FINITE MONOID-VALUED MEASURE ALGEBRAS

CLINTON T. CONLEY

We fix an abelian semigroup $\langle S,+\rangle$. We say that S is positive if it contains no additive identity. For $m, n \in \mathbb{N}$, an $m \times n S$-matrix is an $m \times n$ matrix $A=\left(a_{i, j}\right)$ whose entries are elements of S. If $A=\left(a_{i, j}\right)$ is an $m \times n S$-matrix, let

$$
\mathbf{r}_{A}=\left(\sum_{j<n} a_{0, j}, \sum_{j<n} a_{1, j}, \ldots, \sum_{j<n} a_{m-1, j}\right)
$$

denote its sequence of row sums, and let

$$
\mathbf{c}_{A}=\left(\sum_{i<m} a_{i, 0}, \sum_{i<m} a_{i, 1}, \ldots, \sum_{i<m} a_{i, n-1}\right)
$$

denote its sequence of column sums.
We say that S splits four ways if for every $r_{0}, r_{1}, c_{0}, c_{1} \in S$ with $r_{0}+r_{1}=c_{0}+c_{1}$, there is a $2 \times 2 S$-matrix A with $\mathbf{r}_{A}=\left(r_{0}, r_{1}\right)$ and $\mathbf{c}_{A}=\left(c_{0}, c_{1}\right)$.

Example 1. Suppose that $\langle G,+,<\rangle$ is an abelian group with identity 0_{G} and a translation-invariant partial order. We use G^{+}to denote the positive semigroup $\left\{g: 0_{G}<g\right\}$. Denoting by \exists^{+}, \forall^{+}quantification over G^{+}, we say G^{+}splits under sums if

$$
\forall^{+} g_{0}, g_{1} \forall^{+} k<g_{0}+g_{1} \exists^{+} h_{0}<g_{0} \exists^{+} h_{1}<g_{1}\left(h_{0}+h_{1}=k\right)
$$

It is not hard to see that G^{+}splits four ways if and only if it splits under sums.
Example 2. As a special case of Example 1, suppose that $\langle G,+,\langle \rangle$ is an abelian group with a translation-invariant linear order. In this case, G^{+}splits four ways if and only if G^{+}has no <-minimal element.

Example 3. If $\langle L, \wedge, \vee\rangle$ is a lattice, we may view it as an abelian semigroup under the operation \vee. A semigroup arising in this fashion always splits four ways: suppose $r_{0}, r_{1}, c_{0}, c_{1} \in L$ with $r_{0} \vee r_{1}=c_{0} \vee c_{1}$. Then the matrix

$$
\left(\begin{array}{ll}
r_{0} \wedge c_{0} & r_{0} \wedge c_{1} \\
r_{1} \wedge c_{0} & r_{1} \wedge c_{1}
\end{array}\right)
$$

has the required row and column sums. Additionally, such a lattice is a positive semigroup if and only if it contains no bottommost element (e.g, the cofinite subsets of \mathbb{N}).

Lemma 4. Suppose that S is an abelian semigroup that splits four ways. Suppose further that $m, n \in \mathbb{N}$ and $\mathbf{r}=\left(r_{0}, \ldots, r_{m-1}\right), \mathbf{c}=\left(c_{0}, \ldots, c_{n-1}\right)$ are sequences of elements of S with $\sum_{i<m} r_{i}=\sum_{j<n} c_{j}$. Then there exists an $m \times n S$-matrix A such that $\mathbf{r}_{A}=\mathbf{r}$ and $\mathbf{c}_{A}=\mathbf{c}$.

Proof. We proceed by induction on $m+n$. The lemma is trivial when either of m, n is less than 2, and the case $m=n=2$ is granted by the assumption that S splits four ways. By interchanging rows and columns if necessary, we may assume $m>2$.

Suppose that $\mathbf{r}=\left(r_{0}, \ldots, r_{m-1}\right)$ and $\mathbf{c}=\left(c_{0}, \ldots, c_{n-1}\right)$ are as in the statement of the lemma. By the inductive hypothesis, we know there exists a $2 \times n S$-matrix

$$
A=\left(\begin{array}{lll}
a_{0,0} & \cdots & a_{0, n-1} \\
a_{1,0} & \cdots & a_{1, n-1}
\end{array}\right)
$$

with $\mathbf{r}_{A}=\left(\sum_{i<m-1} r_{i}, r_{m-1}\right)$ and $\mathbf{c}_{A}=\left(c_{0}, \ldots, c_{1}\right)$. Again using the inductive hypothesis, there exists a $(m-1) \times n S$-matrix

$$
B=\left(\begin{array}{ccc}
b_{0,0} & \cdots & b_{0, n-1} \\
\vdots & \ddots & \vdots \\
b_{m-2,0} & \cdots & b_{m-2, n-1}
\end{array}\right)
$$

with $\mathbf{r}_{B}=\left(r_{0}, \ldots, r_{m-2}\right)$ and $\mathbf{c}_{B}=\left(a_{0,0}, \ldots, a_{0,1}\right)$. We then simply observe that the matrix

$$
\left(\begin{array}{ccc}
b_{0,0} & \cdots & b_{0, n-1} \\
\vdots & \ddots & \vdots \\
b_{m-2,0} & \cdots & b_{m-2, n-1} \\
a_{1,0} & \cdots & a_{1, n-1}
\end{array}\right)
$$

has the required row and column sumes.
Remark 5. Lemma 4 remains true for nonabelian semigroups, with the same proof, provided that row and column sums are reinterpreted in the obvious way.

We say that a monoid $\langle G,+\rangle$ with identity 0_{G} is nonnegative if $G^{+}=G \backslash\left\{0_{G}\right\}$ is a (positive) semigroup. Equivalently, if $g_{0}+g_{1}=0_{G}$, then $g_{0}=g_{1}=0_{G}$. We fix such a monoid.

We now turn our attention to the main focus of the paper, the class of naturally ordered finite measure algebras equipped with a measure taking values in G. Given a Boolean algebra $\langle B, \wedge, \vee, 0,1\rangle$, a positive G-valued measure on B is a function $\mu: B \rightarrow G$ such that for all $b_{0}, b_{1} \in B$:

1. $\mu\left(b_{0}\right)=0_{G} \Leftrightarrow b_{0}=0_{G}$;
2. if $b_{0} \wedge b_{1}=0$, then $\mu\left(b_{0} \vee b_{1}\right)=\mu\left(b_{0}\right)+\mu\left(b_{1}\right)$.

Fix a positive element $g_{1} \in G$. The class $\mathcal{O} \mathcal{M B} \mathcal{A}_{G, g_{1}}$ consists of structures of the form $\mathbf{B}=\left\langle B, \wedge, \vee, 0,1, \mu_{\mathbf{B}},<_{\mathbf{B}}\right\rangle$, where $\langle B, \wedge, \vee, 0,1\rangle$ is a finite Boolean algebra, $\mu_{\mathbf{B}}: B \rightarrow G$ is a positive G-valued measure with $\mu_{\mathbf{B}}(1)=g_{1}$, and $<_{\mathbf{B}}$ is an order induced antilexicographically by an ordering of the atoms of B.

Theorem 6. Suppose that G is a countable, nonnegative abelian monoid such that G^{+}splits four ways, and that g_{1} is a positive element of G. Then the class $\mathcal{O} \mathcal{M B A}_{G, g_{1}}$ is a Fraïssé order class.

Proof. We prove only that $\mathcal{O} \mathcal{M B} \mathcal{A}_{G, g_{1}}$ satisfies the AP, since the other properties are routinely verified (in particular, JEP follows from AP upon considering the $\{0,1\}$ Boolean algebra). Towards this end, fix $\mathbf{B}, \mathbf{C}, \mathbf{D} \in \mathcal{O} \mathcal{M} \mathcal{B A}_{G, g_{1}}$ as well as embeddings $f: \mathbf{B} \rightarrow \mathbf{C}$ and $g: \mathbf{B} \rightarrow \mathbf{D}$. Our goal is to find some $\mathbf{E} \in \mathcal{O} \mathcal{M} \mathcal{B} \mathcal{A}_{G, g_{1}}$ and embeddings $r: \mathbf{C} \rightarrow \mathbf{E}$ and $s: \mathbf{D} \rightarrow \mathbf{E}$ satisfying $r \circ f=s \circ g$.

Let $b_{0}>_{\mathbf{B}} \cdots>_{\mathbf{B}} b_{l-1}$ list the atoms of B. For each $k<l$, let $c_{0, k}>_{\mathbf{C}} \cdots>_{\mathbf{C}}$ $c_{m_{k}-1, k}$ list the atoms below $f\left(b_{k}\right)$ in C. Similarly, let $d_{0, k}>_{\mathbf{D}} \cdots>_{\mathbf{D}} d_{n_{k}-1, k}$ list the atoms below $g\left(b_{k}\right)$ in D. In particular,

$$
\sum_{i<m_{k}} \mu_{\mathbf{C}}\left(c_{i, k}\right)=\sum_{j<n_{k}} \mu_{\mathbf{D}}\left(d_{j, k}\right)=\mu_{\mathbf{B}}\left(b_{k}\right) .
$$

For each $k<l$, we define two sequences of positive elements of G by

$$
\begin{aligned}
\mathbf{r}_{k} & =\left(\mu_{\mathbf{C}}\left(c_{0, k}\right), \ldots, \mu_{\mathbf{C}}\left(c_{m_{k}-1, k}\right)\right) \text { and } \\
\mathbf{c}_{k} & =\left(\mu_{\mathbf{D}}\left(d_{0, k}\right), \ldots, \mu_{\mathbf{D}}\left(d_{n_{k}-1, k}\right)\right) .
\end{aligned}
$$

These sequences satisfy the hypotheses of Lemma 4, so we may find a G^{+}-matrix $A_{k}=\left(a_{i, j, k}\right)$ with $\mathbf{r}_{A_{k}}=\mathbf{r}_{k}$ and $\mathbf{c}_{A_{k}}=\mathbf{c}_{k}$.

Intuitively, we identify the atoms of B with the collection of these matrices, the atoms of C with the rows of these matrices, and the atoms of D with their columns. Towards that end, let E be the Boolean algebra generated by some set of distinct atoms indexed as $\left\{e_{i j k}: k<l, i<n_{k}\right.$, and $\left.j<m_{k}\right\}$. Let $\mu_{\mathbf{E}}$ be the unique positive G-valued measure on E such that for all $i, j, k, \mu_{\mathbf{E}}\left(e_{i j k}\right)=a_{i, j, k}$; such a measure exists by the nonnegativity of G.

We define embeddings $r: C \rightarrow E$ and $s: D \rightarrow E$ as the unique maps satisfying

$$
r\left(c_{i, k}\right)=\bigvee_{j} e_{i j k} \text { and } s\left(d_{j, k}\right)=\bigvee_{i} e_{i j k}
$$

Certainly

$$
\begin{aligned}
& \mu_{\mathbf{E}}\left(r\left(c_{i, k}\right)\right)=\sum_{j} \mu_{\mathbf{E}}\left(e_{i j k}\right)=\sum_{j} a_{i, j, k}=\mu_{\mathbf{C}}\left(c_{i, k}\right) \text { and } \\
& \mu_{\mathbf{E}}\left(s\left(d_{j, k}\right)\right)=\sum_{i} \mu_{\mathbf{E}}\left(e_{i j k}\right)=\sum_{i} a_{i, j, k}=\mu_{\mathbf{D}}\left(d_{j, k}\right),
\end{aligned}
$$

by the conditions on the row and column sums of the G^{+}-matrices A_{k}. Furthermore, for all $k<l$,

$$
r \circ f\left(b_{k}\right)=s \circ g\left(b_{k}\right)=\bigvee_{i, j} e_{i, j, k}
$$

so $r \circ f=s \circ g$. To complete the proof of AP, it remains only to define an ordering of the atoms of E so that r and s preserve the orders of the atoms of C and D.

We desire to order the union of the sets of leading atoms $X=\left\{e_{i 0 k}: k<\right.$ l and $\left.i<m_{k}\right\}$ and $Y=\left\{e_{0 j k}: k<l\right.$ and $\left.j<n_{k}\right\}$ in a way that induces an order
compatible with the orders $<_{\mathbf{C}}$ and $<_{\mathbf{D}}$. Once we have ordered the leading atoms, we may order the remaining atoms however we like, so long as they are smaller than the leading atoms.

Let X be ordered by $e_{i 0 k}<_{X} e_{i^{\prime} 0 k^{\prime}} \Leftrightarrow c_{i, k}<_{\mathbf{C}} c_{i^{\prime}, k^{\prime}}$. Similarly, let Y be ordered by $e_{0 j k}<_{Y} e_{0 j^{\prime} k^{\prime}} \Leftrightarrow d_{j, k}<_{\mathbf{D}} d_{j^{\prime}, k^{\prime}}$. Notice that these two orderings coincide on $X \cap Y=\left\{e_{00 k}: k<l\right\}$ since

$$
e_{00 k}<_{X} e_{00 k^{\prime}} \Leftrightarrow c_{0, k}<_{\mathbf{C}} c_{0, k^{\prime}} \Leftrightarrow b_{k}<_{\mathbf{B}} b_{k}^{\prime} \Leftrightarrow d_{0, k}<_{\mathbf{D}} d_{0, k^{\prime}} \Leftrightarrow e_{00 k}<_{Y} e_{00 k^{\prime}} .
$$

Thus, by the amalgamation property for finite linear orderings, there is an order on $X \cup Y$ extending both $<_{X}$ and $<_{Y}$, so we have completed the proof.

Remark 7. Continuing the analysis of Example 2, the assumption that G^{+}has no minimal element is necessary. Indeed, suppose that g is the minimal element of G^{+}. Let $\mathbf{B}=\left\langle B, \wedge, \vee, 0,1, \mu_{\mathbf{B}},<_{\mathbf{B}}\right\rangle$, where B is the 4 -element Boolean algebra with atoms $\left\{b_{0}, b_{1}\right\}, \mu_{\mathbf{B}}\left(b_{i}\right)=2 g$ for all $i<2$, and $b_{0}<_{\mathbf{B}} b_{1}$. Let $\mathbf{C}=$ $\left\langle C, \wedge, \vee, 0,1, \mu_{\mathbf{C}},<_{\mathbf{C}}\right\rangle$ and $\mathbf{D}=\left\langle D, \wedge, \vee, 0,1, \mu_{\mathbf{D}},<_{\mathbf{D}}\right\rangle$, where C and D both equal the 16 -element Boolean algebra with atoms $\left\{a_{0}, a_{1}, a_{2}, a_{3}\right\}, \mu_{\mathbf{C}}\left(a_{i}\right)=\mu_{\mathbf{D}}\left(a_{i}\right)=g$ for all $i<4$. Finally, the orders are given by

$$
\begin{aligned}
& a_{0}<_{\mathbf{C}} a_{1}<_{\mathbf{C}} a_{2}<_{\mathbf{C}} a_{3}, \\
& a_{0}<_{\mathbf{D}} \\
& a_{2}<_{\mathbf{D}} \\
& a_{1}<_{\mathbf{D}}
\end{aligned} a_{3} .
$$

Let $f: \mathbf{B} \rightarrow \mathbf{C}$ and $g: \mathbf{B} \rightarrow \mathbf{D}$ be the embeddings extending $f\left(b_{0}\right)=g\left(b_{0}\right)=a_{0} \vee a_{1}$, $f\left(b_{1}\right)=g\left(b_{1}\right)=a_{2} \vee a_{3}$. A moment's reflection reveals that the minimality of g and the particular orders on \mathbf{C} and \mathbf{D} prevent the amalgamation of these structures.

