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DESCRIPTIVE SET-THEORETIC DICHOTOMY
THEOREMS AND LIMITS SUPERIOR

C.T. CONLEY, D. LECOMTE, AND B.D. MILLER

Abstract. Suppose that X is a Hausdorff space, I is an ideal on
X, and (Ai)i∈ω is a sequence of analytic subsets of X. We inves-
tigate the circumstances under which there exists I ∈ [ω]ω with⋂

i∈I Ai /∈ I. We focus on Laczkovich-style characterizations and
ideals associated with descriptive set-theoretic dichotomies.

Warning. This is a preliminary draft of our paper. Several argu-
ments still need to be written out, there are no doubt many typos
remaining, and our terminology is less than perfect. Please email
corrections and suggestions to glimmeffros@gmail.com.

1. Introduction

Given an infinite set I ⊆ ω, we use [I]ω to denote the family of
infinite subsets of I. The limit superior of a sequence (Ai)i∈I is given
by limsupi∈I Ai =

⋂
i∈ω

⋃
j∈I\iAj = {x | ∃∞i ∈ I (x ∈ Ai)}.

Suppose that X is a Hausdorff space. A set A ⊆ X is analytic if it
is the continuous image of a closed subset of ωω. A set B ⊆ X is Borel
if it is in the σ-algebra generated by the topology of X.

Given a pointclass Γ of subsets of Hausdorff spaces, we say that an
ideal I on X has the Γ limsup property if for all sequences (Bi)i∈ω
of subsets of X in Γ, there exists I ∈ [ω]ω with limsupi∈I Bi ∈ I or⋂
i∈I Bi /∈ I. Note that if X is analytic, then every Borel subset of X

is analytic, so if I has the analytic limsup property, then I has the
Borel limsup property.

Given a sequence (Xi)i∈I of subsets of X, let I � (Xi)i∈I denote the
ideal consisting of all sets Y ⊆ X with the property that ∀J ∈ [I]ω∃K ∈
[J ]ω (limsupk∈K Xk ∩Y ∈ I). A straightforward diagonalization shows
that if I is a σ-ideal, then so too is I � (Xi)i∈I . It is easy to check
that I has the Γ limsup property if and only if for all sequences (Bi)i∈ω
of subsets of X in Γ, the existence of I ∈ [ω]ω with

⋂
i∈I Bi /∈ I is

governed by whether X /∈ I � (Bi)i∈ω.
1
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As part of the original foray into these notions, Laczkovich showed
that the ideal of countable subsets of an uncountable Polish space has
the Borel limsup property [13]. Komjáth later proved that such ideals
have the analytic limsup property [12]. Building on subsequent work of
Balcerzak-G la̧b [1], Gao-Jackson-Kieftenbeld have recently established
the more general fact that for all co-analytic equivalence relations on
Polish spaces, the ideal of sets which intersect only countably many
equivalence classes has the analytic limsup property [4].

These are perhaps the best known examples of ideals associated with
descriptive set-theoretic dichotomy theorems. It is therefore quite nat-
ural to investigate the family of descriptive set-theoretic dichotomy
theorems whose associated ideals have the analytic limsup property.
Of course, the sheer abundance of such theorems makes this a rather
daunting task.

Fortunately, recent work [15, 16, 17, 18] indicates that many descrip-
tive set-theoretic dichotomy theorems are consequences of a handful of
dichotomy theorems concerning chromatic numbers of definable graphs.
In particular, many Silver-style dichotomy theorems can be obtained
from the Kechris-Solecki-Todorcevic characterization of the class of an-
alytic graphs with countable Borel chromatic number [11].

In §2, we give a classical proof that ideals arising from a natural spe-
cial case of the Kechris-Solecki-Todorcevic dichotomy theorem [11] have
the analytic limsup property. Using this, we give a classical proof of
the Gao-Jackson-Kieftenbeld theorem [4], answering a question of Gao.
We also prove that ideals associated with Feng’s special case of the
open coloring axiom [3], the Friedman-Harrington-Kechris characteri-
zation of separable quasi-metric spaces [10], van Engelen-Kunen-Miller-
style characterizations of vector spaces which are unions of countably
many low-dimensional subspaces [2], and the Friedman-Shelah charac-
terization of separable linear quasi-orders [19] have the analytic limsup
property. Generalizing a result of Balcerzak-G la̧b [1], we show that
products of these ideals with analytically principal ideals have the an-
alytic limsup property. Generalizing results of Balcerzak-G la̧b [1] and
Gao-Jackson-Kieftenbeld [4], we show that these ideals satisfy a para-
metric strengthening of the analytic limsup property. We also discuss
generalizations to κ-Souslin structures.

In §3, we establish that non-trivial ideals arising from the locally
countable special case of the Kechris-Solecki-Todorcevic dichotomy the-
orem [11] do not have the compact limsup property. Using this, we
show that non-trivial ideals associated with the Harrington-Kechris-
Louveau dichotomy theorem [6] do not have the compact limsup prop-
erty, answering another question of Gao. We also characterize the
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ideals associated with the Lusin-Novikov uniformization theorem (see
§18 of [9]) which have the analytic limsup property, and we show that
products of ideals which have analytic perfect antichains with analyt-
ically non-principal ideals do not have the analytic limsup property.
This implies that products of non-trivial ideals associated with de-
scriptive set-theoretic dichotomy theorems do not have the analytic
limsup property, and negatively answers Balcerzak-G la̧b’s question [1]
as to whether the product of the trivial ideal on an uncountable Po-
lish space with the ideal of countable subsets of an uncountable Polish
space has the analytic limsup property, which gives rise to ideals asso-
ciated with the Harrington-Marker-Shelah Borel-Dilworth theorem [7]
which do not have the analytic limsup property.

2. Positive results

A graph on X is an irreflexive symmetric set G ⊆ X × X. The
restriction of G to a set A ⊆ X is given by G � A = G ∩ (A× A). We
say that A is G-discrete if G � A = ∅. It is a well-known corollary of
the first separation theorem that if G is analytic, then every G-discrete
analytic set is contained in a G-discrete Borel set.

We say that a graph G on X has the limsup property if for all se-
quences (Ai)i∈ω of subsets of X, sets S, s ∈ S, and R ⊆ XS, there
exists I ∈ [ω]ω such that projs(R ∩ limsupi∈I A

S
i ) is G-discrete or

projs(R ∩
⋂
i∈I A

S
i ) is not G-discrete.

Proposition 1. Suppose that X is a set and G is a graph on X with
transitive complement. Then G has the limsup property.

Proof. Suppose that (Ai)i∈ω is a sequence of subsets of X, S is a set,
s ∈ S, R ⊆ XS, and projs(R ∩ limsupi∈I A

S
i ) is not G-discrete for all

I ∈ [ω]ω. Fix x ∈ R ∩ limsupi∈ω A
S
i , I ∈ [ω]ω with x ∈

⋂
i∈I A

S
i , and

y, z ∈ R ∩ limsupi∈I A
S
i with (y(s), z(s)) ∈ G. As the complement of

G is transitive, it follows that (w(s), x(s)) ∈ G for some w ∈ {y, z}.
Fix J ∈ [I]ω with w ∈

⋂
j∈J A

S
j , and note that w, x ∈ R∩

⋂
j∈J A

S
j and

(w(s), x(s)) ∈ G, so projs(R ∩
⋂
j∈J A

S
j ) is not G-discrete, thus G has

the limsup property.

Proposition 2. Suppose that X is a set and G is a graph on X which
can be written as the union of countably many rectangles. Then G has
the limsup property.

Proof. Fix sets Bk, Ck ⊆ X such that G =
⋃
k∈ω Bk ×Ck, and suppose

that (Ai)i∈ω is a sequence of subsets of X, S is a set, s ∈ S, and
R ⊆ XS. We will recursively construct sets Ik ∈ [ω]ω for k ∈ ω,
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beginning with I0 = ω. If Bk ∩ projs(R ∩ limsupi∈Ik A
S
i ) = ∅, then

we set Ik+1 = Ik. Otherwise, we fix xk ∈ R ∩ limsupi∈Ik A
S
i with

xk(s) ∈ Bk, as well as Ik+1 ∈ [Ik]
ω such that xk ∈

⋂
i∈Ik+1

ASi .

Fix I ∈ [ω]ω with |I \ Ik| < ℵ0 for all k ∈ ω, and suppose that
projs(R ∩ limsupi∈I A

S
i ) is not G-discrete. Then there exist x, y ∈

R ∩ limsupi∈I A
S
i with (x(s), y(s)) ∈ G and k ∈ ω with (x(s), y(s)) ∈

Bk × Ck, so xk is defined. Fix J ∈ [Ik+1]ω with y ∈
⋂
j∈J A

S
j . Then

xk, y ∈ R ∩
⋂
j∈J A

S
j and (xk(s), y(s)) ∈ G, so projs(R ∩

⋂
j∈J A

S
j ) is

not G-discrete, thus G has the limsup property.

A Y -coloring of G is a function c : X → Y which sends G-related
points of X to distinct points of Y . More generally, a homomorphism
from a graph G on X to a graph H on Y is a function π : X → Y
which sends G-related points of X to H-related points of Y .

We use IG to denote the σ-ideal generated by the family of G-discrete
Borel subsets of X. It is easy to see that X ∈ IG if and only if there is
a Borel ω-coloring of G.

Theorem 3. Suppose that X is a Hausdorff space and G is an analytic
graph on X which has the limsup property. Then IG has the analytic
limsup property.

Proof. Fix sn ∈ 2n for n ∈ ω with ∀s ∈ 2<ω∃n ∈ ω (s v sn), and set

G0 = {(snaiax, snaıax) | i ∈ 2, n ∈ ω, and x ∈ 2ω}.
As noted by Kechris-Solecki-Todorcevic, a straightforward Baire cate-
gory argument shows that there is no Baire measurable ω-coloring of
G0 [11]. It is therefore sufficient to show that if (Ai)i∈ω is a sequence
of analytic subsets of X with X /∈ IG � (Ai)i∈ω, then for some I ∈ [ω]ω

there is a continuous homomorphism from G0 to G �
⋂
i∈I Ai.

We can assume that G and the sets along (Ai)i∈ω are non-empty.
Fix continuous surjections ϕG : ωω → G, ϕi : ω

ω → Ai for i ∈ ω, and
ϕX : ωω → dom(G), where dom(G) = {x ∈ X | Gx 6= ∅}.

A global (n-)approximation is a sequence p = (Ip, up, vp, (wpi )i∈Ip),
where Ip ∈ [ω]n, up : 2n → ωn, vp : 2<n → ωn, and wpi : 2n → ωn for
i ∈ Ip. Fix an enumeration (pk)k∈ω of the set of all such sequences.

An extension of a global m-approximation p is a global n-approxim-
ation q which satisfies the following conditions:

• Ip ⊆ Iq.
• ∀sp ∈ 2m∀sq ∈ 2n (sp v sq =⇒ up(sp) v uq(sq)).
• ∀tp ∈ 2m∀tq ∈ 2n

((tp v tq and n−m = |tq| − |tp|) =⇒ vp(tp) v vq(tq)).
• ∀i ∈ Ip∀sp ∈ 2m∀sq ∈ 2n (sp v sq =⇒ wpi (sp) v wqi (sq)).
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When n = m+ 1, we say that q is a one-step extension of p.
A local (n-)approximation is a sequence l = (I l, f l, gl, (hli)i∈Il), where

I l ∈ [ω]n, f l : 2n → ωω, gl : 2<n → ωω, and hli : 2n → ωω for i ∈ I l,
which satisfies the following conditions:

• ∀k ∈ n∀t ∈ 2n−(k+1)

(ϕG ◦ gl(t) = (ϕX ◦ f l(ska0at), ϕX ◦ f l(ska1at))).
• ∀s ∈ 2n∀i ∈ I l (ϕX ◦ f l(s) = ϕi ◦ hli(s)).

We say that a local n-approximation l is compatible with a global n-
approximation p if the following conditions are satisfied:

• I l = Ip.
• ∀s ∈ 2n (up(s) v f l(s)).
• ∀t ∈ 2<n (vp(t) v gl(t)).
• ∀s ∈ 2n∀i ∈ I l (wpi (s) v hli(s)).

Let In denote the σ-ideal of sets R ⊆ X2n for which there exists
B ∈ IG such that ∀x ∈ R∃s ∈ 2n (x(s) ∈ B). We say that a global
n-approximation p is good if the set

Rp
n = {ϕX ◦ f l | l is compatible with p}

is not in In � (A2n

i )i∈ω.

Lemma 4. Suppose that n ∈ ω and p is a good global n-approximation.
Then p has a good one-step extension.

Proof of lemma. As the complement of
⋃
i∈ω\Ip A

2n

i is in In � (A2n

i )i∈ω,

there exists m ∈ ω \ Ip with A2n

m ∩ Rp
n /∈ In � (A2n

i )i∈ω. For all i ∈ 2

and x ∈ X2n+1
, define xi ∈ X2n by xi(s) = x(sai) for s ∈ 2n, and set

S = {x ∈ A2n+1

m | x0, x1 ∈ Rp
n and (x0(sn), x1(sn)) ∈ G}.

Sublemma 5. The set S is contained in
⋃
{Rq

n+1 | q is a one-step
extension of p}.

Proof of sublemma. Suppose that x ∈ S. Then there are local n-
approximations l0, l1 ∈ Rp

n with xi = ϕX ◦ f li for all i ∈ 2. Fix
y ∈ ωω such that ϕG(y) = (x0(sn), x1(sn)), as well as ys ∈ ωω such
that ϕm(ys) = x(s) for all s ∈ 2n+1. Let l denote the local (n + 1)-
approximation given by I l = Ip ∪ {m}; f l(sai) = f li(s) for i ∈ 2 and

s ∈ 2n; gl(∅) = y; gl(tai) = gli(t) for i ∈ 2 and t ∈ 2<n; hli(s
aj) = h

lj
i (s)

for i ∈ Ip, j ∈ 2, and s ∈ 2n; and hlm(s) = ys for s ∈ 2n+1. Let q de-
note the unique one-step extension of p with which l is compatible, and
observe that x = ϕX ◦ l, thus x ∈ Rq

n+1.

Sublemma 6. The set S is not in In+1 � (A2n+1

i )i∈ω.
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Proof of sublemma. Fix I ∈ [ω]ω with A2n

m ∩ Rp
n ∩ limsupj∈J A

2n

j /∈ In
for all J ∈ [I]ω, and suppose, towards a contradiction, that S ∈ In+1 �
(A2n+1

i )i∈ω. Fix J ∈ [I]ω with S ∩ limsupj∈J A
2n+1

j ∈ In+1 and a Borel

set B ∈ IG with ∀x ∈ S ∩ limsupj∈J A
2n+1

j ∃s ∈ 2n+1 (x(s) ∈ B). Set

T = {x ∈ A2n

m ∩Rp
n | ∀s ∈ 2n (x(s) /∈ B)},

and observe that T ∩ limsupk∈K A
2n

k /∈ In for all K ∈ [J ]ω. As G
has the limsup property, there exists K ∈ [J ]ω such that projsn(T ∩⋂
k∈K A

2n

k ) is not G-discrete. Fix x ∈
⋂
k∈K A

2n+1

k such that x0, x1 ∈ T
and (x0(sn), x1(sn)) ∈ G. Then x ∈ S and x(s) /∈ B for all s ∈ 2n+1,
which contradicts the defining property of B.

Sublemmas 5 and 6 ensure the existence of a one-step extension q of
p with Rq

n+1 /∈ In+1 � (A2n+1

i )i∈ω, in which case q is as desired.

Our assumption that X /∈ IG � (Ai)i∈ω ensures that the unique
global 0-approximation p0 is good, in which case Lemma 4 yields global
n-approximations pn = (In, un, vn, (wni )i∈In) such that pn+1 is a good
one-step extension of pn for all n ∈ ω.

Set I =
⋃
n∈ω I

n and define continuous functions ψi : 2ω → ωω for
i ∈ I and ψkG : 2ω → ωω for k ∈ ω, as well as ψX : 2ω → ωω, by
setting ψi(x) = limn→ω w

n
i (x � n), ψkG(x) = limn→ω v

k+n+1(x � n), and
ψX(x) = limn→ω u

n(x � n). We will show that the map π = ϕX ◦ ψX is
the desired homomorphism from G0 to G �

⋂
i∈I Ai.

To see that π is a homomorphism fromG0 toG, it is sufficient to show
that ϕG ◦ ψkG(x) = (ϕX ◦ ψX(sk

a0ax), ϕX ◦ ψX(sk
a1ax)) for all k ∈ ω

and x ∈ 2ω. By continuity of ϕG and ϕX , it is enough to show that for
every open neighborhood U of ψkG(x) and every open neighborhood V of
(ψX(sk

a0ax), ψX(sk
a1ax)), there exist z ∈ U and (z0, z1) ∈ V with the

property that ϕG(z) = (ϕX(z0), ϕX(z1)). Fix n ∈ ω sufficiently large
that Nvk+n+1(x�n) ⊆ U and Nuk+n+1(ska0a(x�n))×Nuk+n+1(ska1a(x�n)) ⊆ V .

Fix a local approximation l compatible with pk+n+1. Then z = gl(x �
n), z0 = f l(sk

a0a(x � n)), and z1 = f l(sk
a1a(x � n)) are as desired.

To see that π(2ω) ⊆
⋂
i∈I Ai, it is sufficient to show that ϕi ◦ψi(x) =

ϕX ◦ ψX(x) for all i ∈ I and x ∈ 2ω. By continuity of ϕi and ϕX , it
is enough to show that for every open neighborhood U of ψi(x) and
every open neighborhood V of ψX(x), there exist z0 ∈ U and z1 ∈ V
with ϕi(z0) = ϕX(z1). Fix n ∈ ω such that i ∈ In, Nwni (x�n) ⊆ U , and
Nun(x�n) ⊆ V . Fix a local approximation l compatible with pn. Then
z0 = hli(x � n) and z1 = f l(x � n) are as desired.
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Remark 7. Our proof of Theorem 3 is based on the classical proof
of the Kechris-Solecki-Todorcevic dichotomy theorem [11] appearing in
[15], and yields the stronger fact that exactly one of the following holds:

(1) The set X is in IG � (Ai)i∈ω.
(2) There is a continuous homomorphism ϕ : 2ω →

⋂
i∈I Ai from G0

to G, for some I ∈ [ω]ω.

We do not emphasize this stronger form because it is a straightfor-
ward consequence of Theorem 3 and the Kechris-Solecki-Todorcevic
dichotomy theorem [11]. Similar remarks apply to all of the ideals
appearing in this section.

We now establish the results of Komjáth [12] and Laczkovich [13]:

Theorem 8 (Komjáth, Laczkovich). Suppose that X is an analytic
Hausdorff space. Then the ideal of countable subsets of X has the an-
alytic limsup property.

Proof. Let I denote the ideal of countable subsets of X and set G =
∆(X)c. In light of Proposition 1 and Theorem 3, the desired result
follows from the observation that I = IG.

More generally, we obtain the Gao-Jackson-Kieftenbeld theorem [4]:

Theorem 9 (Gao-Jackson-Kieftenbeld). Suppose that X is a Haus-
dorff space and E is a co-analytic equivalence relation on X. Then the
ideal of sets on which E has only countably many equivalence classes
has the analytic limsup property.

Proof. Let I denote the σ-ideal generated by the family of Borel sets
which are contained in a single E-class, and let J denote the ideal of
sets on which E has only countably many classes. As Silver’s dichotomy
theorem [20] implies that I and J agree on analytic sets, it is sufficient
to show that I has the analytic limsup property. Set G = Ec. In light
of Proposition 1 and Theorem 3, the desired result follows from the
observation that I = IG.

Remark 10. As noted in [15], Silver’s theorem [20] follows from the
Kechris-Solecki-Todorcevic dichotomy theorem [11], the observation
that I = IG, and a simple Baire category argument. In particular,
despite its use of Silver’s theorem [20], the above argument is classical.
Similar remarks apply to all of the results of this section.

An open coloring on X is a function c : [X]2 → 2 for which c−1({1})
is open. A set A ⊆ X is i-homogeneous if c � [A]2 has constant value i.
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Theorem 11. Suppose that X is an analytic Hausdorff space and c is
an open coloring on X. Then the σ-ideal generated by the family of
0-homogeneous sets has the analytic limsup property.

Proof. Let I denote the σ-ideal generated by the family of 0-homoge-
neous Borel sets, and let J denote the σ-ideal generated by the family
of 0-homogeneous sets. As Feng’s theorem [3] implies that I and J
agree on analytic sets, it is sufficient to show that I has the analytic
limsup property. Set G = {(x, y) ∈ X × X | c({x, y}) = 1}. In light
of Proposition 2 and Theorem 3, the desired result follows from the
observation that I = IG.

A quasi-metric on X is a function d : X×X → [0,∞) with d(x, x) =
0, d(x, y) = d(y, x), and d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

Theorem 12. Suppose that X is a Hausdorff space and d is a quasi-
metric on X such that d−1[ε,∞) is analytic for arbitrarily small positive
real numbers ε. Then the ideal of sets on which d is separable has the
analytic limsup property.

Proof (Sketch). Let I denote the σ-ideal generated by the family of
Borel sets on which d is separable, and let J denote the ideal of sets on
which d is separable. As the Friedman-Harrington-Kechris dichotomy
theorem for quasi-metrics [10] implies that I and J agree on analytic
sets, it is enough to show that I has the analytic limsup property.

Fix a sequence (εk)k∈ω of positive real numbers with the property
that εk+1 ≤ εk/2 and the graph Hk = d−1[εk,∞) is analytic for all
k ∈ ω. It is straightforward to check that I =

⋂
k∈ω IHk .

By following the proof of Proposition 1, one can establish that for all
k ∈ ω, sequences (Ai)i∈ω of subsets of X, sets S, s ∈ S, and R ⊆ XS,
there exists I ∈ [ω]ω such that projs(R ∩ limsupi∈I A

S
i ) is Hk-discrete

or projs(R ∩
⋂
i∈I A

S
i ) is not Hk+1-discrete.

Suppose now that (Ai)i∈ω is a sequence of analytic subsets of X. By
recursively following the proof of Theorem 3, one can establish that
there is a decreasing sequence of sets Ik ∈ [ω]ω for k ∈ ω such that
limsupi∈Ik Ai ∈ IHk or

⋂
i∈Ik Ai /∈ IHk+1

for all k ∈ ω.
Clearly we can assume that limsupi∈Ik Ai ∈ IHk for all k ∈ ω. Fix

a set I ∈ [ω]ω such that |I \ Ik| < ℵ0 for all k ∈ ω, and observe that
limsupi∈I Ai ∈

⋂
k∈ω IHk , which completes the proof of the theorem.

Suppose that D : P(X) → ω ∪ {∞}. The span of a set A ⊆ X is
given by spanA = {x ∈ X | D(A) = D(A ∪ {x})}. We say that D is a
notion of dimension if it satisfies the following conditions:

(1) ∀x ∈ X (D({x}) ≤ 1).
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(2) ∀A ⊆ B ⊆ X (D(A) ≤ D(B)).
(3) ∀A ⊆ X (D(A) = D(spanA)).

We refer to D(A) as the dimension of A, and we say that a finite subset
of X is dependent if its dimension is strictly less than its cardinality.

Theorem 13. Suppose that X is a Hausdorff space and D is a notion
of dimension on X such that the family of dependent finite sets is co-
analytic. Then for all k ∈ ω, the σ-ideal generated by the family of sets
of dimension at most k has the analytic limsup property.

Proof (Sketch). Let I denote the σ-ideal generated by the family of
Borel sets of dimension at most k, and let J denote the ideal of sets
of dimension at most k. As the natural generalization of the van En-
gelen-Kunen-Miller style theorems [2] implies that I and J agree on
analytic sets, it is sufficient to show that I has the analytic limsup
property. Let G denote the (k+ 1)-dimensional hypergraph consisting
of all independent sets of size k + 1. It is easy to check that I = IG.

By following the proof of Proposition 1, one can establish that for
all sequences (Ai)i∈ω of subsets of X, sets S, s ∈ S, and R ⊆ XS,
there exists I ∈ [ω]ω such that projs(R∩ limsupi∈I A

S
i ) is G-discrete or

projs(R ∩
⋂
i∈I A

S
i ) is not G-discrete.

Suppose now that (Ai)i∈ω is a sequence of analytic subsets of X. By
following the proof of Theorem 3, one can establish that there exists
I ∈ [ω]ω such that limsupi∈I Ai ∈ IG or

⋂
i∈I Ai /∈ IG, which completes

the proof of the theorem.

Theorem 14. Suppose that X is a Hausdorff space and D is a notion
of dimension on X such that the family of dependent finite sets is co-
analytic. Then the σ-ideal generated by the family of sets of finite
dimension has the analytic limsup property.

Proof (Sketch). Let I denote the σ-ideal generated by the family of
finite-dimensional Borel sets, and let J denote the ideal of finite-
dimensional sets. As the natural generalization of the van Engelen-Ku-
nen-Miller style theorems [2] implies that I and J agree on analytic
sets, it is enough to show that I has the analytic limsup property.

For each k ∈ ω, let Gk denote the hypergraph on X consisting of all
finite independent sets of cardinality at least k. It is easy to check that
I =

∨
k∈ω IGk .

Just as in the proof of Theorem 13, one can establish that for all
k ∈ ω, sequences (Ai)i∈ω of subsets of X, sets S, s ∈ S, and R ⊆ XS,
there exists I ∈ [ω]ω such that projs(R ∩ limsupi∈I A

S
i ) is Gk-discrete

or projs(R ∩
⋂
i∈I A

S
i ) is not Gk-discrete.
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Suppose now that (Ai)i∈ω is a sequence of analytic subsets of X. By
following the proof of Theorem 3, one can establish that there exists
I ∈ [ω]ω such that limsupi∈I Ai ∈

∨
k∈ω IGk or

⋂
i∈I Ai /∈

∨
k∈ω IG,

which completes the proof of the theorem.

A reduction of a set R ⊆ X × X to a set S ⊆ Y × Y is a function
π : X → Y with the property that (x0, x1) ∈ R⇐⇒ (π(x0), π(x1)) ∈ S
for all x0, x1 ∈ X. A graph has the hereditary limsup property if every
graph which is reducible to it has the limsup property.

Proposition 15. Suppose that X is a set and G is a graph on X with
transitive complement. Then G has the hereditary limsup property.

Proof. This follows from Proposition 1 and the observation that tran-
sitivity is closed under Borel reducibility.

Remark 16. A similar argument goes through for graphs which can
be written as countable unions of rectangles.

A reduction of an ideal I on X to an ideal J on Y is a function
π : X → Y with the property that A ∈ I ⇐⇒ π(A) ∈ J for all
A ⊆ X. An ideal I has the hereditary analytic limsup property if
every ideal on a Hausdorff space which is Borel reducible to it has the
analytic limsup property.

Theorem 17. Suppose that X is a Hausdorff space and G is an ana-
lytic graph on X with the hereditary limsup property. Then IG has the
hereditary analytic limsup property.

Proof. Suppose that Y is a Hausdorff space, I is an ideal on Y , and
π : Y → X is a Borel reduction of I to IG. Let H denote the graph on
X given by H = {(y0, y1) ∈ Y × Y | (π(y0), π(y1)) ∈ G}. Then π is a
reduction of H to G, thus a reduction of IH to IG, hence I = IH . As
H has the limsup property, Theorem 3 ensures that I has the analytic
limsup property.

In particular, we obtain the following strengthening of the Gao-Jack-
son-Kieftenbeld theorem [4]:

Theorem 18. Suppose that X is a Hausdorff space and E is a co-
analytic equivalence relation on X. Then the ideal of sets on which E
has only countably many equivalence classes has the hereditary analytic
limsup property.

Proof. Simply repeat the proof of Theorem 9 with Proposition 15 and
Theorem 17 in place of Proposition 1 and Theorem 3.
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Remark 19. Similar arguments yield analogous results for all of the
ideals we have discussed thus far.

The product of an ideal I on X with an ideal J on Y is given by

I ∗ J = {A ⊆ X × Y | {x ∈ X | Ax /∈ J } ∈ I}.
We say that J is analytically principal if there is a non-empty analytic
set A ⊆ Y such that J = P(Ac).

Proposition 20. Suppose that X and Y are Hausdorff spaces, I is an
ideal on X which has the hereditary analytic limsup property, and J
is an analytically principal ideal on Y . Then I ∗ J has the hereditary
analytic limsup property.

Proof. Suppose that Z is a Hausdorff space, K is an ideal on Z, and
π : Z → X × Y is a Borel reduction of K to I ∗ J . Fix a non-empty
analytic set A ⊆ Y with J = P(Ac). Set B = π−1(X × A). Then K
has the analytic limsup property if and only if K � B has the analytic
limsup property. As π � B is a reduction of K � B to I ∗ (J � A)
and projX is a reduction of I ∗ (J � A) to I, it follows that K has the
analytic limsup property, thus the product I ∗ J has the hereditary
analytic limsup property.

In particular, we obtain the following generalization of Example 13
of Balcerzak-G la̧b [1]:

Theorem 21. Suppose that X and Y are Hausdorff spaces, E is a co-
analytic equivalence relation on X, I is the ideal of sets which intersect
only countably many E-classes, and J is an analytically principal ideal
on Y . Then I ∗ J has the hereditary analytic limsup property.

Proof. This follows from Theorem 18 and Proposition 20.

Remark 22. Similar arguments yield analogous results for all of the
ideals we have discussed thus far.

Suppose that R is a linear quasi-order on X. The open interval
determined by x and y is given by (x, y)R = {z ∈ X | x <R z <R y}.
Define IR = {(x, y) ∈ X ×X | (x, y)R 6= ∅}. We say that a set A ⊆ X
is dense in a set I ⊆ IR if A ∩ (x, y)R 6= ∅ for all (x, y) ∈ I.

Theorem 23. Suppose that X is a Hausdorff space and R is a linear
co-analytic quasi-order on X. Then the ideal of sets I ⊆ IR which have
countable dense sets has the hereditary analytic limsup property.

Proof. By the Harrington-Marker-Shelah characterization of linear qua-
si-orders [7] and the fact that the ideal of countable subsets of an an-
alytic Hausdorff space has the hereditary analytic limsup property, it
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is enough to show that if α ∈ ω1, X = 2α, and R is the lexicographic
ordering, then there is a Borel reduction of the ideal in question to the
countable ideal on 2<α. Towards this end, let δ(x, y) denote the least
β ∈ α such that x(β) 6= y(β), and note that the function π : IR → 2<α

given by π(x, y) = x � δ(x, y) = y � δ(x, y) is as desired.

Following Balcerzak-G la̧b [1], we say that an ideal I on X has the
parametric analytic limsup property if for all Hausdorff spaces Y and
all sequences (Ai)i∈ω of analytic subsets of Y ×X, there exists I ∈ [ω]ω

such that limsupi∈I(Ai)y ∈ I for some y ∈ Y or
⋂
i∈I(Ai)y /∈ I for

perfectly many y ∈ Y .

Proposition 24. Suppose that X is a Hausdorff space and G is an
analytic graph on X for which IG has the analytic limsup property.
Then IG has the parametric analytic limsup property.

Proof. An ideal I on X is co-analytic on analytic if for every Haus-
dorff space Y and analytic set R ⊆ Y × X, the set C = {y ∈ Y |
Ry ∈ I} is co-analytic. The proof of the Kechris-Solecki-Todorcevic
dichotomy theorem [11] easily implies that IG is co-analytic on analytic.
As Proposition 9 of Balcerzak-G la̧b [1] ensures that every co-analytic
on analytic ideal with the analytic limsup property has the parametric
analytic limsup property, the proposition follows.

In particular, we obtain a classical proof of the following:

Theorem 25 (Gao-Jackson-Kieftenbeld). Suppose that X is a Haus-
dorff space and E is a co-analytic equivalence relation on X. Then the
ideal of sets on which E has only countably many equivalence classes
has the parametric analytic limsup property.

Proof. This follows from the proof of Theorem 9 and Proposition 24.

Remark 26. Similar arguments yield analogous results for all of the
ideals we have discussed thus far.

Remark 27. Given an ideal J on a Hausdorff space Y , we say that
an ideal I on X has the J -parametric analytic limsup property if for
all sequences (Ai)i∈ω of analytic subsets of Y ×X, there exists I ∈ [ω]ω

such that limsupi∈I(Ai)y ∈ I for some y ∈ Y or
⋂
i∈I(Ai)y /∈ I for a

J -positive set of y ∈ Y . We seem to have an argument establishing the
analog of Proposition 24 for the J -parametric analytic limsup prop-
erty, where J is any σ-ideal associated with a descriptive set-theoretic
dichotomy theorem, but it must still be checked.
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Throughout this section, we have assumed ACω. Even this small frag-
ment of choice can typically be avoided by replacing the sort of argu-
ment we used in the proof of Theorem 3 with one based on derivatives.
Strangely enough, in our context the derivative argument seems to re-
quire even more choice: the existence of a function ϕ : ([ω]ω)<ω1 → [ω]ω

with the property that ϕ((Iβ)β∈α) ⊆∗ Iβ for all β ∈ α ∈ ω1 and ⊆∗-
decreasing sequences (Iβ)β∈α ∈ ([ω]ω)α.

Although few would worry about our need for ACω, the real difficulty
becomes apparent when one tries to use our arguments to establish
analogous results for κ-Souslin structures, in which case ACκ is required.
As ACω1 is already inconsistent with AD, this rules out the possibility of
using our arguments to establish natural analogs of our results in mod-
els of determinacy. While it seems likely that Kanovei-style arguments
[8] can be used to obtain such results, we have yet to verify this.

On the positive side, our results do generalize to κ-Souslin structures
in models of ZFC. By placing appropriate restrictions on κ, we obtain
particularly natural generalizations. The tower number is the least
cardinal t for which there is a ⊆∗-decreasing sequence in ([ω]ω)t with
no ⊆∗-lower bound.

Theorem 28. Work in ZFC. Suppose that κ < t, X is a Hausdorff
space, and E is a co-κ-Souslin equivalence relation on X. Then the
ideal of sets on which E has at most κ-many equivalence classes has
the κ-Souslin limsup property.

Remark 29. Similar results go through for all of the ideals we have
discussed thus far.

3. Negative results

We say that (G, I) has the Γ anti-limsup property if there is a se-
quence (Bi)i∈ω of subsets of X in Γ such that limsupi∈I Bi /∈ I and⋂
i∈I Bi is G-discrete for all I ∈ [ω]ω. Let Gfin denote the graph on
P(ω) given by Gfin = {(x, y) ∈ P(ω)× P(ω) | 0 < |x ∩ y| < ℵ0}.

Proposition 30. Suppose that I is the meager ideal on P(ω). Then
(Gfin, I) has the clopen anti-limsup property.

Proof. For each i ∈ ω, set Ui = {x ∈ [ω]ω | i ∈ x}. A straightforward
Baire category argument shows that if I ∈ [ω]ω, then limsupi∈I Ui is
comeager. As

⋂
i∈I Ui is clearly Gfin-discrete, the proposition follows.

Proposition 31. Suppose that I is the meager ideal on 2ω. Then
(E0 \∆(2ω), I) has the clopen anti-limsup property.
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Proof. For each i ∈ ω, set Ui = {x ∈ 2ω | ∃s ∈ 2i (sas v x)}. A
straightforward Baire category argument shows that if I ∈ [ω]ω, then
limsupi∈I Ui is comeager. As

⋂
i∈I Ui is clearly a partial transversal of

E0, the proposition follows.

Remark 32. Let I denote the family of subsets of 2ω which are null
with respect to the probability measure on 2ω given by µ(Ns) = 1/2|s|

for s ∈ 2<ω. Then (E0 \∆(X), I) does not have the clopen anti-limsup
property. Moreover, it appears to be the case that for every sequence
(Bi)i∈ω of µ-measurable subsets of 2ω there exists I ∈ [ω]ω such that
limsupi∈I Bi ∈ I or E0 �

⋂
i∈I Bi is non-smooth, although our argument

must still be checked.

We say that G has the Γ anti-limsup property if there is a sequence
(Bi)i∈ω of subsets of X in Γ such that limsupi∈I Bi /∈ IG and

⋂
i∈I Bi

is G-discrete for all I ∈ [ω]ω. Note that if G has the Γ anti-limsup
property, then IG does not have the Γ limsup property.

Proposition 33. The graph Gfin has the clopen anti-limsup property.

Proof. As a straightforward Baire category argument shows that every
Gfin-discrete set with the Baire property is meager, the desired result
follows from Proposition 30.

Given graphs G ⊆ H on X, we say that the pair (G,H) has the
Γ anti-limsup property if there is a sequence (Bi)i∈ω of subsets of X
in Γ such that limsupi∈I Bi /∈ IG and

⋂
i∈I Bi is H-discrete for all

I ∈ [ω]ω. Note that if (G,H) has the Γ anti-limsup property, then so
too does every graph which lies between G and H. Recall that E0 is
the equivalence relation on 2ω given by

xE0y ⇐⇒ ∃m ∈ ω∀n ∈ ω \m (x(m) = y(m)).

Proposition 34. The pair of graphs (G0, E0 \ ∆(2ω)) has the clopen
anti-limsup property.

Proof. As a straightforward Baire category argument shows that every
G0-discrete set with the Baire property is meager, the desired result
follows from Proposition 31.

In particular, we obtain the following:

Theorem 35. Suppose that X is a Hausdorff space and G is a locally
countable analytic graph on X which does not have a Borel ω-coloring.
Then G has the compact anti-limsup property.

Proof. By Theorem 4.1 of Lecomte-Miller [14], there is a locally count-
able Borel graph H on 2ω, with G0 ⊆ H ⊆ E0, for which there is a
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continuous embedding of H into G. As Proposition 34 ensures that H
has the compact anti-limsup property, so too does G.

A bi-analytic equivalence relation E on X is smooth if it is Borel
reducible to ∆(2ω). The following fact answers a question of Gao:

Theorem 36. Suppose that X is a Hausdorff space and E is a non-
smooth bi-analytic equivalence relation on X. Then the σ-ideal gener-
ated by the family of Borel sets on which E is smooth does not have
the compact limsup property.

Proof. By the Harrington-Kechris-Louveau dichotomy theorem [6], we
can assume that E = E0. Set G = E0\∆(2ω) and observe that IG is the
σ-ideal generated by the family of Borel sets on which E is smooth. As
Proposition 34 ensures that G has the compact anti-limsup property,
the theorem follows.

Along similar lines, we have the following:

Theorem 37. Suppose that X is a Hausdorff space, E is an analytic
equivalence relation on X, F is a relatively co-analytic subequivalence
relation of E of index 2, and there is no Borel E-complete set on which
E and F agree. Then the σ-ideal generated by the family of Borel sets
on which E and F agree does not have the compact limsup property.

Proof. Define ϕ : 2ω → 2ω by ϕ(x)(n) =
∑

m∈n x(m) (mod 2), and let
F0 be the equivalence relation on 2ω given by xF0y ⇐⇒ ϕ(x)E0ϕ(y).
By an unpublished result of Louveau, there is a continuous embedding
of (E0, F0) into (E,F ), so we can assume that (E0, F0) = (E,F ). Set
G = E0\F0, and observe that IG is the σ-ideal generated by the family
of Borel sets on which E and F agree. As Proposition 34 ensures that
G has the compact anti-limsup property, the theorem follows.

The following simple observation will allow us to show that a number
of other ideals do not have the analytic limsup property:

Proposition 38. Suppose that X and Y are analytic Hausdorff spaces
and X is uncountable. Then there is a sequence (Ai)i∈ω of analytic
subsets of X × Y such that if I ∈ [ω]ω, then Y = limsupi∈I(Ai)x for
perfectly many x ∈ X and |

⋂
i∈I(Ai)x| ≤ 1 for all x ∈ X.

Proof. Fix Borel injections ϕ : S∞ → X and ψ : Y → 2ω, as well as an
enumeration (si)i∈ω of 2<ω. For all i ∈ ω, define Ai ⊆ X × Y by

Ai = {(x, y) ∈ X × Y | ∃τ ∈ S∞ (x = ϕ(τ) and ψ(y) ∈ Nsτ(i))}.
Suppose that I ∈ [ω]ω. To see that Y = limsupi∈I(Ai)x for perfectly
many x ∈ X, observe that if τ ∈ S∞ and there exists J ∈ [ω]ω with
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j∈J 2j ⊆ τ(I), then Y = limsupi∈I(Ai)ϕ(τ). To see that |

⋂
i∈I(Ai)x| ≤

1 for all x ∈ X, observe that if y ∈
⋂
i∈I(Ai)x, then {sτ(i) | i ∈ I} ⊆

{x � n | n ∈ ω}, so
⋂
i∈I(Ai)x ⊆ {y}.

Remark 39. A well-known theorem of Lusin asserts that if X and
Y are Polish spaces and R ⊆ X × Y is Borel, then so too is the set
U = {x ∈ X | |Rx| = 1} (see §18 of [9]), thus in this case the sets Ai
defined in the proof of Proposition 38 are Borel.

As a corollary, we obtain the following:

Theorem 40. Suppose that X and Y are Hausdorff spaces and R ⊆
X × Y is analytic. Then exactly one of the following holds:

(1) The set R has uncountably many uncountable vertical sections.
(2) The ideal of sets A ⊆ R all of whose vertical sections are count-

able has the analytic limsup property.

Proof. To see (1) =⇒ ¬(2), set X ′ = {x ∈ X | |Rx| > ℵ0}. By
Proposition 38 there is a sequence (Ai)i∈ω of analytic subsets of X ′×Y
such that if I ∈ [ω]ω, then Y = limsupi∈I(Ai)x for perfectly many
x ∈ X ′ and |

⋂
i∈I(Ai)x| ≤ 1 for all x ∈ X ′. Set Bi = Ai ∩ R for each

i ∈ ω, and observe that if I ∈ [ω]ω, then limsupi∈I Bi has uncountably
many uncountable vertical sections and every vertical section of

⋂
i∈I Bi

has cardinality at most one, thus the ideal in question does not have
the analytic limsup property.

To see ¬(1) =⇒ (2), suppose that (Ai)i∈ω is a sequence of analytic
subsets of R with the property that for all I ∈ [ω]ω, every vertical
section of

⋂
i∈I Ai is countable. Fix an enumeration (xi)i∈ω of the set

of x ∈ X for which Rx is uncountable and set I0 = ω. Given a set
In ∈ [ω]ω, appeal to Komjáth’s theorem [12] to obtain a set In+1 ∈
[In]ω for which limsupi∈In+1

(Ai)xi is countable. Fix I ∈ [ω]ω such that
|I \ In| < ℵ0 for all n ∈ ω, and observe that every vertical section of
limsupi∈I Ai is countable, thus the ideal in question has the analytic
limsup property.

Remark 41. If X and Y are Polish spaces, then a similar argument
shows that the analogous result goes through with the Borel limsup
property in place of the analytic limsup property.

A perfect antichain for I is a set R ⊆ 2ω ×X such that Rx /∈ I and
Rx ∩Ry = ∅ for all x, y ∈ 2ω. We say that I is Γ non-principal if there
is a subset of X in Γ \ I whose singletons are all in I.

Proposition 42. Suppose that X and Y are analytic Hausdorff spaces,
I is an ideal on X which has an analytic perfect antichain, and J is
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an analytically non-principal ideal on Y . Then the ideal I ∗J does not
have the analytic limsup property.

Proof. Fix an analytic set A ⊆ Y with A /∈ J and {y} ∈ J for all
y ∈ A. By Proposition 38, there is a sequence (Ai)i∈ω of analytic
subsets of 2ω × Y such that if I ∈ [ω]ω, then limsupi∈I Ai has perfectly
many J -positive vertical sections and every vertical section of

⋂
i∈I Ai

is in J . Fix an analytic perfect antichain R for I. For all i ∈ ω, define
Bi ⊆ X × Y by

Bi = {(x, y) ∈ X × A | ∃w ∈ 2ω (x ∈ Rw and y ∈ (Ai)w)}.
Suppose that I ∈ [ω]ω. Then limsupi∈I Bi has an I-positive set of J -
positive vertical sections and every vertical section of

⋂
i∈I Bi is in J ,

so I ∗ J does not have the analytic limsup property.

Remark 43. As ideals associated with descriptive set-theoretic di-
chotomy theorems always have compact perfect antichains, neither
their products with analytically non-principal ideals nor their prod-
ucts with each other have the analytic limsup property.

Remark 44. If X and Y are Polish spaces and the hypotheses on I
and J are replaced with their Borel analogs, then a similar argument
shows that the analogous result goes through with the Borel limsup
property in place of the analytic limsup property.

The following corollary answers a question of Balcerzak-G la̧b [1]:

Proposition 45. Suppose that X and Y are uncountable analytic Hau-
sdorff spaces, I is the trivial ideal on X, and J is the ideal of countable
subsets of Y . Then I ∗ J does not have the analytic limsup property.

Proof. As I has a compact perfect antichain and J is compactly non-
principal, this follows from Proposition 42.

Remark 46. If X and Y are Polish spaces and the hypotheses on I
and J are replaced with their Borel analogs, then a similar argument
shows that the analogous result goes through with the Borel limsup
property in place of the analytic limsup property.

Theorem 9 yields many examples of Borel quasi-orders for which the
σ-ideal generated by the family of Borel chains has the analytic limsup
property. On the other hand, we have the following:

Proposition 47. There is a Borel quasi-order on a Polish space such
that the σ-ideal generated by the family of Borel chains does not have
the Borel limsup property.
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Proof. Let R denote the quasi-order on 2ω × 2ω whose corresponding
strict quasi-order is given by (x0, y0) <R (x1, y1) ⇐⇒ x0 <lex x1. As
the Lusin-Novikov uniformization theorem (see §18 of [9]) implies that
the σ-ideal generated by the family of Borel chains is the product of the
trivial ideal on X with the ideal of countable subsets of Y , the desired
result follows from Remark 46.
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