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A BOUND ON MEASURABLE CHROMATIC NUMBERS OF

LOCALLY FINITE BOREL GRAPHS

Clinton T. Conley and Benjamin D. Miller

Abstract. We show that the Baire measurable chromatic number of every locally finite

Borel graph on a non-empty Polish space is strictly less than twice its ordinary chromatic
number, provided this ordinary chromatic number is finite. In the special case that the

connectedness equivalence relation is hyperfinite, we obtain the analogous result for the
µ-measurable chromatic number.

Introduction

A graph on a set X is an irreflexive, symmetric set G ⊆ X ×X. Such a graph is
locally finite if every point has only finitely many G-neighbors. A (κ-)coloring of such
a graph is a function c : X → κ with the property that ∀(x, y) ∈ G c(x) 6= c(y). The
chromatic number of such a graph, or χ(G), is the least cardinal κ for which there is
such a κ-coloring. Note that any locally finite graph may be colored with countably
many colors. In this paper, we consider measurable analogs of these notions, a subject
of increasing interest over the last few years due to its connections with descriptive
set-theoretic dichotomies and dynamical properties of group actions.

A subset of a topological space is Borel if it is in the σ-algebra generated by the
underlying topology, and a function between topological spaces is Borel if pre-images
of open sets are Borel. A Polish space is a separable topological space which admits
a compatible complete metric. While it is hardly standard terminology, we use the
term Polish cardinal to refer to a cardinal equipped with a Polish topology. Thus the
Polish cardinals are exactly those in the set {0, 1, . . . ,ℵ0, 2ℵ0}, with the two infinite
cardinals supporting various topologies.

When X is a Polish space, the Borel chromatic number of G, or χB(G), is the least
Polish cardinal κ for which there is a Borel κ-coloring of G. The Baire measurable
chromatic number of G, or χBM (G), is the least Polish cardinal κ for which there
is a Baire measurable κ-coloring of G. And given a Borel probability measure µ on
X, the µ-measurable chromatic number of G, or χµ(G), is the least Polish cardinal
κ for which there is a µ-measurable κ-coloring of G. Mirroring the situation for
ordinary chromatic numbers, [5, Proposition 4.5] implies that χB(G) ≤ ℵ0 whenever
G is a locally finite Borel graph. In this paper, we study what further bounds may
be gleaned when χ(G) is finite.

We say that an equivalence relation is countable if all of its equivalence classes are
countable, and finite if all of its equivalence classes are finite. We say that a Borel
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equivalence relation E on a Polish space X is hyperfinite if there is an increasing
sequence (En)n∈N of finite Borel equivalence relations on X whose union is E.

Ruling out a strong connection between ordinary and measurable chromatic num-
bers, [1, Corollary 0.8] yields a locally finite Borel graph G and a Borel probability
measure µ on a Polish space for which χ(G) = 2 and χµ(G) = ℵ0. However, the
equivalence relation EG generated by G is quite complicated, in the sense that it is
not hyperfinite. In §1, we show that this is no accident.

Theorem A. Suppose that X is a non-empty Polish space, G is a locally finite Borel
graph on X for which χ(G) < ℵ0 and EG is hyperfinite, and µ is a Borel probability
measure on X. Then there is a µ-conull EG-invariant Borel set C ⊆ X such that
χB(G � C) ≤ 2χ(G)− 1, thus χµ(G) ≤ 2χ(G)− 1.

It is natural to ask whether the analogous result holds for Baire category. As [3,
Theorem 6.2] implies that every countable Borel equivalence relation is hyperfinite on
a comeager invariant Borel set, such an analog would necessarily imply its general-
ization in which the assumption that EG is hyperfinite is removed, thereby ruling out
any analog of [1, Corollary 0.8] for Baire category. Perhaps it is then a surprise that,
after establishing a technical preliminary result concerning Borel chromatic numbers
in §2, we do indeed establish such an analog in §3.

Theorem B. Suppose that X is a non-empty Polish space and G is a locally finite
Borel graph on X for which χ(G) < ℵ0. Then there is a comeager EG-invariant Borel
set C ⊆ X such that χB(G � C) ≤ 2χ(G)− 1, thus χBM (G) ≤ 2χ(G)− 1.

In §4, we show that these results imply their generalizations to analytic graphs.

1. Measurable chromatic numbers

In this section, we obtain our bound on µ-measurable chromatic numbers in terms
of ordinary chromatic numbers.

Before getting to our primary result, we first note a well-known assumption under
which the Borel and ordinary chromatic numbers agree. A reduction of an equivalence
relation E on X to an equivalence relation F on Y is a function π : X → Y with the
property that x1 E x2 ⇐⇒ π(x1) F π(x2) for all x1, x2 ∈ X, and a Borel equivalence
relation is smooth if it is Borel reducible to equality on 2N.

The Lusin-Novikov uniformization theorem for Borel subsets of the plane with
countable vertical sections (see, for example, [4, Theorem 18.10]) easily implies that
every finite Borel equivalence relation is smooth. We will only need the special case
of the following fact for finite Borel equivalence relations, whose natural proof is
somewhat simpler, in particular avoiding the need for the uniformization theorem
for Borel subsets of the plane with compact vertical sections (see, for example, [4,
Theorem 28.8]).

Proposition 1. Suppose that X is a Polish space and G is a locally countable Borel
graph on X for which EG is smooth. Then χ(G) = χB(G).

Proof. Fix a Borel reduction π : X → 2N of EG to equality, and appeal to the uni-
formization theorem for Borel subsets of the plane with countable vertical sections
to see that π(X) is Borel, and to obtain Borel functions πn : π(X) → X such that
graph(π−1) =

⋃
n∈N graph(πn).
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As the function c : X → N given by

c(x) = min{n ∈ N | x = (πn ◦ π)(x)}

is a Borel coloring of G, it follows that χB(G) ≤ ℵ0. In particular, if χ(G) is infinite,
then ℵ0 ≤ χ(G) ≤ χB(G) ≤ ℵ0, from which it follows that χ(G) = χB(G) = ℵ0. We
can therefore assume that χ(G) is finite.

Given a point y ∈ π(X), we say that a function d : N → χ(G) codes a coloring of
G on π−1(y) if the following conditions hold:

(1) ∀m,n ∈ N (πm(y) = πn(y) =⇒ d(m) = d(n)).
(2) ∀m,n ∈ N (πm(y) G πn(y) =⇒ d(m) 6= d(n)).

Observe now that the set

R = {(y, d) ∈ π(X)× χ(G)N | d codes a coloring of G on π−1(y)}

is Borel and has compact vertical sections, so the uniformization theorem for Bor-
el subsets of the plane with compact vertical sections yields a Borel uniformization
e : π(X) → χ(G)N of R. Then the function f(x) = e(π(x))(c(x)) is a Borel χ(G)-
coloring of G. �

For each n ∈ N, a G-path of length n is a sequence (xi)i≤n with ∀i < n xi G xi+1.
The graph metric induced by G on a connected component of G is given by

dG(x, y) = min{n ∈ N | there is a G-path from x to y of length n}.

A G-ray is a sequence (xn)n∈N such that ∀n ∈ N xn G xn+1. A G-barrier for a point
x is a set Y ⊆ X with the property that every injective G-ray emanating from x
intersects Y .

Theorem 2. Suppose that X is a non-empty Polish space, G is a locally finite Borel
graph on X for which χ(G) < ℵ0 and EG is hyperfinite, and µ is a Borel probability
measure on X. Then there is a µ-conull EG-invariant Borel set C ⊆ X such that
χB(G � C) ≤ 2χ(G)− 1, thus χµ(G) ≤ 2χ(G)− 1.

Proof. We can assume that χ(G) ≥ 2. Fix real numbers εn > 0 with
∑
n∈N εn < ∞,

as well as an increasing sequence (En)n∈N of finite Borel equivalence relations on X
whose union is EG. As G is locally finite, it follows that if k ∈ N and x ∈ X, then
dG([x]Ek

, [x]EG
\ [x]E`

) ≥ 5 for all sufficiently large ` ∈ N. In particular, this ensures
that if k ∈ N and ε > 0, then µ({x ∈ X | dG([x]Ek

, [x]EG
\ [x]E`

) ≤ 4}) ≤ ε for all
sufficiently large ` ∈ N. This implies that one can recursively construct kn ∈ N such
that µ({x ∈ X | dG([x]Ekn

, [x]EG
\ [x]Ekn+1

) ≤ 4}) ≤ εn for all n ∈ N.

Define Cn = {x ∈ X | ∀m ≥ n dG([x]Ekm
, [x]EG

\ [x]Ekm+1
) ≥ 5}, as well as

An = {x ∈ X | 2 ≤ dG(x, [x]EG
\ [x]Ekn+1

) ≤ 3} ∩Cn+1. The latter definition ensures

that if x ∈ An, then every G-neighbor of x is Ekn+1
-related to x. In particular, it

follows that every connected component of G � An is contained in an equivalence class
of Ekn+1 , and is therefore finite, so Proposition 1 yields a Borel χ(G)-coloring cn of
G � An. Set Bn = {x ∈ An | cn(x) > 0}, B =

⋃
n∈NBn, and C =

⋂
n∈N

⋃
m≥n Cm.

Note that if m < n and x ∈ Am, then x ∈ Cn, from which it follows that
dG(x, [x]EG

\ [x]Ekn+1
) ≥ 5. In particular, it follows that if y is a G-neighbor of

x, then dG(y, [y]EG
\ [y]Ekn+1

) ≥ 4, hence y /∈ An. This implies that no point in Bm
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is G-related to a point in Bn, for distinct m,n ∈ N, hence
⋃
n∈N cn � Bn is a Borel

(χ(G)− 1)-coloring of G � B.
As µ(∼Cn) ≤

∑
m≥n εm, it follows that µ(

⋃
m≥n Cm) = 1, thus µ(C) = 1. The

Ekn -invariance of Cn ensures that C is EG-invariant.
Observe that if x ∈ C, then there exists n ∈ N for which x ∈ Cn, in which case

any G-path from x to [x]EG
\ [x]Ekn+1

necessarily passes through two G-related points

of An, and therefore through a point of Bn. In particular, it follows that B is a
G-barrier for C. König’s Lemma therefore ensures that every connected component
of G � (C \B) is finite, so Proposition 1 yields a Borel χ(G)-coloring of G � (C \B).
Finally, amalgamating the (χ(G) − 1)-coloring of G � B and the χ(G)-coloring of
G � (C \B) yields a Borel (2χ(G)−1)-coloring of G � C, and amalgamating this with
a χ(G)-coloring of G � ∼C yields a µ-measurable (2χ(G)− 1)-coloring of G. �

The hypothesis that G is locally finite is essential: The graph G on 2N relating
two elements if they differ in exactly one coordinate satisfies χ(G) = 2 (since one can
fix a function φ : 2N/EG → 2N choosing a point out of each EG-class, and color by
the parity of |supp(c)4 supp(φ([c]EG

))|, where supp(c) = {n ∈ N | c(n) = 1}), but
χBM (G) = χµ(G) = 2ℵ0 when µ is the (1/2, 1/2)-product measure.

2. Intersection graphs

In this section, we obtain bounds on Borel chromatic numbers of very specific sorts
of graphs.

The intersection graph on a family X of subsets of a set X consists of all pairs
of distinct sets in X with non-empty intersection. When X is the collection of finite
subsets of a Polish space X, one obtains a Borel structure on X via its identification
with the family of sequences in X<N (which is itself a Polish space, for example, by [4,
Proposition 3.3]) which are strictly increasing with respect to some fixed Borel linear
ordering of X (which exists, for example, by [4, Theorem 15.6]). Given in addition an

equivalence relation E on X, we use [X]<ℵ0E to denote the family of all finite subsets
of X which are contained in a single E-class, with the Borel structure it inherits as a
Borel subset of the space of finite subsets of X.

Proposition 3 (Kechris-Miller). Suppose that X is a Polish space and E is a count-
able Borel equivalence relation on X. Then there is a Borel ℵ0-coloring of the inter-
section graph on [X]<ℵ0E .

Proof. Fix an enumeration (Un)n∈N of a base for X. By the uniformization theorem
for Borel subsets of the plane with countable sections, there is a Borel function asso-
ciating with each finite set S ⊆ X an enumeration (xSi )i<|S| of S, in addition to Borel
functions fn : X → X with the property that E =

⋃
n∈N graph(fn).

Define c : [X]<ℵ0E → N<N by letting c(S) be the lexicographically least sequence
(kSi )i<|S| of natural numbers such that the sets UkSi are pairwise disjoint and xSi ∈ UkSi
for all i < |S|. Define d : [X]<ℵ0E → N<(N×N) by letting d(S) be the lexicographically
least sequence (kSi,j)i,j<|S| such that xSi = fkSi,j (xSj ) for all i, j < |S|.

It remains to show that c × d is a coloring of the intersection graph on [X]<ℵ0E .
Suppose, towards a contradiction, that S and T are neighbors with the property that
(c × d)(S) = (c × d)(T ). Set n = |S| = |T | and fix j, k < n such that xSj = xTk . As
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the sets of the form Vi = UkSi = UkTi are pairwise disjoint, it follows that j = k. But

then xSi = fkSi,j (xSj ) = fkTi,j (xTj ) = xTi for all i < n, thus S = T , a contradiction. �

We next turn our attention to a somewhat more general collection of graphs. Let
([X]<ℵ0E )<N

E denote the family of all finite sequences of sets in [X]<ℵ0E which are con-
tained in the same E-class.

Proposition 4. Suppose that X is a Polish space and E is a countable Borel equiv-
alence relation on X. Then there is a Borel ℵ0-coloring of the graph on ([X]<ℵ0E )<N

E

consisting of all pairs of distinct non-empty sequences whose zeroth entries have non-
empty intersection.

Proof. We use the following general lemma. Recall that if R ⊆ X×X and S ⊆ Y ×Y ,
a map φ : X → Y is a homomorphism from R to S if x0 R x1 =⇒ φ(x0) S φ(x1).
We denote by ∆(X) the diagonal of X, namely {(x, x) | x ∈ X} ⊆ X ×X.

Lemma 5. Suppose that X and Y are Polish spaces, and G and H are graphs on
X and Y respectively. If χB(H) is countable and there is a countable-to-one Borel
homomorphism from G to H ∪∆(Y ), then χB(G) is countable.

Proof. Fix a countable-to-one Borel homomorphism φ : X → Y from G to H ∪∆(Y )
and a Borel coloring c : Y → N of H. Using the uniformization theorem for Bor-
el subsets of the plane with countable vertical sections we may fix Borel functions
fn : Y → X such that φ−1(y) = {fn(y) | n ∈ N}. Define a Borel function d : X → N
by d(x) = min{n ∈ N | x = (fn ◦ φ)(x)}. Finally, (c ◦ φ)× d is our desired countable
coloring of G. �

The proposition then follows by observing that projection onto the zeroth coordi-
nate is a countable-to-one homomorphism from the graph in question to the union of
the diagonal and the intersection graph. �

3. Baire measurable chromatic numbers

In this section, we obtain our bound on Baire measurable chromatic numbers in
terms of ordinary chromatic numbers.

Given r ∈ R and Y ⊆ X, the closed dG-ball of radius r around Y is given by
BdG(Y, r) = {x ∈ X | ∃y ∈ Y dG(x, y) ≤ r}.

Theorem 6. Suppose that X is a non-empty Polish space and G is a locally finite
Borel graph on X for which χ(G) < ℵ0. Then there is a comeager EG-invariant Borel
set C ⊆ X such that χB(G � C) ≤ 2χ(G)− 1, thus χBM (G) ≤ 2χ(G)− 1.

Proof. We can assume that χ(G) ≥ 2. We say that a sequence (xn)n∈N goes through
a set Y ⊆ X if each point xn of the sequence is in Y . We will recursively construct a
sequence (Bs)s∈N<N of Borel subsets of X satisfying the following:

(1) No point of any Bs is G-related to a point of any Bsa(n) \Bs.
(2) Every connected component of every G � Bs is a finite set on which the

chromatic number of G is at most χ(G)− 1.
(3) For all s ∈ N<N and x ∈ X, some Bsa(n) is a G-barrier for x.
(4) There is no injective G-ray through BdG(Bs, 2).
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We begin by setting B∅ = ∅.
Suppose now that s ∈ N<N and Bs has already been defined. Let Xs denote the

set of all triples (x, S, T ) ∈ X× [X]<ℵ0EG
× [X]<ℵ0EG

, where S, T ⊆ [x]EG
, S is a G-barrier

for x, no point of S is G-related to a point of Bs, χ(G � S) ≤ χ(G)− 1, and there is
no G-path from BdG(S, 2) to ∼T through BdG(Bs ∪ S, 2). Let Gs denote the graph on
Xs in which two distinct triples (x, S, T ) and (x′, S′, T ′) are related if T and T ′ have
non-empty intersection. By Proposition 4, there is a Borel coloring cs : Xs → N of
Gs. The uniformization theorem for Borel subsets of the plane with countable vertical
sections ensures that for all n ∈ N, the set

Bsa(n) = Bs ∪
⋃
{S ∈ [X]<ℵ0EG

| ∃x ∈ [S]EG
∃T ⊆ [S]EG

cs(x, S, T ) = n}

is Borel.

The definition of Xs ensures that no point of Bs is G-related to a point of any
Bsa(n) \ Bs, and the definition of Gs implies that if cs(x, S, T ) = cs(x

′, S′, T ′) but
(x, S, T ) 6= (x′, S′, T ′), then T ∩ T ′ = ∅. The definition of Xs then ensures that
S ∩ S′ = ∅ and no point of S is G-related to a point of S′, and therefore that every
connected component of every G � Bsa(n) is a finite set on which the chromatic
number of G is at most χ(G)− 1.

To see that for all x ∈ X, some Bsa(n) is a G-barrier for x, we observe first that
there is a finite G-barrier R ⊆ [x]EG

\ BdG(Bs, 2) for x. Towards this end, note that
if x /∈ BdG(Bs, 2), then the set R = {x} is as desired. Otherwise, the definition of
Bs ensures that there are no infinite G-rays through the set Y of points y for which
there is a G-path from x to y through BdG(Bs, 2), so König’s lemma ensures that Y
is finite, thus we can take R to be the set of G-neighbors of points of Y which are not
themselves in Y .

Fix a coloring cR : BdG(R, 1) → χ(G) of the restriction of G to BdG(R, 1), and
define S = {y ∈ BdG(R, 1) | c(y) > 0}, noting that S is a G-barrier for x, no point
of S is G-related to a point of Bs, and χ(G � S) ≤ χ(G) − 1. One more application
of the inexistence of injective G-rays through BdG(Bs, 2) and König’s Lemma then
yields a finite set T ⊆ [x]EG

for which there is no G-path from BdG(S, 2) to ∼T through
BdG(Bs ∪ S, 2). It follows that (x, S, T ) ∈ Xs, in which case Bsa(n) is a G-barrier for
x, where n = cs(x, S, T ).

To see that there is no injective G-ray through any BdG(Bsa(n), 2), note that if
(xi)i∈N is such a G-ray, then the inexistence of injective G-rays through BdG(Bs, 2)
ensures that dG(xi, Bsa(n) \ Bs) ≤ 2 for some i ∈ N. Fix (x, S, T ) ∈ Xs such that
cs(x, S, T ) = n and dG(xi, S) ≤ 2. We will show that xi ∈ T for all i ∈ N, contradict-
ing the fact that T is finite. Suppose, towards a contradiction, that there is a G-path
from xi to ∼T through BdG(Bsa(n), 2). As the definition of Xs ensures that there is
no such path through BdG(Bs∪S, 2), it follows that there exists (x′, S′, T ′) ∈ Xs such
that (x, S, T ) 6= (x′, S′, T ′), c(x′, S′, T ′) = n, and BdG(S′, 2)∩T 6= ∅. As the definition
of Xs implies that BdG(S′, 2) ⊆ T ′, this contradicts the definition of Gs.

This completes the description of the recursive construction. For each p ∈ NN,
define Bp =

⋃
n∈NBp�n and Cp = {x ∈ X | ∀y ∈ [x]EG

Bp is a G-barrier for y}.
König’s lemma and the uniformization theorem for Borel subsets of the plane with
countable vertical sections imply that the set of pairs (p, x) ∈ NN×X for which x ∈ Cp
is Borel.
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Lemma 7. For comeagerly many p ∈ NN, the set Cp is comeager.

Proof. The uniformization theorem for Borel subsets of the plane with countable
vertical sections yields Borel functions fn : X → X with EG =

⋃
n∈N graph(fn).

Given x ∈ X, condition (3) ensures that for all n ∈ N, every s ∈ N<N has an
extension t ∈ N<N such that Bt is a G-barrier for fn(x). It follows that the set of
p ∈ NN such that Bp is a G-barrier for fn(x) is dense and open, thus the set of p ∈ NN

such that Bp is a G-barrier for all y ∈ [x]EG
is comeager. As the set of (p, x) ∈ NN×X

for which x ∈ Cp has the Baire property, the Kuratowski-Ulam quantifier exchange
theorem for comeager subsets of the plane (see, for example, [4, Theorem 8.41]) gives
the desired result. �

Fix a sequence p ∈ NN for which Cp is comeager, and set B = Bp and C = Cp.
Conditions (1) and (2), along with Proposition 1, yield a Borel (χ(G) − 1)-coloring
of G � B, and the fact that B is a G-barrier for every point of C, together with
Proposition 1, gives a Borel χ(G)-coloring of G � (C \B). As in the proof of Theorem
2, we may then amalgamate the colorings to get a Borel (2χ(G) − 1)-coloring of
G � C, and then amalgamate the result with a χ(G)-coloring of G � ∼C to get a Baire
measurable (2χ(G)− 1)-coloring of G. �

4. Analytic graphs

In this final section, we show that our earlier results generalize to analytic graphs.
The horizontal sections of a set R ⊆ X × Y are given by Ry = {x ∈ X | x R y},
and the vertical sections of a set R ⊆ X × Y are given by Rx = {y ∈ Y | x R y}.
A property P of subsets of a Polish space Y is Π1

1-on-Σ1
1 if whenever X is a Polish

space and R ⊆ X×Y is analytic, the set {x ∈ X | Rx satisfies P} is co-analytic. The
first reflection theorem ensures that every analytic set satisfying such a property P
is contained in a Borel set satisfying P (see, for example, [4, Theorem 35.10]). This
will be our primary tool in the arguments to come.

The generalizations of Propositions 3 and 4 to analytic equivalence relations are
consequences of the following well-known fact.

Proposition 8. Suppose that X is a Polish space and E is a countable analytic
equivalence relation on X. Then there is a countable Borel equivalence relation F on
X such that E ⊆ F .

Proof. By a result of Mazurkiewicz-Sierpiński, the property of being countable is Π1
1-

on-Σ1
1 (see, for example, [4, Theorem 29.19]), thus so too is the property (of subsets

of X ×X) that every horizontal and vertical section is countable. The first reflection
theorem therefore yields a Borel set R ⊆ X ×X, all of whose horizontal and vertical
sections are countable, such that E ⊆ R.

Define S = {(x, y) ∈ X ×X | x R y or y R x}. By the uniformization theorem for
Borel subsets of the plane with countable vertical sections, there are Borel functions
fn : X → X such that S =

⋃
n∈N graph(fn). For each sequence s ∈ N<N, let fs denote

the composition of the functions of the form fs(i), for i < |s|. As graphs of Borel
functions are themselves Borel (see, for example, [4, Proposition 12.4]), it follows that
the equivalence relation F =

⋃
s∈N<N graph(fs) is as desired. �
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Similarly, the generalization of Theorem 6 to analytic graphs is a consequence of
the following fact, along with the observation that if G ⊆ H are graphs, then every
coloring of H is a coloring of G, and every EH -invariant set is EG-invariant.

Proposition 9. Suppose that X is a Polish space and G is a locally finite analytic
graph on X. Then there is a locally finite Borel graph H on X, with χ(G) = χ(H),
such that G ⊆ H.

Proof. A directed graph on X is an irreflexive set H ⊆ X×X. The notions of coloring
and chromatic number extend to directed graphs in the obvious way. Note that, by
the axiom of choice, if n ∈ N is a natural number, then there is an n-coloring of G
if and only if for every finite set Y ⊆ X, there is an n-coloring of G � Y (see [2]).
In particular, it follows that the property of being a directed graph with chromatic
number at most n is Π1

1-on-Σ1
1. As the property of having finite horizontal and

vertical sections is also Π1
1-on-Σ1

1, it follows that there is a Borel directed graph K on
X, with the same chromatic number as G, as well as with finite horizontal and vertical
sections, such that G ⊆ K. Then the graph H = {(x, y) ∈ X ×X | x K y or y K x}
is as desired. �

To see that our use of the axiom of choice was unnecessary, note that the proof
of Theorem 6 actually yields a comeager EG-invariant Borel set C ⊆ X such that
χB(G � C) ≤ sup{χ(G � Y ) | Y is a finite subset of X}. But even without the axiom
of choice, the idea behind the proof of Proposition 9 gives a locally finite Borel graph
H ⊇ G on X such that the quantities sup{χ(G � Y ) | Y is a finite subset of X} and
sup{χ(H � Y ) | Y is a finite subset of X} agree.

It remains to discuss the generalization of Theorem 2. Before getting to this,
however, we first note the following.

Proposition 10. Suppose that X is a Polish space and E is a finite analytic equiv-
alence relation on X. Then there is a finite Borel equivalence relation F on X such
that E ⊆ F .

Proof. As the property of being finite is Π1
1-on-Σ1

1, so too is the property (of subsets
of X ×X) that every horizontal and vertical section of the transitive closure of the
symmetrization of the set in question is finite. The first reflection theorem therefore
yields a Borel set R ⊆ X ×X, with the latter property, such that E ⊆ R.

Define S = {(x, y) ∈ X ×X | x R y or y R x}. By the uniformization theorem for
Borel subsets of the plane with countable vertical sections, there are Borel functions
fn : X → X such that S =

⋃
n∈N graph(fn). For each sequence s ∈ N<N, let fs denote

the composition of the functions of the form fs(i), for i < |s|. As graphs of Borel
functions are themselves Borel, it follows that the relation F =

⋃
s∈N<N graph(fs) is

as desired. �

An analytic equivalence relation E on X is hyperfinite if there is an increasing
sequence (En)n∈N of finite analytic equivalence relations on X whose union is E. The
generalization of Theorem 2 to analytic graphs is a consequence of Proposition 9, the
following fact, and the observation that if G ⊆ H are graphs, then every coloring of
H is a coloring of G, and every EH -invariant set is EG-invariant.
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Proposition 11. Suppose that X is a Polish space and E is a hyperfinite analytic
equivalence relation on X. Then there is a hyperfinite Borel equivalence relation F
on X such that E ⊆ F .

Proof. Fix an increasing sequence (En)n∈N of finite analytic equivalence relations on
X whose union is E. By Proposition 10, there are finite Borel equivalence relations
Fn on X such that En ⊆ Fn. Then we obtain an increasing sequence of finite Borel
equivalence relations by setting F ′n =

⋂
m≥n Fm. As En ⊆ F ′n, it follows that the

equivalence relation F =
⋃
n∈N F

′
n is as desired. �
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