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Abstract. We answer in the negative a question posed by Kechris-Solecki-
Todorcevic as to whether the shift graph on Baire space is minimal among

graphs of indecomposably infinite Borel chromatic number. To do so, we use
ergodic-theoretic techniques to construct a new graph amalgamating various
properties of the shift actions of free groups. The resulting graph is incompara-

ble with any graph induced by a function. We then generalize this construction
and collect some of its useful properties.

1. Introduction

Recall that the chromatic number, written χ(G), of a (possibly infinite) graph
G = (V,E) with vertex set V and edge set E is defined to be the smallest cardinal κ
for which there is a coloring function c : V → κ such that c(x) ̸= c(y) whenever x E
y. In the traditional set-theoretic framework of ZFC this notion is quite well studied,
and invoking the Axiom of Choice in the form of a compactness argument establishes
that such a graph has finite chromatic number if and only if there is a finite bound on
the chromatic numbers of its finite induced subgraphs. In the absence of relatively
strong choice principles, however, this equivalence fails drastically. For example, it
is consistent with ZF+DC (assuming as usual the consistency of ZFC) that there is a
graph G all of whose finite induced subgraphs have chromatic number at most two
while χ(G) = 2ℵ0 , the cardinality of the continuum (an example, G0, is discussed
below).

One can clarify the dependency of these arguments on the Axiom of Choice, and
shift the question into the descriptive set-theoretic milieu, by placing definability
restrictions on the coloring functions. More precisely, one can fix a standard Borel
space X and examine graphs G whose edge relation is realized as a symmetric, ir-
reflexive subset of X2. One may then consider the Borel chromatic number, defined
as the least cardinality of a standard Borel space Y for which there is a Borel color-
ing function c : X → Y of G, with the usual requirement that G-adjacent vertices
get different colors. This number was investigated by Kechris-Solecki-Todorcevic,
who noticed that there are acyclic Borel graphs which have no Borel ℵ0-coloring.
Indeed, in [6, §6] such an example G0 on 2N is produced with the following re-
markable minimality property: an analytic graph G on a Hausdorff space X has
uncountable Borel chromatic number iff there is a continuous homomorphism from
G0 to G. Moreover, in a model of ZF+DC in which all subsets of the reals have the
property of Baire (see, e.g., [9, Theorem 7.16]), we have χ(G0) = 2ℵ0 .
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There are many consequences of the existence of such a minimal object. It
reduces the inherent complexity of the statement “G cannot be colored with count-
ably many colors,” since it is equivalent to the existential statement “there is a
continuous homomorphism from G0 to G.” Moreover, recent work by the second
author has isolated several classical descriptive set-theoretic dichotomies as con-
sequences of precisely this form of graph minimality, suggesting that these graph
coloring concerns are sufficiently flexible to encode seemingly unrelated set-theoretic
notions.

Kechris-Solecki-Todorcevic have asked whether there is an analogous minimal
graph among the collection of graphs with infinite Borel chromatic number. More
precisely, they posed the question of whether the graph Gs on infinite sets of natural
numbers, where two such sets are adjacent if one can be obtained from the other by
removing its least element, is such a minimal graph [6, Question 8.1]. In addition
to the benefits listed above, the existence of such a minimal graph would provide
a nice analog to the ease of testing in ZFC whether a graph has infinite chromatic
number.

In §2, we exhibit an acyclic, locally finite, Borel graph GF of infinite Borel chro-
matic number with the property that there is no Borel homomorphism from any
graph associated with a Borel function to GF. In particular, this gives a negative
answer to [6, Question 8.1]. The graph GF can be viewed as an amalgamation of
graphs associated with shift actions of free groups. In §3, we discuss a more general
way of amalgamating acyclic graphs into larger graphs, and catalog some useful
properties of this amalgamation.

2. A graph incomparable with the shift

A graph on a set X is a symmetric, irreflexive set G ⊆ X ×X. The degree of a
point x with respect to G is given by degG(x) = |{y ∈ X : (x, y) ∈ G}|. The graph
G is locally countable if every point has countable degree, and the graph G is locally
finite if every point has finite degree. The restriction of G to a set A ⊆ X is given
by G |A = G ∩ (A×A). We say that A is (G)-independent if G |A = ∅.

A κ-coloring of G is a function c : X → κ such that c−1({α}) is independent for
each α ∈ κ. The chromatic number of G, χ(G), is the least cardinal κ for which
there exists a κ-coloring of G. Analogously, the Borel chromatic number, χB(G),
of a graph on a standard Borel space X is the least cardinality of a standard Borel
space Y for which there is a Borel function c : X → Y with c−1({y}) independent
for each y ∈ Y .

For a graph G, let EG denote the equivalence relation generated by G. The
classes of EG are called the connected components of G, and G is connected if EG

has only one class. We say that G has indecomposably infinite Borel chromatic
number if X cannot be partitioned into countably many Borel EG-invariant sets on
which G has finite Borel chromatic number.

We identify the space [N]N of infinite subsets of the natural numbers with the
collection of strictly increasing sequences of natural numbers. The unilateral shift
on [N]N is the function s : [N]N → [N]N given by

s(x)(i) = x(i+ 1),

for all x ∈ [N]N and i ∈ N. Let Gs denote the graph on [N]N given by

x Gs y ⇔ x = s(y) or y = s(x).
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Thus, Gs is an acyclic, locally finite, Borel graph on [N]N. By a straightforward
application of the Galvin-Prikry theorem, it is shown in [6, Example 3.2] that
χB(Gs) = ℵ0, and it is therein conjectured that Gs is in some sense minimal
among the collection of graphs of infinite Borel chromatic number.

If Γ is a countable group with generating set S (assumed not to contain the
identity) and a is a free, Borel action of Γ on X, we define the graph G(S, a) on X
by

x G(S, a) y ⇔ ∃s ∈ S (x = s ·a y or y = s ·a x).
To analyze such graphs, it will be useful to work with a measure. If G is a Borel
graph on a standard Borel space X and µ is a Borel probability measure on X,
the (µ-)measurable chromatic number of G, χµ(G), is the least cardinality of a
Polish space Y for which there is a (µ-)measurable function c : X → Y with c−1(y)
a G-independent set for each y ∈ Y . To avoid trivial degeneracies, we assume
from now on that (X,µ) is a standard probability space. We see immediately that
χµ(G) ≤ χB(G).

We denote by Fn (n ≥ 2) the free group on n generators, and by F∞ the free
group on ℵ0-many generators. Fixing a set of free generators {γ0, γ1, . . .} for F∞,
we may canonically identify Fn with the subgroup of F∞ generated by {γ1, . . . , γn}
(note that γ0 is unused). Equip 2F∞ with the (1/2, 1/2) product measure µ0,
and denote by a∞ the shift action of F∞ on (X0, µ0), where X0 ⊆ 2F∞ is the
conull set on which this shift action is free. For each n ≥ 2, let an denote the
(free) action of Fn on (X0, µ0) obtained by restricting a∞ to ⟨Fn⟩. Finally, let
Gn = G(Fn, an) ⊆ G(F∞, a∞), so that each Gn is an acyclic, Borel graph with
respect to which every point has degree 2n. Moreover, each EGn is ergodic since
the shift action of F∞ is mixing [5, Example 3.1].

From [6, Proposition 4.6] it follows that χB(Gn) ≤ 2n+1, and we will next sketch
the argument that χµ0(Gn) → ∞ as n → ∞. Let bn denote the free part of the shift
of Fn on 2Fn , equipped with the usual product measure. Each an is isomorphic to
the product (bn)

N acting on (2Fn)N. In turn, (bn)
N is isomorphic to the shift action

of Fn on (2N)Fn . Bowen [1] has shown that this last shift action is weakly equivalent
to bn itself (for a definition and discussion of weak equivalence, see [4, Chapter 10]).
In [2] and independently [7] it is shown that the graph associated with the action bn
(and a free set of generators) has an upper bound on the measure of an independent
set tending towards zero as n → ∞. Since this bound respects isomorphism and
weak equivalence, we see by the above observations that χµ0

(Gn) → ∞ as n → ∞.
More details of this argument may be found in [2, Corollary 4.2, Theorem 4.17,
Remark 4.18].

We amalgamate these graphs into a single graph GF on XF = X0 × 2N (with the
product measure µF = µ0 × (1/2, 1/2)N) with countably infinite Borel and measur-
able chromatic numbers. Partition 2N into countably many Borel sets A2, A3, . . .
of positive measure. Fix an aperiodic, ergodic, measure-preserving, Borel automor-
phism σ : 2N → 2N, and define T : XF → XF by T (x, y) = (γ0 · x, σ(y)). Finally,
define GF on XF by

(x, y) GF (x′, y′) ⇔ ∃n ≥ 2 (xGnx
′ and y = y′ ∈ An) or (x, y) = T±1(x′, y′).

Here we are pasting continuum-many copies of Gn into each An, and using T to
tie them together. We see that GF is an acyclic, locally finite, Borel graph with
χB(GF) = χµ(GF) = ℵ0. Moreover, EGF is an ergodic equivalence relation, so there
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is no way to partition XF into countably many EGF-invariant pieces on which GF
has finite µF-measurable chromatic number.

Of course, the same idea works in general to sew countably many acyclic graphs
together using an ergodic automorphism, and acyclicity is preserved provided this
automorphism is sufficiently “free” from the original graphs. We examine this idea
in more detail in §3.

Recall that a homomorphism from a graph G on X to a graph H on Y is a
function φ : X → Y such that

x G x′ ⇒ φ(x)Hφ(x′).

With any function f : X → X we may associate the graph Gf on X given by

x Gf y ⇔ x ̸= y and (x = f(y) or y = f(x)).

We abbreviate EGf
by Ef .

Proposition 1. Suppose that f : X → X is a Borel function. Then there is no
Borel homomorphism from GF to Gf .

Proof. Suppose, towards a contradiction, that φ : XF → X is a Borel homomor-
phism from GF to Gf . Denote by (µF)∗ the push-forward of µF by φ, i.e., the
measure given by

(µF)∗(A) = µF(φ
−1(A)),

for all Borel A ⊆ X. By [8, Theorem A] there is a (µF)∗-measurable 3-coloring
c : X → 3. But then c ◦ φ is a µF-measurable 3-coloring of GF, the desired
contradiction. �

Remark 2. The above argument in fact also rules out a Borel homomorphism
from GF to any acyclic Borel graph G whose associated equivalence relation EG is
measure hyperfinite.

Proposition 3. Suppose that f : X → X is a Borel function. If there is a Borel
homomorphism from Gf to GF, then χB(Gf ) ≤ 3.

Proof. Suppose that φ : X → XF is a Borel homomorphism from Gf to GF. We
use φ to pull a particular partition of the edges of GF back to Gf . Define subgraphs
HT , H of Gf by

x HT y ⇔ x Gf y and φ(x) = T±1(φ(y)), and

x H y ⇔ x Gf y and proj2N(φ(x)) = proj2N(φ(y)),

where proj2N denotes projection onto 2N. Observe that Gf = HT ⊔H. Moreover,
since T is a Borel automorphism, it follows from [6, Proposition 4.7] that HT has
Borel chromatic number at most 3. It therefore suffices to argue that χB(H) is finite,
since χB(Gf ) ≤ 3χB(H), thus [6, Theorem 5.1] would imply that χB(Gf ) ≤ 3. We
will in fact show that χB(H) ≤ 3 as well.

Lemma 4. Suppose that G is a Borel graph on X with G ⊆ Gf . Then there is
a Borel function g : X → X with G = Gg. In particular, if χB(G) is finite, then
χB(G) ≤ 3.
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Proof. Note that each connected component of G contains at most one point x such
that x and f(x) are not G-related. Simply define g : X → X by

g(x) =

{
f(x) if x G f(x), and

x otherwise,

so that G = Gg. If also χB(Gg) is finite we have χB(Gg) ≤ 3 (see [6, Theorem
5.1]). �

For n ≥ 2, put Bn = φ−1(X0 × An), where An ⊆ 2N is as in the definition of
GF. Each Bn is a union of connected components of H (since the only edges in GF
connecting distinct X0×An, X0×Am are those induced by T ). Moreover, for each
n ≥ 2, the Borel chromatic number of H |Bn is finite, since (φ× φ)[H] | (X0 ×An)
has degree bounded by 2n (again applying [6, Proposition 4.6]). By then applying
Lemma 4 to H on each Bn, we see that χB(H) ≤ 3 as promised. �

Corollary 5. There is neither a Borel homomorphism from Gs to GF nor a Borel
homomorphism from GF to Gs.

We now shift our attention to the existence of graphs below both Gs and GF.
While it remains unknown whether there exists a graph of indecomposably infinite
Borel chromatic number which homomorphs into both, we can rule out such graphs
under additional injectivity assumptions on one of these homomorphisms. For
graphs G on X and H on Y , we say that φ : X → Y is locally injective if for all
w ∈ X and all G-neighbors x0, x1 of w, φ(x0) = φ(x1) ⇒ x0 = x1.

Corollary 6. Suppose that f : X → X is a Borel function. Then there is no Borel
graph G of infinite Borel chromatic number which admits a locally injective Borel
homomorphism to Gf and a Borel homomorphism to GF.

Proof. Suppose, towards a contradiction, that there is such a graph G on X. Fix
a locally injective Borel homomorphism φ from G to Gf , and define a function
g : X → X by

g(x) =

{
y if x G y and φ(y) = f ◦ φ(x), and

x otherwise.

It is easy to see that G = Gg, and the result follows from Proposition 3. �

We close this section by considering the finer partial order of Borel reducibility
among graphs. Given graphs G on X and H on Y , we say that φ : X → Y is a
reduction of G to H if x0 G x1 ⇔ φ(x0) H φ(x1). When we restrict our attention
to reductions in the locally countable context, we can discard the assumption of
local injectivity in the previous result.

Proposition 7. There is no locally countable Borel graph G of infinite Borel chro-
matic number which admits both a Borel reduction to Gs and a Borel homomorphism
to GF.

Proof. Suppose, towards a contradiction, that there is such a graph G on X. Since
G is locally countable, we may assume without loss of generality that every vertex
has at least one G-neighbor. Fix a Borel reduction φ of G to Gs. We consider
the Borel equivalence relation E on X defined by x E y ⇔ φ(x) = φ(y). Every
equivalence class of E is countable, since [x]E ⊆ {y ∈ X : x and y have the same set
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of neighbors}. As φ witnesses the smoothness of F , there is a Borel transversal A
of F [5, Proposition 6.4]. Then φ | A is an injective Borel reduction of G | A to
Gs. As φ |A is a Borel homomorphism from G |A to GF, Corollary 6 implies that
χB(G |A) < ℵ0.

Fix k ∈ ω and a Borel coloring c : A → k of G | A. Define c′ : X → k by
c′(x) = c(y), where y is the unique element of A ∩ [x]F . Then c′ is a coloring of
G, since the F -saturation of any G-independent set remains G-independent. Since
the range of c′ is finite, this contradicts our assumption that G has infinite Borel
chromatic number. �

3. A more general construction

Suppose that E and F are equivalence relations on a measure space (X,µ). We
say that E and F are independent, in symbols E ⊥ F , if there is no sequence
x0, x1, . . . , xn = x0 with n > 1, xi ̸= xj (0 ≤ i < j < n), and x0Ex1Fx2Ex3 . . .
(i.e., there are no nontrivial cycles whose “edges” alternate between E and F ). We
say that E and F are µ-independent if they are independent after removing a µ-null
set. We denote by Aut(X,µ) the set of µ-preserving automorphisms of X, and say
that the support of T ∈ Aut(X,µ) is the set {x ∈ X : T (x) ̸= x}.

Recall that Aut(X,µ) is a Polish space once equipped with the weak topology
(see [4, Chapter 1]). The basic open sets in the weak topology are determined by
finite partitions {A0, . . . , An}, {B0, . . . , Bn} of X into Borel sets and ε > 0, and
have the form {T ∈ Aut(X,µ) : µ(T (Ai) △ Bi) < ε}. Equivalently, each nonempty
basic open set is determined by a partition P of X into countably many Borel sets,
T0 ∈ Aut(X,µ), and ε > 0, having the form {T : ∀P ∈ P µ(T (P ) △ T0(P )) < ε}.

The following is a generalization of the main lemma (and the subsequent remark)
in [10, III]. As usual, a measure µ is E-quasi-invariant if the E-saturation of a µ-null
set remains µ-null.

Theorem 8. Suppose that E is a countable Borel equivalence on a standard Borel
space X and µ is an E-quasi-invariant standard Borel probability measure on X.
Then the set of automorphisms T such that E and ET are µ-independent is comea-
ger in Aut(X,µ).

Before jumping into the proof of Theorem 8, we establish some lemmas in the
more restrictive Borel context.

Lemma 9. Suppose that T1, . . . , Tk : X → X are Borel automorphisms of a
standard Borel space X and Y ⊆ X is such that for all x ∈ Y and i, j ≤ k,
Ti(x) ̸= Tj(x). Then there is a partition of Y into N = k2+1 Borel parts Y1, . . . , YN

such that for each n ≤ N the collection {Ti(Yn) : i ≤ k} forms a pairwise disjoint
family.

Proof. Consider the Borel graph G on Y given by

x G y ⇔ x ̸= y and ∃i, j (Ti(x) = Tj(y)).

The graph G has degree bounded by k2 and thus admits a Borel coloring by k2+1 =
N colors [6, Theorem 4.6]. We choose these colors as our sets Yn. Suppose, towards
a contradiction, that Ti(Yn) ∩ Tj(Yn) ̸= ∅, and fix x, y ∈ Yn with Ti(x) = Tj(y).
Since Yn is G-independent, we must have x = y, contradicting the hypothesis of
the lemma. �
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Given a partition P of X and an automorphism T : X → X, we say that T
factors over P if T (P ) = P for all P ∈ P.

Lemma 10. Suppose that P is a partition of X into countably many Borel parts,
and B is a Borel subset of X. Then there is a Borel involution I : X → X
factoring over P such that supp(I) is a cocountable subset of B. Moreover, if µ is
a nonatomic Borel probability measure on X then I may be chosen to preserve µ.

Proof. Simply note that for each P ∈ P there is a Borel involution IP with support
contained in B ∩ P fixing at most one element of B ∩ P (such a fixed point is only
necessary if |B ∩ P | is finite and odd). Set I =

∪
P∈P IP . To ensure that this is

µ-preserving, for each P ∈ P with µ(B ∩ P ) > 0, choose IP to flip two subsets of
B ∩ P of equal measure. �

For each i ∈ N, let ιi be a Borel involution of full support. We say that a formal
word w in the alphabet {ιi : i ∈ N} ⊔ {τ, τ−1} is reduced if no two elements of
{ιi : i ∈ N} appear consecutively, nor do τ and τ−1 appear consecutively. With
each reduced word w and Borel automorphism T : X → X, we may associate a
Borel automorphism Tw inductively by

T∅ = id,

Tιiaw = ιi ◦ Tw, for i ∈ N,
Tτaw = T ◦ Tw,

Tτ−1aw = T−1 ◦ Tw.

Intuitively, we simply plug in T for the symbol τ . We say that v is a subword of w,
written v ⊑ w, if there exist possibly empty words w0, w1 such that w = w0

avaw1;
if v ̸= w, we say that v is a proper subword of w, written v @ w. We say that
v is an initial subword (resp., terminal subword) of w if there exists w0 such that
w = vaw0 (resp., w = w0

av). With each reduced word w we may associate its
inverse w−1 defined inductively so that ιi is its own inverse, τ and τ−1 are inverses,
and (w0

aw1)
−1 = w−1

1
aw−1

0 .
If T is a bijection on X and P is a partition of X, let T [P] denote the partition

{T (P ) : P ∈ P}. If P, P ′ are two partitions of X, denote by P ∨ P ′ the partition
{P ∩ P ′ : P ∈ P, P ′ ∈ P ′}. If A is a finite collection of subsets of X, we write
P(A) to denote the finite partition generated by A (or, equivalently, the atoms of
the algebra generated by A).

Lemma 11. Suppose that P is a partition of X into countably many Borel sets,
w is a nonempty reduced word, and T is a Borel automorphism of X such that
Tv has cocountable support for all nonempty proper subwords v @ w. Then there
is a Borel automorphism S factoring over P such that (T ◦ S)w has cocountable
support. Moreover, if µ is a nonatomic Borel probability measure on X then S may
be chosen to preserve µ.

Proof. The conclusion is immediate if w = ιi for some i. Replacing w by w−1

if necessary, we may assume τ ⊑ w, and write w = w0
aτaw1. Discarding a

countable set, we may assume that Tv has full support for all nonempty proper
subwords v @ w. By Lemma 9 there is a partition {Y1, . . . , YN} of X into Borel
sets such that for all distinct proper terminal subwords v, v′ @ w and all n ≤ N ,
Tv(Yn) ∩ Tv′(Yn) = ∅. We handle the sets Yn one at a time, via the following fact.
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Sublemma 12. Suppose that T ′ is a Borel automorphism of X, P ′ is a partition
of X into countably many Borel sets, and Y is a Borel subset of X such that
T ′
v(Y )∩ T ′

v′(Y ) = ∅ for all distinct proper terminal subwords v, v′ @ w. Then there
is a Borel involution I of X factoring over P ′ such that (T ′ ◦ I)w has cocountable
support. Moreover, if µ is a nonatomic Borel probability measure on X then I may
be chosen to preserve µ.

Proof. Set Y fix = Y \ supp(T ′
w) and choose (by Lemma 10) a Borel involution

I which factors over P ′ such that supp(I) is a cocountable subset of T ′
w1

(Y fix).

Then for all y ∈ Y , (T ′ ◦ I)w1(y) = T ′
w1

(y), since w1 does not begin with τ−1 and
supp(I) is disjoint from T ′

v(Y ) for all proper subwords v @ w1. Analogously, for all
y ∈ T ′

τaw1
(Y ), we have (T ′ ◦ I)w0(y) = T ′

w0
(y). Now if y ∈ Y ∩ supp(T ′

w), we see

(T ′ ◦ I)w(y) = T ′
w0

◦ T ′ ◦ I ◦ T ′
w1

(y) = T ′
w0

◦ T ′ ◦ T ′
w1

(y) = T ′
w(y) ̸= y. On the other

hand, for cocountably many y ∈ Y fix we have (T ′ ◦ I)w(y) = T ′
w0

◦T ′ ◦ I ◦T ′
w1

(y) ̸=
T ′
w0

◦ T ′ ◦ T ′
w1

(y) = T ′
w(y) = y, since I ◦ T ′

w1
(y) = T ′

w1
(y) for only countably many

y. Thus, I is as required, and of course may be chosen to preserve µ (again by
Lemma 10). �

We now iteratively apply the sublemma to each Yn. First, we apply the sublemma
to the automorphism T , the partition P1 = P ∨ P({Tv(Yn) : v ⊑ w and n ≤ N}),
and the set Y1 to obtain an involution I1 with Y1\supp((T ◦I1)w) countable. Apply
Lemma 9 to partition supp((T ◦ I1)w) ∩ Y1 into Borel sets Y 1

1 , . . . Y
M
1 such that

Tv(Y
M
1 )∩Tv′(Y M

1 ) = ∅ for all distinct terminal subwords v, v′ ⊑ w. Note that here
we allow one of v, v′ to equal w. Next, apply the sublemma to the automorphism
T1 = T ◦ I1, the partition P2 = P1 ∨ P({(T1)v(Y

m
1 ) : v ⊑ w and m ≤ M}),

and the set Y2 to obtain a second involution I2. Note that the hypotheses of the
sublemma are met, since for all proper terminal subwords v @ w and n ≤ N we
have (T1)v(Yn) = Tv(Yn), as the involution I1 factors over the partition P({Tv(Yn) :
v ⊑ w and n ≤ N}).

In general, at stage n we set Tn−1 = T ◦I1 ◦· · ·◦In−1 and first apply Lemma 9 to
partition supp((Tn−1)w)∩Yn−1 into Borel sets Y 1

n−1, . . . Y
M
n−1 such that Tv(Y

M
n−1)∩

Tv′(Y M
n−1) = ∅ for all distinct terminal subwords v, v′ ⊑ w. Subsequently, we

apply the sublemma to the automorphism Tn−1, along with the partition Pn =
Pn−1 ∨ P({(Tn−1)v(Y

m
n−1) : v ⊑ w and m ≤ M}), and the set Yn to obtain the

next involution In. We claim that the automorphism S = I1 ◦ · · · ◦ IN satisfies the
conclusion of the lemma.

That is, we want to show that the set of x such that (T ◦S)w(x) = x is countable.
It suffices to show that if x ∈ Yn and (Tn)w(x) ̸= x, then (T ◦ S)(x) ̸= x, where
as before Tn = T ◦ I1 ◦ · · · ◦ In. Fix m ≤ M such that x ∈ Y m

n . Since each
of the involutions In+1, . . . , IN factors over P({(Tn)v(Y

m
n ) : v ⊑ w}), we have

(T ◦ S)v(Y m
n ) = (Tn)v(Y

m
n ) for all v ⊑ w. In particular, (T ◦ S)w(Y m

n ) ∩ Y m
n = ∅,

and thus (T ◦ S)w(x) ̸= x. �

Proof of Theorem 8. Suppose that E is a countable Borel equivalence on a standard
Borel space X and µ is an E-quasi-invariant Borel probability measure on X. We
want to show that the the set of automorphisms T such that E and ET are µ-
independent is comeager in Aut(X,µ) (with respect to the weak topology).

We may (see [3]) write E as the union of the graphs of countably many Borel
involutions. A straightforward maximality argument then allows us to write E \
{(x, x) : x ∈ X} as the union of the graphs of countably many fixed-point-free
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Borel involutions ι0, ι1, . . .. Using our earlier notation, it is suffices to show that
for all nonempty reduced words w in the alphabet {ι0, ι1, . . . , τ, τ−1}, the set {T :
µ(supp(Tw)) = 1} is comeager in Aut(X,µ). We may assume by induction that for
each proper subword v @ w the set {T : µ(supp(Tv)) = 1} is comeager.

We first check that Uε = {T : µ(supp(Tw)) > 1− ε)} is open for each ε > 0. Fix
T0 ∈ Uε. By Lemma 9 there is a partition Y1, . . . YN of supp((T0)w) into finitely
many sets such that Yn ∩ (T0)w(YN ) = ∅ for each n ≤ N . Set P = P({(T0)v(yn) :
v ⊑ w and n ≤ N}). Then, since each (T0)v is µ-class preserving, for each δ > 0
there is some εδ > 0 such that whenever T satisfies µ(T (P ) △ T0(P )) < εδ for all
P ∈ P then µ(Yn∩Tw(Yn)) < δ. That is, choosing δ smaller than µ(supp((T0)w))−
(1 − ε), the set {T : ∀P ∈ P µ(T (P ) △ T0(P )) < εδ} is a neighborhood of T0

contained in Uε. Consequently, the set {T : µ(supp(Tw)) = 1} is Gδ in Aut(X,µ).
So all that remains is to check that the set {T : µ(supp(Tv)) = 1} is dense. Fix

an open set U and by the inductive assumption an automorphism T0 ∈ U ∩ {T :
∀v @ w (µ(supp(Tv)) = 1)}. Without loss of generality, we may assume there is a
finite partition P and ε > 0 such that U = {T : ∀P ∈ P (µ(T (P ) △ T0(P )) < ε)}.
By Lemma 11, there is a µ-preserving automorphism S factoring over P such that
(T ◦ S)v has conull support for all v ⊑ w. Since T0 ◦ S(P ) = T (P ) for all P ∈ P,
we see T0 ◦ S ∈ U ∩ {T : ∀v ⊑ w (µ(supp(Tv)) = 1)} as desired. �

Before generalizing the construction of GF in the previous section, we digress a
bit to discuss costs. The relevant notions are defined in [5, III].

Corollary 13. Suppose that E is a µ-preserving, aperiodic, countable, Borel equiv-
alence relation on a standard probability space (X,µ). Then there is a free, µ-
preserving action of F∞ whose associated orbit equivalence relation is independent
of E. Consequently, for all α > 0 there is a µ-preserving, countable, Borel equiva-
lence relation Eα ⊇ E such that Cµ(Eα) = Cµ(E) + α. Moreover, if E is treeable
then Eα may be taken to be treeable.

Proof. Apply Theorem 8 in succession to obtain a sequence of automorphisms
T0, T1, . . . ∈ Aut(X,µ) such that for each i we have ETi ⊥ E ∨

∨
j<i ETj . Then the

set {Ti : i ∈ N} generates a free F∞ action whose associated equivalence relation is
independent of E.

To obtain a superequivalence relation increasing the cost of E by α, first write
α = n+ ε for some n ∈ N and 0 ≤ ε < 1. Fix a Borel set Aε ⊆ X with µ(Aε) = ε
and define T ′

n by

T ′
n(x) =

{
Tn(x) if x ∈ Aε,

x if x /∈ Aε.

Then, by a fundamental result of Gaboriau’s theory of costs (see, e.g., [5, Theorem
27.2]), the equivalence relation

Eα = E ∨
∨
i<n

ETi ∨ ET ′
n

has cost Cµ(E) + α.
If E is treeable, it is evident that this Eα is also treeable by simply adding to

the treeing of E the (symmetrized) graphs of T0, . . . , Tn−1, T
′
n. �

Suppose now that we have a countable sequence of measure-preserving, Borel
graphs (Gn)n∈N on standard probability spaces (Xn, µn), respectively (i.e., for each
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n ∈ N, µn is EGn-invariant). We build another standard measure space (X,µ) by
setting X =

⊔
n∈N Xn and for Borel A ⊆ X,

µ(A) =
∑
n∈N

2−(n+1)µn(A ∩Xn).

We then may define a Borel graph GN on X by

x GN y ⇔ ∃n ∈ N (x, y ∈ Xn and x Gn y).

Note then that µ is EGN-invariant.
By Theorem 8, the generic T ∈ Aut(X,µ) satisfies ET ⊥ EGN (after, as usual,

discarding a µ-null set). We may fix such a T which is ergodic, since of course the
generic element of Aut(X,µ) is ergodic [4, Theorem 2.6]. The ergodic amalgamation
of (Gn) by T is the Borel graph

G(Gn),T = GN ∪GT

on X. When the particular choice of T is unimportant, we say G is an ergodic
amalgamation of (Gn) if G = G(Gn),T for some T as above. Note of course that EG

is an ergodic equivalence relation. We collect here some useful facts about ergodic
amalgamations.

Proposition 14. Suppose that (Gn)n∈N is a sequence of Borel, measure-preserving
graphs on (Xn, µn), respectively, and that G on (X,µ) is an ergodic amalgamation
of (Gn).

(i) If each Gn is acyclic, then G is acyclic. Moreover, the girth (the length of the
shortest cycle) of G is equal to the least girth among the graphs Gn, and the
clique number (the size of the largest set of vertices with all pairs adjacent) of
G is equal to the largest clique number among the graphs Gn.

(ii) If each Gn is locally finite, then G is locally finite. Moreover, if every Gn has
degree bounded by a fixed d, then G has degree bounded by d+ 2.

(iii) The Borel chromatic number of G, χB(G), is bounded below by supn χB(Gn)
and above by 3 supn χB(Gn).

(iv) The measurable chromatic number of G, χµ(G), is bounded below by supn χµn(Gn)
and above by 3 supn χµn(Gn).

In particular, if G is an ergodic amalgamation of some sequence (Gn)n∈N of
graphs with measurable chromatic numbers tending towards infinity while each
having bounded degree, and f is any Borel function on a Polish space such that Gf

has infinite Borel chromatic number, the arguments in Proposition 1 and 3 ensure
that there is no Borel homomorphism from G to Gf nor from Gf to G.
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