 1/2 of the supremum of µ(XM), with M a Borel (as a subset
of X2) matching in G(S, a). If m(S, a) = 1/2 and the supremum is attained,
we say that G(S, a) admits an a.e. perfect matching.

Note that we can view a matching M in G(S, a) as a Borel bijection
ϕ : A → B, with A,B ⊆ X disjoint Borel sets and xE(S, a)ϕ(x),∀x ∈ A.
Then XM = A ∪ B and so µ(A) is 1/2µ(XM). Thus m(S, a) is equal to the
supremum of µ(A) over all such ϕ.
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It was shown in Conley-Kechris [CK, 4.2,4.3] that

a ≺ b⇒ iµ(S, a) ≤ iµ(S, b), χapµ (S, a) ≥ χapµ (S, b).

We note a similar fact about m(S, a).

Proposition 5.1 Let Γ be an infinite countable group and S ⊆ Γ a finite set
of generators. Then

a ≺ b⇒ m(S, a) ≤ m(S, b).

Proof. Let ϕ : A → B be a matching for G(S, a). Then there are
Borel decompositions A =

⊔n
i=1An, B =

⊔n
i=1 Bn, and s1, . . . , sn ∈ S±1 with

ϕ|Ai = sai |Ai, ϕ(Ai) = Bi. Fix δ > 0. Since a ≺ b, for any ε > 0, we can
find a sequence C1, . . . , Cn of pairwise disjoint Borel sets such that for any
γ ∈ {1}∪ (S±1)2, |µ(γa ·Ai∩Aj)−µ(γb ·Ci∩Cj)| < ε, for i ≤ i, j ≤ n. Since
sai ·Ai∩Aj = ∅, for all 1 ≤ i, j ≤ n, and sai ·Ai∩saj ·Aj = ∅, for all 1 ≤ i 6= j ≤ n,
it follows that |µ(Ai)−µ(Ci)| < ε, 1 ≤ i ≤ n, µ(sbi ·Ci ∩Cj) < ε, 1 ≤ i, j ≤ n,
and µ(sbi · Ci ∩ sbj · Cj) < ε, 1 ≤ i 6= j ≤ n. By disjointifying and choosing ε
very small compared to δ, it is clear that we can find such pairwise disjoint
C1, . . . , Cn with sbi ·Ci∩Cj = ∅, 1 ≤ i, j ≤ n, sbi ·Ci∩sbj ·Cj = ∅, 1 ≤ i 6= j ≤ n,
and if C =

⊔n
i=1Ci, D =

⊔n
i=1 s

b
i ·Ci, then |µ(C)−µ(A)| < δ. Clearly ψ : C →

D given by ψ|Ci = sbi |Ci is a matching for G(S, b) and µ(C) > µ(A)−δ. Since
δ was arbitrary this shows that m(S, a) ≤ m(S, b). a

(B) The next result shows that, modulo weak equivalence, we can turn
approximate parameters to exact ones.

Theorem 5.2 Let Γ be an infinite countable group and S ⊆ Γ a finite set
of generators. Then for any a ∈ FR(Γ, X, µ), there is b ∈ FR(Γ, X, µ) such
that

(i) a ∼w b and a v b,

(ii) χapµ (S, a) = χapµ (S, b) = χµ(S, b),

(iii) iµ(S, a) = iµ(S, b) and iµ(S, b) is attained,

(iv) m(S, a) = m(S, b) and m(S, b) is attained.
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Proof. Let U be a non-principal ultrafilter on N. The action b will be an
appropriate factor of the ultrapower aU .

Let k = χapµ (S, a). This is finite by Kechris-Solecki-Todorcevic [KST, 4.6].
Let iµ(S, a) = ι ≤ 1

2
and let m(S, a) = m ≤ 1

2
. Then for each n ≥ 1, find the

following:

(a) A sequence C1
n, . . . , C

k
n of pairwise disjoint Borel sets such that sa ·Ci

n∩
Ci
n = ∅, for 1 ≤ i ≤ k, s ∈ S±1, and µ(

⊔k
i=1C

i
n) ≥ 1− 1

n
.

(b) A Borel set In such that sa · In ∩ In = ∅, s ∈ S±1, and µ(In) ≥ ι− 1
n
.

(c) A pairwise disjoint family of Borel sets (Asn)s∈S±1 , such that sa · Asn ∩
Atn = ∅, s, t ∈ S±1, sa · Asn ∩ ta · Atn = ∅, s, t ∈ S±1, s 6= t, and

µ(
⊔

s∈S±1

Asn) ≥ m− 1
n
.

Consider now the ultrapower action aU on (XU , µU) and the sets Ci =
[(Ci

n)]n ∈ B0
U , 1 ≤ i ≤ k, I = [(In)]U ∈ B0

U and As = [(Asn)]U ∈ B0
U , s ∈ S±1.

Viewed as elements of MALGµU they satisfy:

(a′) Ci ∩ Cj = ∅, 1 ≤ i 6= j ≤ k, saU · Ci ∩ Ci = ∅, 1 ≤ i ≤ k, s ∈
S±1;µU(

⊔k
i=1C

i) = 1,

(b′) saU · I ∩ I = ∅, s ∈ S±1;µU(I) ≥ ι,

(c′) As ∩At = ∅, s 6= t, s, t ∈ S±1; saU ·As ∩At = ∅, s, t ∈ S±1; saU ·As ∩ taU ·
At = ∅, s 6= t, s, t ∈ S±1;µ(

⊔
s∈S±1 As) ≥ m.

Let now B0 be a countable Boolean subalgebra of MALGµU closed under
the action aU , the functions SU , TU of §2, (B), §3, (B), resp., and containing
the algebra C0 of §4, (B) and also Ci (1 ≤ i ≤ k), I, As (s ∈ S±1). Let
B = σ(B0) and let b be the factor of aU corresponding to B. (We can of
course assume that b ∈ FR(Γ, X, µ).) Then by §4, (B) again, a ∼w b and
a v b. So, in particular, χapµ (S, a) = χapµ (S, b) = k, iµ(S, a) = iµ(S, b) = ι and
m(S, a) = m(S, b) = m, since a ∼w b. The sets (Ci)i≤k give a measurable
coloring of G(S, b)|A, for some A with µ(A) = 1 and we can clearly color in
a measurable way G(S, b)| ∼ A by ` colors, where ` is the chromatic number
of the Cayley graph Cay(Γ, S) of Γ, S. Since ` ≤ k and the action is free,
it follows that χµ(S, b) ≤ k, so χµ(S, b) = χapµ (S, b). Finally, (b′), (c′) show
that iµ(S, b) = ι and m(S, b) = m are attained. a
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6 Brooks’ Theorem for group actions

(A) Brooks’ Theorem for finite graphs asserts that for any finite graphG with
degree bounded by d, the chromatic number χ(G) is ≤ d, unless d = 2 and G
contains an odd cycle or d ≥ 3 and G contains a complete subgraph (clique)
with d+1 vertices (and the chromatic number is always ≤ d+1). In Conley-
Kechris [CK] the question of finding analogs of the Brooks bound for graphs
of the form G(S, a) is studied. Let d = |S±1| be the degree of Cay(Γ, S). First
note that by Kechris-Solecki-Todorcevic [KST, 4.8], χµ(S, a) ≤ d+ 1 (in fact
this holds even for Borel instead of measurable colorings). A compactness
argument using Brooks’ Theorem also shows that χ(S, a) ≤ d, where χ(S, a)
is the chromatic number of G(S, a). It was shown in Conley-Kechris [CK,
2.19, 2.20] that for any infinite Γ, χapµ (S, a) ≤ d, for any a ∈ FR(Γ, X, µ), so
one has a full “approximate” version of Brooks’ Theorem. How about the full
measurable Brooks bound χµ(S, a) ≤ d? This is easily false for some action
a (e.g., the shift action), when Γ = Z or Γ = (Z/2Z)∗(Z/2Z) (with the usual
sets of generators) and it was shown in Conley-Kechris [CK, 5.12] that when
Γ has finitely many ends and is not isomorphic to Z or (Z/2Z)∗(Z/2Z), then
one indeed has the Brooks’ bound χµ(S, a) ≤ d, for any a ∈ FR(Γ, X, µ) (in
fact even for Borel as opposed to measurable colorings). It is unknown if this
still holds for Γ with infinitely many ends but 5.2 shows that one has the full
analog of the Brooks bound up to weak equivalence for any group Γ.

Theorem 6.1 For any infinite group Γ and finite set of generators S with
d = |S±1|, for any a ∈ FR(Γ, X, µ), there is b ∈ FR(Γ, X, µ), with b ∼w a
and χµ(S, b) ≤ d.

This also leads to the solution of an open problem arising in probability
concerning random colorings of Cayley graphs.

Let Γ be an infinite group with a finite set of generators S. Let k ≥ 1.
Consider the compact space kΓ on which Γ acts by shift: γ · p(δ) = p(γ−1δ).
The set Col(k,Γ, S) of colorings of Cay(Γ, S) with k colors is a closed (thus
compact) invariant subspace of kΓ. An invariant, random k-coloring of the
Cayley graph Cay(Γ, S) is an invariant probability Borel measure on the
space Col(k,Γ, S). Let d be the degree of Cay(Γ, S). In Aldous-Lyons [AL,
10.5] the question of existence of invariant, random k-colorings is discussed
and mentioned that Schramm (unpublished, 1997) had shown that for any
Γ, S there is an invariant, random (d+ 1)-coloring (this also follows from the
more general Kechris-Solecki-Todorcevic [KST, 4.8]). They also point out
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that Brooks’ Theorem implies that there is an invariant, random d-coloring
when Γ is a sofic group (for the definition of sofic group, see, e.g., Pestov
[P]). The question of whether this holds for arbitrary Γ remained open. We
show that 6.1 above provides a positive answer. First it will be useful to note
the following fact:

Proposition 6.2 Let Γ be an infinite group, S a finite set of generators for
Γ and let k ≥ 1. Then the following are equivalent:

(i) There is an invariant, random k-coloring,

(ii) There is a ∈ FR(Γ, X, µ) with χµ(S, a) ≤ k.

Proof. (ii) ⇒ (i). Let c : X → {1, . . . , k} be a measurable coloring of
G(S, a). Define C : X → kΓ by C(x)(γ) = c((γ−1)a · x). Then C is a Borel
map from X to Col(k,Γ, S) that preserves the actions, so C∗µ is an invariant,
random k-coloring.

(i) ⇒ (ii). Let ρ be an invariant, random k-coloring. Consider the action
of Γ on Y = Col(k,Γ, S) (by shift). Fix also a free action b ∈ FR(Γ, Z, ν) (for
some (Z, ν)). Let X = Y ×Z, µ = ρ× ν. Then Γ acts freely, preserving µ on
X by γ · (y, z) = (γ · y, γ · z). Call this action a. We claim that χµ(S, a) ≤ k.
For this let c : X → {1, . . . , k} be defined by c((y, z)) = y(1) (recall that
y ∈ Col(k,Γ, S), so y : Γ → {1, . . . , k} is a coloring of Cay(Γ, S)). It is easy
to check that this a measurable k-coloring of G(S, a). a

Remark 6.3 From the proof of (ii) ⇒ (i) in 6.2, it is clear that if a ∈
FR(Γ, X, µ) has χµ(S, a) ≤ k, then there is an invariant, random k-coloring
which is a factor of a.

We now have

Corollary 6.4 Let Γ be an infinite group and S a finite set of generators.
Let d = |S±1|. Then there is an invariant, random d-coloring. Moreover, for
each a ∈ FR(Γ, X, µ) there is such a coloring which is weakly contained in a.

Proof. This is immediate from 6.1 and 6.3. a
Lyons and Schramm (unpublished, 1997) raised the question (see Lyons-

Nazarov [LN,§5]) of whether there is, for any Γ, S, an invariant, random
χ-coloring, where χ = χ(Cay(Γ, S)) is the chromatic number of the Cayley
graph. It is pointed out in this paper that the answer is affirmative for
amenable groups (as there is an invariant measure for the action of Γ on
Col(χ,Γ, S) by amenability) but the general question is open.
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Remark 6.5 One cannot in general strengthen the last statement in 6.4 to:
For each a ∈ FR(Γ, X, µ), there is an invariant, random d-coloring which is
a factor of a. Indeed, this fails for Γ = Z or Γ = (Z/2Z) ∗ (Z/2Z) (with the
usual set of generators S for which d = 2) and a the shift action of Γ on
2Γ, since then the shift action of Γ on Col(2,Γ, S) with this random coloring
would be mixing and then as in (i) ⇒ (ii) of 6.2, by taking b to be also
mixing, one could have a mixing action a ∈ FR(Γ, X, µ) for which there is a
measurable 2-coloring, which easily gives a contradiction. On the other hand,
it follows from the result in [CK, 5.12] that was mentioned earlier, that for
any Γ with finitely many ends, except for Γ = Z or Γ = (Z/2Z)∗ (Z/2Z), one
indeed has for any a ∈ FR(Γ, X, µ) an invariant, random d-coloring which
is a factor of the action a. We do not know if this holds for groups with
infinitely many ends.

(B) Let Γ, S be as before and let AutΓ,S = Aut(Cay(Γ, S)) be the auto-
morphism group of the Cayley graph with the pointwise convergence topol-
ogy. Thus AutΓ,S is Polish and locally compact. The group AutΓ,S acts con-
tinuously on Col(k,Γ, S) by: ϕ · c(γ) = c(ϕ−1(γ)). Clearly Γ can be viewed
as a closed subgroup of AutΓ,S identifying γ ∈ Γ with the (left-)translation
automorphism δ 7→ γδ. It will be notationally convenient below to denote
this translation automorphism by 〈γ〉. One can now consider a stronger no-
tion of an invariant, random k-coloring by asking that the measure is now
invariant under AutΓ,S instead of Γ (i.e. 〈Γ〉). To distinguish the two notions
let us call the stronger one a AutΓ,S-invariant, random k-coloring. We now
note that the existence of an invariant, random k-coloring is equivalent to the
existence of an AutΓ,S-invariant, random k-coloring. In fact it follows from
the following more general fact (applied to the special case of the action of
AutΓ,S on Col(k,Γ, S)).

Proposition 6.6 Let AutΓ,S be as before and assume AutΓ,S acts contin-
uously on a compact, metrizable space X. Then there exists a Γ-invariant
Borel probability measure on X iff there is a AutΓ,S-invariant Borel proba-
bility measure on X.

Proof. Denote by R = RΓ,S = Aut1(Cay(Γ, S)) the subgroup of G =
AutΓ,S consisting of all ϕ ∈ G with ϕ(1) = 1 (we view this as the rotation
group of Cay(Γ, S) around 1).

Note that R is compact and R ∩ Γ = {1}. Moreover, G = ΓR = RΓ,
since if ϕ ∈ G, then ϕ = 〈γ〉r, where γ = ϕ(1) and r = 〈γ〉−1ϕ. So
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R is a transversal for the (left-) cosets of Γ, thus G/Γ is compact (in the
quotient topology), i.e., Γ is a co-compact lattice in G. It follows that G/Γ is
amenable in the sense of Greenleaf [Gr] and Eymard [Ey] and so by Eymard
[Ey, p.12], 6.6 follows. (We would like to thank the referee for bringing to
our attention the connection of 6.6 with the Greenleaf-Eymard concept of
amenable quotient.) For the convenience of the reader, we will give this
proof in detail below. Some of the notation we establish will be also used
later on.

First note that (since Γ is a lattice) G is unimodular, i.e., there is a
left and right invariant Haar measure on G (see, e.g., Einsiedler-Ward [EW,
9.20]), so fix such a Haar measure η. Since R is compact (and G = ΓR),
∞ > η(R) > 0 and we normalize η so that η(R) = 1. Then ρ = η|R is the
Haar measure of R.

Every ϕ ∈ G can be written as

ϕ = 〈γ〉r = r′〈γ′〉

for unique γ, γ′ ∈ Γ, r, r′ ∈ R. Here γ = ϕ(1), r = 〈γ〉−1ϕ and γ′ =
(ϕ−1(1))−1, r′ = ϕ〈γ′〉−1 = ϕ〈ϕ−1(1)〉. This gives a map α : Γ × R → R
defined by α(γ, r) = r′, where 〈γ〉r = r′〈γ′〉. Thus

α(γ, r) = 〈γ〉r〈r−1(γ−1)〉.

One can now easily verify that this is a continuous action of Γ on R and we
will write

γ · r = α(γ, r) = 〈γ〉r〈r−1(γ−1)〉.

(If we identify R with the quotient G/Γ, then this action is just the canonical
action of Γ on G/Γ.)

Moreover this action preserves the Haar measure ρ. Indeed, fix γ ∈ Γ
and put pγ(r) = γ · r. We will show that pγ : R→ R preserves ρ. For δ ∈ Γ,
let Rδ = {r ∈ R : r−1(γ−1) = δ}. Then R =

⊔
δ∈ΓRδ and pγ(r) = 〈γ〉r〈δ〉 for

r ∈ Rδ, thus pγ|Rδ preserves η and so pγ preserves ρ.
Assume now that µΓ is a Borel probability measure on X which is Γ-

invariant. We will show that there is a Borel probability measure µG on X
which is G-invariant. Define

µG =

∫
R

(r · µΓ)dr,
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where the integral is over the Haar measure ρ on R, i.e., for each continuous
f ∈ C(X),

µG(f) =

∫
R

(r · µΓ)(f)dr,

with r · µΓ(f) = µΓ(r−1 · f), r−1 · f(x) = f(r · x). (As usual we put σ(f) =∫
fdσ.) We will verify that µG is G-invariant.

Let F : X → X be a homeomorphism. For σ a Borel probability measure
on X, let F · σ = F∗σ be the measure defined by

F · σ(f) = σ(f ◦ F ),

for f ∈ C(X). Then we have

F · µG =

∫
R

F · (r · µΓ)dr,

because for f ∈ C(X),

F · µG(f) = µG(f ◦ F )

=

∫
(r · µΓ)(f ◦ F )dr

=

∫
F · (r · µΓ)dr.

We first check that µG is R-invariant. Indeed if s ∈ R,

s · µG =

∫
s · (r · µΓ)dr

=

∫
(sr) · µΓdr

=

∫
(r · µΓ)dr

= µG

by the invariance of Haar measure.
Finally we verify that µG is Γ-invariant (which completes the proof that
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µG is G-invariant as G = ΓR). Indeed, in the preceding notation

〈γ〉 · µG =

∫
〈γ〉 · (r · µΓ)dr

=

∫
(〈γ〉r) · µΓdr

=

∫
(γ · r) · (〈γ′〉 · µΓ)dr

=

∫
(γ · r) · µΓdr

(as 〈γ′〉 · µΓ = µΓ for any γ′ ∈ Γ).
But we have seen before that r 7→ γ · r preserves the Haar measure of R,

so

〈γ〉 · µG =

∫
(γ · r) · µΓdr

=

∫
(r · µΓ)dr

= µG

a
(C) As was discussed in 6.5, for any Γ, S with finitely many ends, except

Γ = Z or Γ = (Z/2Z) ∗ (Z/2Z), and any a ∈ FR(Γ, X, µ), there is an
invariant, random d-coloring, where d = |S±1|, which is a factor of a. This is
of particular interest in the case where a is the shift action sΓ of Γ on [0, 1]Γ

(with the usual product measure). In that case AutΓ,S = Aut(Cay(Γ, S))
also acts via shift on [0, 1]Γ via ϕ ·p(γ) = p(ϕ−1(γ)) and one can ask whether
there is actually a AutΓ,S-invariant, random d-coloring, which is a factor of
the shift action of AutΓ,S on [0, 1]Γ. We indeed have:

Theorem 6.7 Let Γ be an infinite countable group, S a finite set of gener-
ators, and let d = |S±1|. If Γ has finitely many ends but is not isomorphic
to Z or (Z/2Z) ∗ (Z/2Z), and AutΓ,S = Aut(Cay(Γ, S)), there is a AutΓ,S-
invariant, random d-coloring which is a factor of the shift action of AutΓ,S

on [0, 1]Γ.

Proof. Put again G = AutΓ,S. Let X be the free part of the action of G
on [0, 1]Γ, i.e.,

X = {x ∈ [0, 1]Γ : ∀ϕ ∈ G \ {1}(ϕ · x 6= x)},
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(where ϕ · x is the action of G on [0, 1]Γ).
If µ is the product measure on [0, 1]Γ, then µ(X) = 1, since X ⊇ {x ∈

[0, 1]Γ : x is 1− 1} = X0 and µ(X0) = 1. Moreover X is a G-invariant Borel
subset of [0, 1]Γ.

Since R = Aut1(Cay(Γ, S)) is compact, EX
R , the equivalence relation

induced by R on X, admits a Borel selector and

XR = X/R = {R · x : x ∈ X}

is a standard Borel space. Define the following Borel graph E on XR

(R · x)E(R · y)⇔ ∃s ∈ S±1(〈s〉R · x ∩R · y 6= ∅).

Lemma 6.8 If (R · x)E(R · y), then

(x1, x2) ∈MR·x,R·y ⇔ x1 ∈ R · x & x2 ∈ R · y & ∃s ∈ S±1(〈s〉 · x1 = x2),

(is the graph of) a bijection between R · x,R · y consisting of edges of the
graph G(S, sΓ), i.e., it is a matching.

Proof. Fix x0
1 ∈ R · x1, x

0
2 ∈ R · x2 and s0 ∈ S±1 with 〈s0〉 · x0

1 = x0
2.

First we check that MR·x,R·y is a matching. Let (x1, x2), (x1, x
′
2) ∈MR·x,R·y

and let 〈s〉 · x1 = x2, 〈s′〉 · x1 = x′2, for some s, s′ ∈ S±1, and r · x2 = x′2, for
some r ∈ R. Then r〈s〉 · x1 = 〈s′〉 · x1, so r〈s〉 = 〈s′〉, thus r ∈ Γ, so r = 1
and x2 = x′2. Similarly (x1, x2), (x′1, x2) ∈MR·x,R·y implies that x1 = x′1.

Next we verify that for every x1 ∈ R · x, there is an x2 ∈ R · y with
(x1, x2) ∈ MR·x,R·y. Let r1 ∈ R be such that r1 · x1 = x0

1, so 〈s0〉r1 · x1 = x0
2.

Now

〈s0〉r1 =
(
〈s0〉r1〈r−1

1 (s−1
0 )〉

)
〈r−1

1 (s−1
0 )〉−1

= r−1
2 〈s′〉,

where r2 ∈ R and s′ ∈ S±1. Thus r−1
2 〈s′〉 ·x1 = x0

2, so 〈s′〉 ·x1 = r2 ·x0
2 = x2 ∈

R · y and (x1, x2) ∈MR·x,R·y. Similarly for every x2 ∈ R · y there is x1 ∈ R ·x
with (x1, x2) ∈MR·x,R·y, and the proof is complete. a

Lemma 6.9 Let x ∈ X. Then the map

γ 7→ R · (〈γ〉−1 · x)

is an isomorphism of Cay(Γ, S) with the connected component of R ·x in E.
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Proof. Let γ ∈ Γ and let s1, . . . , sk ∈ S±1 be such that γ−1 = sn . . . s1.
Then (R · x)E(R · (〈s1〉 · x))E . . . E(R · (〈γ〉−1 · x)), so R · (〈γ〉−1 · x) is in the
connected component of R·x. Conversely assume that R·y is in the connected
component of R ·x and say (R ·x)E(R ·x1)E(R ·x2)E . . . E(R ·xn−1)E(R ·y).
By Lemma 6.8, there are s1, . . . sn ∈ S±1 and x′1, . . . , x

′
n such that 〈s1〉 · x =

x′1 ∈ R · x1, 〈s2〉 · x′1 = x′2 ∈ R · x2, . . . , 〈sn〉 · x′n−1 = x′n ∈ R · y. Let
γ−1 = sn . . . s1. Then x′n = 〈γ〉−1 · x ∈ R · y, so R · (〈γ〉−1 · x) = R · y. Thus
γ 7→ R · (〈γ〉−1 · x) maps Γ onto the connected component of R · x.

We next check that γ 7→ R · (〈γ〉−1 · x) is 1-1. Indeed if R · (〈γ〉−1 · x) =
R · (〈δ−1〉 · x), then r〈γ〉−1 · x = 〈δ〉−1 · x for some r ∈ R, so as before r = 1
and γ = δ.

Finally let (γ, γs) be an edge in the Cayley graph of Γ, S. Then clearly
R · (〈γ〉−1 · x)ER · 〈γs〉−1 · x) = R · (〈s〉−1〈γ〉−1 · x). Conversely assume that
R · (〈γ〉−1 · x)ER · (〈δ〉−1 · x), so that, by 6.8 again, there are s ∈ S±1, r ∈ R
with 〈s〉〈γ〉−1 · x = r〈δ〉−1 · x, i.e., 〈s〉〈γ〉−1 = r〈δ〉−1. Then r = 1 and
γs−1 = δ, so (γ, δ) is an edge in the Cayley graph. a

The following will be needed in the next section, so we record it here.
Let π : X → XR be the projection function: π(x) = R · x. Let ν = π∗µ

be the image of µ.

Lemma 6.10 E preserves the measure ν.

Proof. Let ϕ : A → B be a Borel bijection with A,B Borel subsets of
XR and graph(ϕ) ⊆ E. We will show that ν(A) = ν(B).

We have ν(A) = µ(
⋃
R·x∈AR · x) and similarly for B. If ϕ(R · x) = R · y,

then MR·x,R·y gives a Borel bijection of R · x,R · y whose graph consists of
edges of G(S, sΓ) and

⋃
R·x∈AMR·x,R·y gives the graph of a Borel bijection of⋃

R·x∈AR · x with
⋃
R·x∈B R · x, therefore ν(A) = ν(B). a

We now complete the proof of the proposition. Consider the graph
(XR, E). By 6.9, it is a Borel graph whose connected components are isomor-
phic to Cayley graphs of degree d = |S±1| that have finitely many ends. So
by Conley-Kechris [CK, 5.1, 5.7, 5.11] and Lemma 6.9, (XR, E) has a Borel
d-coloring. CR : XR → {1, . . . , d}. Define now C : X → {1, . . . , d} by

C(x) = CR(R · x)

Then clearly C is a Borel d-coloring of G(S, a). We use this as usual to define
a random d-coloring of the Cayley graph. Define

ψ : X → Col(d,Γ, S)
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by
ψ(x)(γ) = C(〈γ〉−1 · x).

and consider the measure ψ∗µ on Col(d,Γ, S). This will be G-invariant pro-
vided that ψ preserves the G-action, which we now verify.

First it is clear that ψ preserves the Γ-action. It is therefore enough
to check that it preserves the R-action, i.e., ψ(r · x) = r · ψ(x) for each
x ∈ X, r ∈ R. Let γ ∈ Γ in order to check that ψ(r · x)(γ) = (r · ψ(x))(γ) or
C(〈γ〉−1r · x) = ψ(x)(r−1(γ)) = C(〈r−1(γ)〉−1 · x). But recall that

〈γ〉−1r = (〈γ〉−1r〈r−1(γ)〉)〈r−1(γ)〉−1,

so 〈γ〉−1r = r′〈r−1(γ)〉−1, for some r′ ∈ R, therefore R · (〈γ〉−1r · x) =
R · (〈r−1(γ)〉−1 · x) and since C(y) depends only on R · y, this completes the
proof. a

(D) Fix an infinite group Γ and a finite set of generators S, let G =
AutΓ,S = Aut(Cay(Γ, S)) and let R = RΓ,S = Aut1(Cay(Γ, S)) as in the
proof of 6.6. Then the action γ · r of Γ on R defined there is an action by
measure preserving homeomorphisms on the compact, metrizable group R.
Provided that Γ, S have the property that R is uncountable, this may provide
an interesting example of an action of Γ.

For instance let Γ = F2, the free group with two generators, and let
S = {a, b} be a set of free generators. Then it is not hard to see that the
action of Γ on R is free (with respect to the Haar measure ρ on R). Indeed,
let Γn = {w ∈ Γ: |w| = n} (where |w| denotes word length in the generators
a, b) and for w, v ∈ Γn, let Nw,v = {r ∈ R : r(w) = v}. If v 6= v′ ∈ Γn, then
Nw,v ∩ Nw,v′ = ∅ and since R acts transitively on Γn, there is r ∈ R with
rv′ = v′, so rNw,v = Nw,v′ and thus ρ(Nw,v) = Nw,v′ . So

ρ(Nw,v) =
1

|Γn|

for w, v ∈ Γn.
Let now γ ∈ Γ \ {1} and assume that r ∈ R is such that γ−1 · r =

〈γ〉−1r〈r−1(γ)〉 = r or 〈γ〉r = r〈r−1(γ)〉, so for all δ ∈ Γ, γr(δ) = r(r−1(γ)δ)
or r−1(γ)δ = r−1(γr(δ)) and letting r(δ) = ε, we have r−1(γ)r−1(ε) =
r−1(γε). Since ε was arbitrary in Γ, this shows that r−1(γn) = (r−1(γ))n,∀n ≥
1. It is thus enough to show that for each γ ∈ Γ\{1}, {r ∈ R : ∀n ≥ 1(r(γn) =
(r(γ))n)} is null. Let |γn| = an → ∞. Then if γ ∈ Γ, {r ∈ R : r(γn) =
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(r(γ))n} ⊆
⋃
ε∈Γk
{r ∈ R : r(γn) = εn}, so ρ({r ∈ R : r(γn) = (r(γ))n}) ≤∑

ε∈Γk
ρ(Nγn,εn) → 0 as n → ∞. Thus {r ∈ R : ∀n ≥ 1(r(γn) = (r(γ))n)} is

null.

7 Matchings

(A) Let Γ be an infinite group and S a finite set of generators for Γ. For
a ∈ FR(Γ, X, µ), recall that m(S, a) is the matching number of a, defined in
§5. If m(S, a) = 1

2
and the supremum in the definition of m(S, a) is attained,

we say that G(S, a) admits an a.e. perfect matching.
Abért, Csoka, Lippner and Terpa [ACLT] have shown that the Cayley

graph Cay(Γ, S) admits a perfect matching.
Let EΓ,S be the set of edges of the Cayley graph Cay(Γ, S) and consider

the space 2EΓ,S , which we can view as the space of all A ⊆ EΓ,S. Denote by

M(Γ, S)

the closed subspace consisting of all M ⊆ EΓ,S that are perfect matchings
of the Cayley graph. The group AutΓ,S = Aut(Cay(Γ, S)) acts on 2EΓ,S by
shift: ϕ · x(γ, δ) = x(ϕ−1(γ), ϕ−1(δ)) and so does the subgroup Γ ≤ AutΓ,S.
Clearly M(Γ, S) is invariant under this action.

A AutΓ,S-invariant, random perfect matching of the Cayley graph is a
shift invariant probability Borel measure on M(Γ, S). If such a measure is
only invariant under the shift action by Γ, we call it an invariant, random
perfect matching.

Lyons and Nazarov [LN] considered the question of the existence of in-
variant, random perfect matchings which are factors of the shift of Γ on [0, 1]Γ

and showed the following result.

Theorem 7.1 (Lyons-Nazarov [LN, 2.4]) Let Γ be a non-amenable group,
S a finite set of generators for Γ and assume that Cay(Γ, S) is bipartite
(i.e., has no odd cycles). Then there is a AutΓ,S-invariant, random perfect
matching, which is a factor of the shift action of AutΓ,S on [0, 1]Γ.

Let us next note some facts that follow from earlier considerations in this
paper.

Proposition 7.2 Let Γ be an infinite group and S a finite set of generators
for Γ. Then the following are equivalent:
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(i) There is an invariant, random perfect matching.

(ii) There is a ∈ FR(Γ, X, µ) such that G(S, a) admits an a.e.perfect match-
ing.

(iii) There is a sequence an ∈ FR(Γ, X, µ) with m(S, an)→ 1
2
.

Proof. As in 6.2 and 5.2. a

Proposition 7.3 For Γ, S as in 7.2., if a ∈ FR(Γ, X, µ) is such that the
matching number m(S, a) = 1

2
, then there is b ∈ FR(Γ, X, µ) with b ∼w a

and G(S, b) admitting an a.e. perfect matching, and there is an invariant,
random perfect matching weakly contained in a.

Proof. As in 5.2 and the proof of 6.2. a

Proposition 7.4 Let Γ, S,AutΓ,S be as before. Then there is an invariant,
random perfect matching iff there is an AutΓ,S-invariant, random perfect
matching.

Proof. By 6.6. a
We now have

Proposition 7.5 Let Γ be an infinite group and S a finite set of generators.

(i) If Γ is amenable or if S has an element of infinite order, then for any
a ∈ FR(Γ, X, µ),m(S, a) = 1

2
.

(ii) If S has an element of even order, then for any a ∈ FR(Γ, X, µ), G(S, a)
admits an a.e. perfect matching.

Proof. i) When Γ is amenable, this follows from the result of Abért,
Csoka, Lippner and Terpa [ACLT] that Cay(Γ, S) admits a perfect matching,
using also the quasi-tiling machinery of Ornstein-Weiss [OW], as in Conley-
Kechris [CK, 4.10, 4.11]. The second case follows immediately from Rokhlin’s
Lemma.

ii) This is obvious. a
We do not know if m(S, a) = 1

2
holds for every Γ, S, a ∈ FR(Γ, X, µ). By

7.5 the only problematic case is when S consists of elements of odd order and
Γ is not amenable. We will see however that the answer is affirmative for the
group Γ = (Z/3Z) ∗ (Z/3Z) and the usual set of generators S = {s, t} with
s3 = t3 = 1. In fact we have the following stronger result:

35



Theorem 7.6 Let Γ = (Z/3Z) ∗ (Z/3Z) with the usual set of generators
S = {s, t}, with s3 = t3 = 1. Then for any a ∈ FR(Γ, X, µ), G(S, a) admits
an a.e. perfect matching.

Proof. Suppose that M is a matching for some graph G = (X,E). Recall
that an (M)-augmenting path in G is a path x0, x1, · · · , x2k+1 (k ∈ N) such
that x0, x2k+1 /∈ XM , the edges of the form (x2i+1, x2i+2) are in M , and the
edges of the form (x2i, x2i+1) are not in M .

We will in fact show more generally that any µ-preserving graph G =
(X,E) on (X,µ) whose connected components are isomorphic to the Cayley
graph Cay(Γ, S) admits a µ-a.e. matching.

Elek-Lippner [EL2] establishes that for any Borel matching M of G and
any k, there is a Borel matching M ′ of G such that XM ⊆ XM ′ and M ′ has
no augmenting paths of length < k.

Lemma 7.7 Suppose that Mn is a Borel matching contained in G with no
augmenting paths of length less than 4n. Then µ(XMn) > 1− 2−n.

Proof. Fix x 6= y in X \XMn so that dG(x, y) = k is least possible. We
first show that k > 2n. Let x = x0Ex1E · · ·Exk−1Exk = y be the unique G-
path from x to y of length k. Since x1, . . . , xk−1 are in XMn by the minimality
assumption, we may fix edges m1, . . . ,mk−1 in Mn with each xi incident with
mi (note that mi may equal mi+1). For each xi, let zi denote the vertex
incident with mi not equal to xi. Also let ei = (xi, xi+1), for i < k.

There is a unique augmenting path form x to y with vertex set {x, y}∪{xi :
1 ≤ i < k} ∪ {zi : 1 ≤ i < k} defined as follows: Say that xi (1 ≤ i < k) is of
type 0 if mi is either ei or ei−1. Say that xi is of type R(ight) if (xi, zi, xi+1)
is a triangle in the Cayley graph and xi is of type L(eft) if (xi, zi, xi−1) is
a triangle in the Cayley graph. Note that every xi is in exactly one of
these types and that it is not possible to have xi which is of type R but
xi+1 is of type L. Our augmenting path is obtained by keeping all mi that
happen to be in the original path from x to y and replacing ei for xi of type
R by (xi, zi), (zi, xi+1) and ei−1 for xi of type L by (xi−1, zi), (zi, xi). This
augmenting path has length at most 2k − 1. But by assumption Mn has no
augmenting paths of length less than 4n, which implies k > 2n.

In other words, if x, y are distinct elements of X \XMn , then Bn(x) and
Bn(y) are disjoint, where Bn(x) denotes the distance n ball centered at x.
Since |Bn(x)| > 2n, we have µ(X \XMn) < 2−n as required. a
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The lemma on its own shows that the matching number for G is 1/2.
To show that the supremum is attained, we use the result of Elek-Lippner
[EL2] mentioned earlier to find a sequence of Borel matchings (Mn) with
XMn ⊆ XMn+1 and with Mn having no augmenting paths of length less than
4n. Then we use the argument in Lyons-Nazarov [LN] to show thatM defined
by

(x, y) ∈M ⇔ ∃m∀n ≥ m (x, y) ∈Mn

is a Borel matching with µ(XM) = 1. a

We also do not know if for every Γ, S, there is an invariant, random perfect
matching (a question brought to our attention by Abért and also Lyons).

(B) We recall also the following result of Lyons-Nazarov [LN]:

Theorem 7.8 (Lyons-Nazarov [LN, 2.6]) Let (X,µ) be a non-atomic, stan-
dard measure space and G = (X,E) a Borel locally countable graph which is
bipartite and measure preserving (i.e., the equivalence relation it generates is
measure preserving). If G is expansive, i.e., there is c > 1 such that for each
Borel independent set A ⊆ X,µ(A′) ≥ cµ(A), where A′ = {x : ∃yEx(y ∈ A)},
then G admits an a.e. perfect matching.

We note that, using the argument in 6.7, one can show that Theorem 7.8
implies Theorem 7.1.

Proof that 7.8 ⇒ 7.1. Using the notation of the proof of 6.7, we first
show that the graph E defined there satisfies the hypotheses of 7.8.

Lemma 7.9 (XR, E) is bipartite.

Proof. By 6.9. a

Lemma 7.10 (XR, E) is strictly expanding.

Proof. LetA ⊆ XR be an independent Borel set andA′ = {x ∈ XR : ∃y ∈
A(xEy)}. Since the group Γ is not amenable, the graph G(S, sΓ), where
sΓ is the shift action of Γ on [0, 1]Γ is strictly expanding, so let c > 1 be
the constant witnessing that. We will show that ν(A′) ≥ cν(A). This is
immediate since

⋃
R·x∈AR ·x is independent in G(S, sΓ) and (

⋃
R·x∈AR ·x)′ =⋃

R·x∈A′ R · x. a
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Thus by 7.8, there is an a.e.perfect matching for (XR, E) which we denote
by MR. Using 6.8 this gives an a.e. perfect matching M for G(S, sΓ) defined
by

(x, y) ∈M ⇔ (R · x,R · y) ∈MR & (x, y) ∈MR·x,R·y.

Define now
ϕ : [0, 1]Γ →M(Γ, S)

by
(γ, γs) ∈ ϕ(x)⇔ (〈γ〉−1 · x, 〈s〉−1〈γ〉−1 · x) ∈M,

for s ∈ S±1. It is enough to show that ϕ preserves the AutΓ,S-action.
First we check that ϕ(〈δ〉 · x) = δ · ϕ(x) for δ ∈ Γ. Indeed (γ, γs) ∈

ϕ(〈δ〉 · x)⇔ (〈γ〉−1〈δ〉 · x, 〈s〉−1〈γ〉−1〈δ〉 · x) ∈ M ⇔ (δ−1γ, δ−1γs) ∈ ϕ(x)⇔
(γ, γs) ∈ δ · ϕ(x).

Finally we verify that ϕ(r·x) = r·ϕ(x), for r ∈ R, i.e., (γ, γs) ∈ ϕ(r·x)⇔
(γ, γs) ∈ r · ϕ(x). Now

(γ, γs) ∈ ϕ(r · x)⇔ (〈γ〉−1r · x, 〈s〉−1〈γ〉−1r · x) ∈M

and

(γ, γs) ∈ r · ϕ(x)⇔ (r−1(γ), r−1(γs)) ∈ ϕ(x)

⇔
(
〈r−1(γ)〉−1 · x, 〈s′〉−1〈r−1(γ)〉−1 · x

)
∈M,

where r−1(γs) = r−1(γ)s′, for some s′ ∈ S±1. Now 〈γ〉−1r = p〈γ′〉, for some
p ∈ R and γ′ = (r−1(γ))−1. We have therefore to show that

(p〈γ′〉 · x, 〈s〉−1p〈γ′〉 · x) ∈M ⇔ (〈γ′〉 · x, 〈s′〉−1〈γ′〉 · x) ∈M.

Clearly p〈γ′〉 · x, 〈γ′〉 · x belong to the same R-orbit, so it is enough to show
that p′ = 〈s〉−1p〈s′〉 ∈ R. Because then 〈s〉−1p〈γ′〉 · x = p′〈s′〉−1〈γ′〉 · x
and thus R · (p〈γ′〉 · x) = R · (〈γ′〉 · x) = A,R · (〈s〉−1p〈γ′〉 · x) = R ·
(〈s′〉−1〈γ′〉 ·x) = B and (p〈γ′〉 ·x, 〈s〉−1p〈γ′〉 ·x) ∈M ⇔ (p〈γ′〉 ·x, 〈s〉−1p〈γ′〉 ·
x) ∈ MA,B ⇔ (〈γ′〉 · x, 〈s′〉−1〈γ′〉 · x) ∈ MA,B (by 6.8). Now p′ ∈ AutΓ,S

and p′(1) = s−1p(s′) = s−1
(
(〈γ〉−1r〈γ′〉−1)〈s′〉

)
= s−1

(
〈γ〉−1r((γ′)−1s′)

)
=

s−1γ−1r(r−1(γ)s′) = s−1γ−1r(r−1(γs)) = s−1γ−1γs = 1, so p′ ∈ R. a
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8 Independence numbers

Let Γ be an infinite group and S a finite set of generators. Consider the set

I(Γ, S) = {iµ(S, a) : a ∈ FR(Γ, X, µ)}

of independence numbers of actions of Γ. It was shown in Conley-Kechris
[CK, §4, (C)] that I(Γ, S) is a closed interval [iµ(S, sΓ), iµ(S, aerg

Γ,∞)], where

sΓ is the shift action of Γ on [0, 1]Γ and aerg
Γ,∞ is the maximum, in the sense

of weak containment, free ergodic action. Let

Ierg(Γ, S) = {iµ(S, a) : a ∈ FR(Γ, X, µ), a ergodic}.

The question of understanding the nature of Ierg(Γ, S) was raised in Conley-
Kechris [CK, §4, (C)]. We prove here the following result:

Theorem 8.1 Let Γ be an infinite group and S a finite set of generators. If
Γ has property (T), then Ierg(Γ, S) is a closed set.

Proof. Since Γ has property (T), fix finite Q ⊆ Γ and ε > 0 with the
following property: If a ∈ A(Γ, X, µ) and there is a Borel set A ⊆ X with

∀γ ∈ Q(µ(γa · A∆A) < εµ(A)(1− µ(A))),

then a is not ergodic (see, e.g., Kechris [Ke2, 12.6]).
Let now ιn ∈ Ierg(Γ, S), ιn → ι, in order to show that ι ∈ Ierg(Γ, S). Let

an ∈ FR(Γ, X, µ) be ergodic with ιµ(S, an) = ιn. Let U be a non-principal
ultrafilter on N and consider the action a =

∏
n an/U on (XU , µU). Then it is

clear that there is no non-trivial Γ-invariant element in the measure algebra
MALGµU . Because if A = [(An)]U were Γ-invariant, with µU(A) = δ, 0 <
δ < 1, then µU(γa · A∆A) = 0,∀γ ∈ A, so limn→U µ(γan · An∆An) = 0 and
µ(An) → δ, so for some n, and all γ ∈ Q, µ(γan · An∆A) < εµ(An)µ(1 −
µ(An)), thus an is not ergodic, a contradiction.

Fix also independent sets An ⊆ X for an with |µ(An)− ιn| < 1
n
. Let A =

[(An)]U . Then A is independent for a modulo null sets (i.e., sa ·A∩A is µU -
null, ∀s ∈ S±1) and µU(A) = ι. Consider now the factor b of a corresponding
to the σ-algebra B = σ(B0), where B0 is a countable Boolean subalgebra of
MALGµU closed under a, the functions SU , TU of §2, (B), §3, (B), resp., and
containing A. We can view b as an element of FR(Γ, X, µ). First note that
b is ergodic, since MALGµU and thus B has no Γ-invariant non-trivial sets.
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We now claim that ιµ(S, b) = ι, which completes the proof. Since A ∈ B,
it is clear that ιµ(S, b) ≥ µU(A) = ι. So assume that ιµ(S, b) > ι towards a
contradiction, and let B ∈ MALGµU be such that sa · B ∩ B = ∅, ∀s ∈ S±1,
and µU(B) = κ > ι. We can assume of course that B = [(Bn)]U ∈ B0

U , so
limn→U µ(Bn) = κ and limn→U µ(san · Bn ∩ Bn) = 0,∀s ∈ S±1. Let Cn =
Bn \ san ·Bn, so that san ·Cn∩Cn = ∅ and µ(Cn) = µ(Bn)−µ(san ·Bn∩Bn),
thus limn→U µ(Cn) = limn→U µ(Bn) = κ > ι. Since ιn → ι, for all large
enough n, ιn <

ι+κ
2

and thus for some U ∈ U , and any n ∈ U, µ(Cn) > ι+κ
2

but ιµ(S, an) = ιn <
ι+κ

2
. Since Cn is an independent set for an, this gives a

contradiction. a

Similar arguments show that the set of matching numbers m(S, a), a ∈
FR(Γ, X, µ), is the interval [m(S, sΓ),m(S, aerg

Γ,∞)], and the set of matching
numbers of the ergodic, free actions is a closed set, if Γ has property (T).

Finally, we have the following result, which shows that for certain groups
(and sets of generators) the set Ierg(Γ, S) is infinite.

Theorem 8.2 Suppose that Γ is a group with finite generating set S, and
that a, b are elements of FR(Γ, X, µ) with iµ(S, a) < 1/2 and χap

µ (S, b) =
2. Then the set of independence numbers of free, ergodic actions of Z ∗ Γ
(with respect to the natural generating set {z} ∪ S) intersects the interval
(iµ(S, a), 1/2) in an infinite set.

Proof. Fix ε > 0 and n ∈ N. We may find disjoint G(S, b)-independent
sets B0, B1 ⊆ X witnessing approximate 2-colorability of b (i.e., µ(Bi) ≥
1/2−ε). Let U be the set of automorphisms in Aut(X,µ) which come within
ε of flipping B0 and B1, i.e.,

U = {T ∈ Aut(X,µ) : µ(T (B0)4B1) < ε and µ(T (B1)4B0) < ε}.

Clearly U is open, non-empty in the weak topology of Aut(X,µ). The col-
lection of aperiodic, weakly mixing automorphisms is comeager with respect
to this topology, see, e.g., [Ke2]. Also comeager is the collection of au-
tomorphisms orthogonal to Ea ∨ Eb (where T is orthogonal to an equiv-
alence relation F if there is no nontrivial injective sequence of the form
x0, T

z0(x0), x1, T
z1(x1), . . . , xn, T

zn(xn) = x0 with each T zi(xi)Fxi+1); see
e.g., [CM]. So we may then fix an aperiodic, weakly mixing automorphism
T ∈ U which is orthogonal to Ea ∨ Eb. Define now an action an,ε of Z ∗ Γ
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(with generating set {z} ∪ S) on (n + 1) × X (with the product measure
ν = c× µ, with c the normalized counting measure on n+ 1) by

z · (i, x) = (i+ 1 mod n+ 1, T (x)),

γ · (0, x) = (0, γa(x)),

γ · (i, x) = (i, γb(x)), if 1 ≤ i < n+ 1.

This action is ergodic as the map (i, x) 7→ (i+ 1 mod n+ 1, T (x)) is ergodic
by weak mixing of T . It is also free by the orthogonality of T to Ea∨Eb. We
compute bounds for the independence number of the graph resulting from
this action.

First consider the independent set

An,ε = {1, 2, . . . , n} × (B0 \ T (B0)).

We have ν(An,ε) ≥ (n/(n+ 1))((1/2− ε)− ε) = (n/2(n+ 1))(1− 4ε).
Next suppose that A ⊆ (n + 1) × X is an arbitrary independent set.

By considering the graph’s restriction to each {i} × X, we certainly have
ν(A) ≤ iµ(S, a)/(n+ 1) + niµ(S, b)/(n+ 1) < 1/2, so

(n/2(n+ 1))(1− 4ε) ≤ iν(an,ε) = iν({z} ∪ S, an,ε) < 1/2.

We may then recursively build sequences (nm), (εm) so that the values
iν(anm,εm) are strictly increasing with m and in the interval (iµ(S, a), 1/2),
completing the proof. a

Examples of (Γ, S) for which such a, b exist include all non-amenable Γ
and S for which Cay(Γ, S) is bipartite; see [CK, 4.6, 4.14].

9 Sofic actions

(A) Recall that a group G is sofic if for every finite F ⊆ G and ε > 0, there
is n ≥ 1 and π : F → Sn (= the symmetric group on n = {0, . . . , n−1}) such
that (denoting by idX the identity map on a set X):

(i) 1 ∈ F ⇒ π(1) = idn,

(ii) γ, δ, γδ ∈ F ⇒ µn({m : π(γ)π(δ)(m) 6= π(γδ)(m)}) < ε,

(iii) γ ∈ F \ {1} ⇒ µn({m : π(γ)(m) = m}) < ε,
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where µn is the normalized counting measure on n.
Elek-Lippner [EL1] have introduced a notion of soficity for equivalence

relations. We give an alternative definition due to Ozawa [O].
Let (X,µ) be a standard measure space and E a measure preserving,

countable Borel equivalence relation on X. We let

[[E]] = {ϕ : ϕ is a Borel bijection ϕ : A→ B,
where A,B are Borel subsets of X and

xEϕ(x), µ-a.e. (x ∈ A)}.

We identify ϕ, ψ as above if their domains are equal modulo null sets and
they agree a.e. on their domains. We define the uniform metric on [[E]] by

δX(ϕ, ψ) = µ({x : ϕ(x) 6= ψ(x)}),

where
ϕ(x) 6= ψ(x)

means that
x ∈ dom(ϕ)∆dom(ψ)

or
x ∈ dom(ϕ) ∩ dom(ψ) & ϕ(x) 6= ψ(x).

If ϕ : A→ B we put dom(ϕ) = A, rng(ϕ) = B. If ϕ : A→ B,ψ : C → D
are in [[E]], we denote by ϕψ their composition with dom(ϕψ) = C∩ψ−1(A∩
D) and ϕψ(x) = ϕ(ψ(x)) for x ∈ dom(ϕψ). If (ϕi)i∈I , I countable, is a
pairwise disjoint family of elements of [[E]], i.e., dom(ϕi), i ∈ I, are pairwise
disjoint and rng(ϕi), i ∈ I, are pairwise disjoint, then

⊔
i∈I ϕi ∈ [[E]], is the

union of the ϕi, i ∈ I. If ϕ : A → B is in [[E]], we denote by ϕ−1 : B → A
the inverse function, which is also in [[E]]. We also denote by ∅ the empty
function. Finally, if X = n and µ = µn is the normalized counting measure,
we let [[n]] be the set of all injections between subsets of n (thus [[n]] = [[E]],
where E = n×n) and we let δn be the corresponding uniform (or Hamming)
metric on [[n]], so that δn(ϕ, ψ) = 1

n
|{m : ϕ(m) 6= ψ(m)}|.

Definition 9.1 A measure preserving countable Borel equivalence relation
E on a non-atomic standard measure space (X,µ) is sofic if for each finite
F ⊆ [[E]] and each ε > 0, there is n ≥ 1 and π : F → [[n]] such that

i) idX ∈ F ⇒ π(idX) = idn, ∅ ∈ F ⇒ π(∅) = ∅,
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ii) ϕ, ψ, ϕψ ∈ F ⇒ δn(π(ϕψ), π(ϕ)π(ψ)) < ε,

iii) ϕ ∈ F ⇒
∣∣µ({x : ϕ(x) = x})− µn({m : π(ϕ)(m) = m})

∣∣ < ε .

We do not know if this definition is equivalent to the one in which [[E]]
is replaced by the full group [E] = {ϕ ∈ [[E]] : µ(dom(ϕ)) = 1} and [[n]] by
Sn or even if it is equivalent to the soficity of the full group.

The following two facts, brought to our attention in a seminar talk by
Adrian Ioana, can be proved by routine but somewhat cumbersome calcula-
tions.

Proposition 9.2 There is an absolute constant K > 1 (e.g., K = 10, 000 is
good enough) such that the following holds:

Let F, ε, n, π satisfy 9.1 i)–iii) and moreover (θ ∈ F ⇒ θ−1, iddom(θ) ∈ F ).
Let ϕ, ψ ∈ F be such that F also contains ϕψ, ϕ−1ψ and idA, for any A
in the Boolean algebra generated by the domains of ϕ, ψ, ϕψ, ϕ−1ψ and their
inverses. Then δX(ϕ, ψ) < ε⇒ δn(π(ϕ), π(ψ)) < Kε.

Proposition 9.3 Let E be a measure preserving countable Borel equivalence
relation on a non-atomic standard measure space (X,µ). Suppose F0 ⊆ F1 ⊆
· · · ⊆ [[E]] are increasing finite subsets of [[E]] with ∅, idX ∈ F0 and, letting⊕

Fm = {
⊔k
i=1 ϕi : ϕi ∈ Fm},

⋃
m(
⊕

Fm) is dense in [[E]]. Suppose that Gm

are finite subsets of [[E]] with Fm ⊆ Gm and

1. ϕ, ψ ∈ Fm ⇒ ϕψ, ϕ−1ψ ∈ Gm,

2. if ϕ, ψ ∈ Fm, then idA ∈ Gm, for any A in the Boolean algebra generated
by the domains of ϕ, ψ, ϕψ, ϕ−1ψ and their inverses,

3. ϕ, ψ ∈ Fm ⇒ ϕ ∧ ψ ∈ Gm, where ϕ ∧ ψ is the restriction of ϕ (equiva-
lently ψ) to dom(ϕ) ∩ dom(ψ) ∩ {x : ϕ(x) = ψ(x)}.

Finally, suppose that for every m and every ε > 0 there is an n and π :
Gm → [[n]] that satisfies the properties in the definition of soficity. Then E
is sofic.

We next define sofic actions. For (X,µ) a non-atomic, standard measure
space and Γ a countable group, for each a ∈ A(Γ, X, µ), denote by Ea the
induced equivalence relation (defined modulo null sets)

xEay ⇔ ∃γ ∈ Γ(γa · x = y).

43



Definition 9.4 An action a ∈ A(Γ, X, µ) is sofic if Ea is sofic.

Let now A0 be any countable Boolean subalgebra of MALGµ closed under
an action a ∈ FR(Γ, X, µ) and generating MALGµ. Let Γ = {γn : n ∈ N},
and let (Am)m∈N enumerate the elements of A0. Let (ϕai )i∈N enumerate the
family of elements of [[Ea]] of the form γan|Am, n,m ∈ N. Then by 9.3 we
have the following criterion. (Notice that if Fm = {ϕa0, . . . , ϕam} ∪ {∅, idX},
then there is Gm ⊆ {ϕa0, ϕa1, . . . }, with Fm, Gm, Ea satisfying the conditions
in 9.3.)

Proposition 9.5 The action a ∈ FR(Γ, X, µ) is sofic provided that for each
m and ε > 0, 9.1 holds for F = {ϕa0, . . . , ϕam} and ε.

We now have the following fact.

Proposition 9.6 Let (X,µ) be a non-atomic standard measure space. Let
an ∈ A(Γ, X, µ) be sofic actions and an → a, where a ∈ FR(Γ, X, µ). Then
a is sofic. In particular, if a ∈ FR(Γ, X, µ), b ∈ A(Γ, X, µ), b is sofic and
a ≺ b, then a is sofic.

Proof. Fix a countable Boolean algebra A0 which generates MALGµ

and is closed under a. Let (γn), (Am), (ϕai ) be as before for the action a,
so that (ϕai ) enumerates all γan|Am. For m, ε > 0 we want to verify 9.1 for
F = {ϕa0, . . . , ϕam}, ε > 0. Say, for i ≤ m,ϕai = δai |Bi, where δi ∈ Γ, Bi ∈ A0.
Note that δi is uniquely determined, by the freeness of the action a, if Bi 6= ∅.

Fix i ≤ m with δi 6= 1. Since the action a is free, as in the proof of 3.3,
we can write Bi =

⊔∞
k=1Bi,k, where δai · Bi,k ∩ Bi,k = ∅, for all k. Choose ni

so large that µ(Bi \
⋃ni

k=1Bi,k) < ε/4. Since an → a, we can find an Ni so
large that for all N ≥ Ni and all k ≤ ni we have

|µ(δaN
i ·Bi,k ∩Bi,k)− µ(δai ·Bi,k ∩Bi,k)| <

ε

4ni
.

Since µ(δai ·Bi,k ∩Bi,k) = 0, this says that

µ(δaN
i ·Bi,k ∩Bi,k) <

ε

4ni
.

If now x ∈ Bi,k and δaN
i · x = x, we have x ∈ δaN

i ·Bi,k ∩Bi,k. Thus

µ({x ∈ Bi : δ
aN
i · x = x}) < µ(Bi \

ni⋃
k=1

Bi,k) +

ni∑
k=1

µ(δaN
i ·Bi,k ∩Bi,k) < ε/2.
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Choose N larger than all Ni (i ≤ m, δi 6= 1) and large enough so that
µ((Bj ∩ (δ−1

j )aN · Bi)∆(Bj ∩ (δ−1
j )a · Bi)) <

ε
2K

, for i, j ≤ m, and let ψi =
δaN
i |Bi, i ≤ m. Let then F ⊆ [[EaN

]] be such that (θ ∈ F ⇒ θ−1, iddom(θ) ∈ F )
and moreover F contains the maps ψi, ψiψj, ψ

−1
i ψj, i, j ≤ m, and idA, for any

A in the Boolean algebra generated by the domains of these functions and
their inverses. Let then π : F → [[n]] satisfy 9.1 with ε

2K
. Put π(ϕai ) =

πN(ψi). We will show that this satisfies i)-iii) of 9.1. It is clear that i) holds.
For iii): Given ϕi, 1 ≤ i ≤ m, note that µ({x : ϕai (x) = x}) = µ(Bi) =

µ({x : ψi(x) = x}), if δi = 1, and µ({x : ϕai (x) = x}) = 0, if δi 6= 1, while
in this case µ({x : ψi(x) = x}) = µ({x ∈ Bi : δ

aN
i · x = x}) < ε/2. Thus

|µ({x : ϕai (x) = x})− µ({x : ψi(x) = x})| < ε/2 and so iii) holds.
For ii): Assume i, j ≤ m and for some k ≤ m,ϕaiϕ

a
j = ϕak. Assume also

first that Bk 6= ∅. Then

ϕaiϕ
a
j = δai δ

a
j |
(
Bj ∩ (δ−1

j )a ·Bi

)
= (δiδj)

a|
(
Bj ∩ (δ−1

j )a ·Bi

)
= δak |Bk,

so δk = δiδj and Bk = Bj∩(δ−1
j )a ·Bi. Then ψi = δaN

i |Bi, ψj = δaN
j |Bj, ψiψj =

δaN
i δaN

j |Bj∩(δ−1
j )aN ·Bi, ψk = (δiδj)

aN |Bj∩(δ−1
j )a·Bi. Therefore δX(ψiψj, ψk) <

ε
2K

. Then, by 9.2, δn(πN(ψiψj), π(ψk)) <
ε
2
. Therefore

δn(π(ϕaiϕ
a
j ), π(ϕai )π(ϕaj ))

= δn(π(ϕk), π(ϕi)π(ϕj))

= δn(πN(ψk), πN(ψi)πN(ψj))

≤ δn(πN(ψk), πN(ψiψj)) + δn(πN(ψiψj), πN(ψi)πn(ψj))

< ε
2

+ ε
2

= ε

and the proof is complete.
In the case Bk = ∅, we consider two subcases:
(1) One of ϕai , ϕ

a
j is ∅. Then one of ψi, ψj is ∅ and ψiψj = ψk = ∅ and

thus δX(ψiψj, ψk) <
ε

2K
.

(2) Both ϕai , ϕ
a
j are not ∅. Then as before ψi = δaN

i |Bi, ψj = δaN
j |Bj, ψiψj =

δaN
i δaN

j |Bj ∩ (δ−1
j )aN · Bi but µ(Bj ∩ (δ−1

j )a · Bi) = 0 and ψk = ∅. Since

µ(Bj ∩ (δ−1
j )aN ·Bi) <

ε
2K

, we still have δX(ψiψj, ψk) <
ε

2K
.

So in either subcase we are done as before. a
(B) Consider now a sofic group Γ and fix an increasing sequence 1 ∈

F0 ⊆ F1 ⊆ . . . of finite subsets of Γ with
⋃
n Fn = Γ. For each n, let Xn be
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a finite set of cardinality ≥ n with the normalized counting measure µn such
that there is a map πn : Fn → SXn (= the permutation group of Xn) such
that

i) πn(1) = idXn ,

ii) γ, δ, γδ ∈ Fn ⇒ µn({x : π(γ)π(δ)(x) 6= π(γδ)(x)}) < 1
n
,

iii) γ ∈ Fn \ {1} ⇒ µn({x : π(γ)(x) = x}) < 1
n
.

Define then an : Γ×X → X by

an(γ, x) = πn(γ)(x)

Then abbreviating an(γ, x) by γ ·n x we have

i) 1 ·n x = x,

ii) γ, δ, γδ ∈ Fn ⇒ µn({x : γδ ·n x 6= γ ·n (δ ·n x)}) < 1
n
,

iii) γ ∈ Fn \ {1} ⇒ µn({x : γ ·n x = x}) < 1
n
.

So we can view an as an “approximate free action” of Γ on Xn.
Fix now a non-principal ultrafilter U on N and let XU = (

∏
nXn)/U and

µU the corresponding measure on the σ-algebra BU of XU . By 2.5 this is
non-atomic. As in §3, we can also define an action aU of Γ on XU by

γaU · [(xn)]U = [(γ ·n xn)]U

(note that γ ·n xn is well-defined for U -almost all n). This action is measure
preserving and, by iii) above, it is free, i.e., for γ ∈ Γ\{1}, µU({x ∈ XU : γaU ·
x 6= x}) = 0 (see 3.2). So let B0 be a countable subalgebra of MALGµU closed
under the action aU , the function SU of §2, (B) and TU of §3, (C). Let B =
σ(B0) and let b be the factor corresponding to B. Then b ∈ FR(Γ, X, µ),
for a non-atomic standard measure space (X,µ).

We use this construction to give another proof of the following result:

Theorem 9.7 (Elek-Lippner [EL1]). Let Γ be an infinite sofic group and let
sΓ be the shift action of Γ on [0, 1]Γ. Then sΓ is sofic.
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Proof. Consider the factor b as in the preceding discussion. By Abért-
Weiss [AW], sΓ ≺ b, thus using 9.6, it is enough to show that b is sofic.
Using 9.5, it is clearly enough to show the following: For any γ1, . . . , γk ∈
Γ, [(A1

n)]U , . . . , [(A
k
n)]U ∈ B0 and ε > 0, letting ϕi = γaUi |[(Ain)]U , there is n

and a map π : {ϕi : i ≤ k} → [[Xn]] (the set of injections between subsets of
Xn) such that

i) ϕi = idX ⇒ π(ϕi) = idXn , ϕi = ∅ ⇒ π(ϕi) = ∅,

ii) If i, j, ` ≤ k and ϕiϕj = ϕ`, then µn({x : π(ϕi)π(ϕj)(x) 6= π(ϕ`)(x)}) <
ε,

iii) |µU({x : ϕi(x) = x})− µn({x : π(ϕi)(x) = x})| < ε.

Since aU is free, note that ϕi = γaUi |[(Ain)]U uniquely determines γi, if [(Ain)]U 6=
∅. Choose now n ∈ N so that:

a) µn({x : γ` ·n x 6= γi ·n (γj ·n x)}) < ε
2
, if γ` = γiγj (i, j, ` ≤ k),

b) µn({x : γi ·n x = x}) < ε, if γi 6= 1,

c) µn(A`n∆(Ajn ∩ γ−1
j ·n Ain)) < ε

2
, if ϕiϕj = ϕ` (i, j, ` ≤ k),

d) |µU([Ain]U)− µn(Ain)| < ε/2 (i ≤ k).

Note that c) is possible since [(A`n)]U is the domain of ϕ`, while [(Ajn)]U ∩
(γ−1
j )aU · [(Ain)]U is the domain of ϕiϕj, thus 0 = µU

(
[(A`n)]U∆([(Ajn)]U ∩

(γ−1
j )aU · [(Ain)]U)

)
= limn→U µn(A`n∆(Ajn ∩ γ−1

j ·n Ain)). Now define

1) π(ϕi) = idXn , if ϕi = idX ; π(ϕi) = ∅, if ϕi = ∅,

2) π(ϕi) = γan
i |Ain, otherwise,

where as usual γan
i (x) = an(γi, x). We claim that this works. Clearly i) is

satisfied. Also iii) is satisfied. Indeed if γi 6= 1, µU({x : ϕi(x) = x}) = 0
and µn({x : π(ϕi)(x) = x}) ≤ µn({x : γi ·n x = x}) < ε. If γi = 1, then
µU({x : ϕi(x) = x}) = µU([Ain]U) and µn({x : π(ϕi)(x) = x}) = µn(Ain), so
|µU({x : ϕi(x) = x}) − µn({x : π(ϕi)(x) = x}| < ε. Finally for ii), assume
ϕiϕj = ϕ` (i, j, ` ≤ k). Consider first the case when ϕ` 6= ∅ (and thus ϕi, ϕj
are not ∅). Then γiγj = γ` and so

µn({x : γ` ·n x 6= γi ·n (γj ·n x)}) < ε

2
,
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thus

µn({x : π(ϕ`)(x) 6= π(ϕi)π(ϕj)(x)}) ≤
µn(A`n∆(Ajn ∩ γ−1

j ·n Ain)) + µn({x : γ` ·n x 6= γi ·n (γj ·n x)}) < ε.

The case when ϕ` = ∅ can be handled as in the proof of ii) in 9.6 (case
Bk = ∅). a

(C) It is a well-known problem whether every countable group is sofic.
Elek-Lippner [EL1] also raised the question of whether every measure pre-
serving, countable Borel equivalence relation on a standard measure space is
sofic. They also ask the question of whether every free action a ∈ FR(Γ, X, µ)
of a sofic group Γ is sofic. They show that all treeable equivalence relations
are sofic and thus every strongly treeable group (i.e., one for which all free
actions are treeable) has the property that all its free actions are sofic. These
groups include the amenable and the free groups. Another class of groups
with all free actions sofic is the class MD discussed in Kechris [Ke3]. A group
Γ is in MD if it is residually finite and its finite actions (i.e., actions that
factor through an action of a finite group) are dense in A(Γ, X, µ). These
include residually finite amenable groups, free groups, and (Bowen) surface
groups, and lattices in SO(3, 1). Moreover MD is closed under subgroups and
finite index extensions.

To see that every free action of a group in MD is sofic, note that by
Kechris [Ke3, 4.8] if a ∈ FR(Γ, X, µ), then a ≺ ιΓ×pΓ, where ιΓ is the trivial
action of Γ on (X,µ) and pΓ the translation action of Γ on its profinite
completion on Γ̂. It is easy to check that ιΓ × pΓ is sofic and thus a is sofic
by 9.6. (Alternatively we can use 9.6 and the fact that every finite action is
sofic.)

We note that the fact that every free group Γ has MD and thus every
free action of Γ is sofic can be used to give an alternative proof of the result
of Elek-Lippner [EL1] that every measure preserving, treeable equivalence
relation is sofic. Indeed it is a known fact that if E is such an equivalence
relation on (X,µ), then there is a ∈ FR(F∞, X, µ) such that E ⊆ Ea. This
follows for example by the method of proof of Conley-Miller [CM, Prop. 8] or
by using [CM, Prop 9], that shows that E ⊆ F where F is treeable of infinite
cost, and then using Hjorth’s result (see [KM, 28.5]) that F is induced by a
free action of F∞. Since Ea is sofic and [[E]] ⊆ [[Ea]], it immediately follows
that E is sofic.
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We do not know if every measure preserving treeable equivalence relation
E is contained in some Ea, where a ∈ FR(F2, X, µ).

Remark. For arbitrary amenable groups Γ, one can use an appropriate
Følner sequence to construct a free action aU on an ultrapower of finite sets
as in §9, (B). Then using an argument as in Kamae [Ka], one can see that
every measure preserving action of Γ is a factor of this ultrapower (and thus
as in 9.7 again every such action is sofic).

10 Concluding remarks

There are sometimes alternative approaches to proving some of the results
in this paper using weak limits in appropriate spaces of measures instead of
ultrapowers.

One approach is to replace the space of actions A(Γ, X, µ) by a space
of invariant measures for the shift action of Γ on [0, 1]Γ as in Glasner-King
[GK].

Let (X,µ) be a non-atomic, standard measure space. Without loss of
generality, we can assume that X = [0, 1], µ = λ = Lebesgue measure on
[0,1]. Denote by SIMµ(Γ) the compact (in the weak∗-topology) convex set
of probability Borel measures ν on [0, 1]Γ which are invariant under the shift
action sΓ, such that the marginal (π1)∗ν = µ (where π1 : [0, 1]Γ → [0, 1] is
defined by π1(x) = x(1)). For a ∈ A(Γ, X, µ) let ϕa : [0, 1] → [0, 1]Γ be the
map ϕa(x)(γ) = (γ−1)a · x, and let (ϕa)∗µ = µa ∈ SIMµ(Γ). Then Φ(a) = µa
is a homeomorphism of A(Γ, X, µ) with a dense, Gδ subset of SIMµ(Γ) (see
[GK]).

One can use this representation of actions to give another proof of Corol-
lary 4.5.

If an ∈ A(Γ, X, µ), n ∈ N, is given, consider µn = µan ∈ SIMµ(Γ) as
above. Then there is a subsequence n0 < n1 < n2 < . . . such that µni

→
µ∞ ∈ SIMµ(Γ) (convergence is in the weak∗-topology of measures). Then
µ∞ is non-atomic, so we can find a∞ ∈ A(Γ, X, µ) such that a∞ on (X,µ)
is isomorphic to sΓ on ([0, 1]Γ, µ∞). One can then show (as in the proof
of (1) ⇒ (3) in 4.3) that there are bni

∼= ani
, bni

∈ A(Γ, X, µ) such that
bni
→ a∞. (Similarly if we let U be a non-principal ultrafilter on N and

µU = limn→U µn and aU in A(Γ, X, µ) is isomorphic to sΓ on ([0, 1]Γ, µU),
then there are bn ∈ A(Γ, X, µ), bn ∼= an with limn→U bn = aU .)
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For other results, related to graph combinatorics, one needs to work with
shift-invariant measures on other spaces. Let Γ be an infinite group with a
finite set of generators S. We have already introduced in §6 the compact
space Col(k,Γ, S) of k-colorings of Cay(Γ, S) and in §7 the compact space
M(Γ, S) of perfect matchings of Cay(Γ, S). On each one of these we have a
canonical shift action of Γ and we denote by INVCol(Γ, S), INVM(Γ, S) the
corresponding compact spaces of invariant, Borel probability measures (i.e.,
the spaces of invariant, random k-colorings and invariant, random perfect
matchings, resp.). Similarly, identifying elements of 2Γ with subsets of Γ, we
can form the space Ind(Γ, S) of all independent in Cay(Γ, S) subsets of Γ.
This is again a closed subspace of 2Γ which is shift invariant and we denote
by INVInd(Γ, S) the compact space of invariant, Borel measures on Ind(Γ, S),
which we can call invariant, random independent sets.

If a ∈ FR(Γ, X, µ) and A ⊆ X is a Borel independent set for G(S, a),
then we define the map

IA : X → Ind(Γ, S),

given by
γ ∈ IA(x)⇔ (γ−1)a · x ∈ A.

This preserves the Γ-actions, so (IA)∗µ = ν ∈ INVInd(Γ, S). Moreover
ν({B ∈ Ind(Γ, S) : 1 ∈ B}) = µ(A). If iµ(S, a) = ι and An ⊆ X are Borel
independent sets with µ(An)→ ι, let νn = (IAn)∗µ. Then the shift action an
on (Ind(Γ, S), µn) may not be free but one can still define independent sets
for this action as being those C such that san ·C ∩C = ∅ (modulo null sets)
and also the independence number ινn(s, an) as before. We can also assume,
by going to a subsequence, that νn → ν∞. Denote by a∞ the shift action for
(Ind(Γ, S), ν∞). Then {B ∈ Ind(Γ, S) : 1 ∈ B} is independent for an and a∞,
so ιν∞(S, an) ≥ ι. But also ινn(S, an) ≤ ιµ(S, a) and from this, it follows by a
simple approximation argument that ιν∞(S, a∞) ≤ ι, so ιν∞(S, a∞) = ι and
the sup is attained. This gives a weaker version of 5.2 (iii). Although one
can check that a∞ ≺ a, it is not clear that a∞ is free and moreover we do not
necessarily have that a v a∞. This would be remedied if we could replace a∞
by a∞× a, but it is not clear what the independence number of this product
is. This leads to the following question: Let a, b ∈ FR(Γ, X, µ) and consider
a× b ∈ FR(Γ, X2, µ2). It is clear that ιµ2(a× b) ≥ max{ιµ(a), ιµ(b)}. Do we
have equality here?

Similar arguments can be given to prove weaker versions of 5.2 (iii), (iv).
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However a weak limit argument as above (but for the space of color-
ings) can give an alternative proof of 6.4 using the “approximate” version
of Brooks’ Theorem in Conley-Kechris [CK] (this was pointed out to us by
Lyons). Indeed let a ∈ FR(Γ, S, µ), d = |S±1|. By Conley-Kechris [CK, 2.9]
and Kechris-Solecki-Todorcevic [KST, 4.8], there is k > d and for each n,
a Borel coloring cn : X → {1, . . . , k} such that µ(c−1

n ({d + 1, . . . , k})) < 1
n
.

Let as usual Cn : X → Col(k,Γ, S) be defined by Cn(x)(γ) = cn((γ−1)a · x).
Let (Cn)∗µ = νn. Then νn({c ∈ Col(k,Γ, S) : c(1) > d}) = µ(C−1

n ({d +
1, . . . , k})) < 1

n
. By going to a subsequence we can assume that νn → ν, an

invariant, random k-coloring. Now ν({c ∈ Col(k,Γ, S) : c(1) > d}) = 0, thus
ν concentrates on Col(d,Γ, S) and thus is an invariant, random d-coloring.
Moreover it is not hard to check that it is weakly contained in a.

A similar argument can be used to show that for every Γ, S except pos-
sibly non-amenable Γ with S consisting of elements of odd order, there is an
invariant, random perfect matching (see 7.5).

Finally one can obtain by using weak limits in INVInd(Γ, S) and the re-
sult in Glasner-Weiss [GW], that if Γ has property (T) and cn ∈ Ierg(Γ, S),
ιµn(Γ, S) → ι, then there is a measure ν ∈ INVInd(Γ, S) such that the shift
action is ergodic relative to ν and has independence number equal to ι, but
it is not clear that this action is free.
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