# Random Discrete Structures 

Prof. Alan Frieze<br>transcribed by Brendan W. Sullivan<br>Carnegie Mellon University

Spring 2013
http://www.math.cmu.edu/ af1p/Teaching/ATIRS/ATIRS.html

## BEGIN 01/14/2013

$H_{n, m, k}$ is a random $k$-uniform hypergraph.
Vertex set is $\{1,2, \ldots, n\}$ and edge set is $\left\{E_{1}, E_{2}, \ldots, E_{m}\right\}$, with $\forall i .\left|E_{i}\right|=k$.
** Something about perfect matchings ${ }^{* * * * *}$
What we really want is $m_{0}$ such that

$$
\begin{array}{ll} 
& m \geq(1+\varepsilon) m_{0} \Longrightarrow \operatorname{Pr}(\cdots) \rightarrow 1 \\
\text { and } \quad m \leq(1-\varepsilon) m_{0} \Longrightarrow \operatorname{Pr}(\cdots) \rightarrow 0
\end{array}
$$

Solved in 1960s.

$$
m=\frac{n}{2}[\log n+c] \Longrightarrow \operatorname{Pr}(\cdots) \approx \mathrm{e}^{-\mathrm{e}^{-c}} \quad(\text { Erdös \& Renyi) }
$$

Shamir \& Schmidt-Pruzan:

$$
k=3 \quad m \gg n^{3 / 2} \Longrightarrow \exists \text { p.m. w.h.p }
$$

$H_{n, r, k}$ is a random $k$-uniform, $r$-regular hypergraph.

JKV: $m \geq K n \log n \Longrightarrow \exists$ p.m. w.h.p.
$K=? ? ?$
Conjecture: $K=\frac{1}{k}$ ???
$H_{0}:=K_{n, k}$ is complete $k$-uniform hypergraph.
Define $H_{0}, H_{1}, H_{2}, \cdots, H_{t}$ by $H_{i+1}=H_{i}-\{$ random edge $\}$, where $t=\binom{n}{k}-K n \log n$.
END 01/14/2013

## BEGIN 01/16/2013

More details here
$H_{k, n}$ is complete $k$-uniform hypergraph.
$e_{1}, e_{2}, \ldots, e_{N=\binom{n}{k}}$ is a random ordering of the edges.
$E_{i}=H_{k, n}-\left\{e_{1}, e_{2}, \ldots, e_{i}\right\}$
$\Phi\left(H_{i}\right)$ is the number of perfect matchings of $H_{i}$
If $i \leq N-K n \log n$, then $\Phi\left(H_{i}\right) \neq 0$ w.h.p. (Note: $K$ is a large constant.)
$\mathcal{F}_{i}$ is set of factors.

$$
\begin{gathered}
\left|\mathcal{F}_{i}\right|=\left|\mathcal{F}_{0}\right| \frac{\left|\mathcal{F}_{1}\right|}{\left|\mathcal{F}_{0}\right|} \cdots \frac{\left|\mathcal{F}_{i}\right|}{\left|\mathcal{F}_{i+1}\right|}=\left|\mathcal{F}_{0}\right|\left(1-\xi_{1}\right)\left(1-\xi_{2}\right) \cdots\left(1-\xi_{i}\right) \\
\log \left|\mathcal{F}_{t}\right|=\log \left|F_{0}\right|+\sum_{i=1}^{t} \log \left(1-\xi_{i}\right) \\
\xi_{i}=\frac{\left|\Phi\left(H_{i}-\left\{e_{i}\right\}\right)\right|}{\Phi\left(H_{i}\right)} \\
E\left(\xi_{i}\right)=\frac{n / k}{N-i+1} \leq \frac{1}{K k \log n} \\
\sum \gamma_{i}=\frac{k-1}{k} n \log n-\frac{n}{k} \log \log n+O(n)
\end{gathered}
$$

$w: A \rightarrow[0, \infty), w_{i}(Z)=\Phi\left(H_{i}-Z\right)$.

$$
\begin{gathered}
\bar{w}(a)=\frac{1}{|A|} \sum_{a \in A} w(a) \\
\max w(A)=\max _{a \in A} w(a) \\
\operatorname{maxr} w(A)=\frac{\max w(A)}{\bar{w}(A)}
\end{gathered}
$$

$$
\begin{aligned}
\mathcal{C}_{i}=\left\{\max w_{i}\left(V_{k, Y}\right) \leq \max \left\{n^{-(k+1)} \Phi\left(H_{i}\right), 2 \operatorname{med} w_{i}\left(V_{k, Y}\right)\right\} \forall Y \in V_{k-1}\right\} \\
\mathcal{A}_{i} \mathcal{R}_{i} \overline{\mathcal{B}_{i}} \subseteq \underbrace{\left(\mathcal{A}_{i} \mathcal{R}_{i} \overline{\mathcal{C}_{i}}\right)}_{\text {small }} \cup \underbrace{\left(\mathcal{R}_{i} \mathcal{C}_{i} \overline{\mathcal{B}_{i}}\right)}_{\text {small }}
\end{aligned}
$$

$\mathcal{R}_{i} \mathcal{C}_{i} \overline{\mathcal{B}_{i}}: \quad|Y|=k-1 ;$

$$
\# y: w_{i}(Y+y)=\Omega\left(n^{-(k+1)} \Phi\right) \geq \frac{n-k}{2}
$$

