イロト 不得ト イヨト イヨト

Memory Reduction in Iterated Function Systems Closing off (kind of) an avenue of measuring fractal complexity

Brendan W. Sullivan

Carnegie Mellon University Graduate Student Seminar

February 1, 2012

Brendan W. Sullivan

- 1 Background
 - Fractals
 - Applications
 - Iterated Function Systems
- **2** IFS with Memory
 - **1-IFS**
 - Transition Graphs/Matrices
 - Classification
 - 2-IFS and beyond
- 3 Memory Reduction
 - Theory
 - Demonstration
 - Results
 - Conclusions and Future Work

Brendan W. Sullivan

イロト 不得 とくきと くきとう き

Fractals

Definitions

A fractal is ...

- ... a set exhibiting self-similarity.
- ... a set that "looks irregular; but more importantly, after it is magnified it still looks irregular." [1]
- ... "by definition a set for which the Hausdorff-Besicovitch dimension strictly exceeps the topological dimension." [2]

Brendan W. Sullivan

Fractals

Canonical examples

Figure: Simple, iteratively generated fractals

(a) Van Koch curve

(b) Sierpinski triangle (deterministic) (c) Sierpinski triangle (probabilistic)

イロト イポト イヨト イヨト

Brendan W. Sullivan

Dimensional analysis

Let X be a metric space. If $S \subseteq X$ and $d \in [0, \infty)$, the *d*-dimensional Hausdorff measure of S is

 $C_{H}^{d}(S) = \inf\left\{\sum_{i} r_{i}^{d} \mid \exists \text{ cover of } S \text{ by balls with radii } r_{i} > 0\right\}$

and the **Hausdorff dimension** of S is

$$\dim_H(S) = \inf\{d \ge 0 \mid C_H^d(S) = 0$$

The **Lebesgue covering dimension** of a topological space X is the minimum n such that every finite open cover \mathcal{A} of X admits a finite open cover which refines \mathcal{A} in which no point is included in more than n + 1 elements.

Brendan W. Sullivan

(日) (四) (注) (注) (注) (注)

Fractals

Dimensional analysis

Example

Cantor set: Hausdorff dim. $\frac{\ln 2}{\ln 3}$; topological dim. 0

Sierpinski \triangle : Hausdorff dim. $\frac{\ln 3}{\ln 2}$; topological dim. 1

Van Koch curve: Hausdorff dim. $\frac{\ln 3}{\ln 4}$; topological dim. 1

Brendan W. Sullivan

Fractals

Canonical examples

Figure: More complex, iteratively generated fractals

(b) Mandelbrot set growth (c) Julia set

3

イロト 不得ト イヨト イヨト

Brendan W. Sullivan

Figure: Fractals generated by iterated function systems

(a) Shrinking box border

(b) Pointy leaf boxes

(c) Sierpinskitty trifelinegle

(中) (문) (문) (문) (문)

Applications

Nature

э

Brendan W. Sullivan

イロト イヨト イヨト イヨト

Applications

(b) Painting [5]

(c) Music [6] "Wind and Metal" [7]

(日) (四) (王) (王) (王)

Brendan W. Sullivan

Applications

Science and Computing

(a) Anatomy [9]

(b) Graphics [17]

(c) DNA [18]

(ロ) (四) (E) (E)

Brendan W. Sullivan

Formal definition

Let (X, ρ) be a metric space and $T: X \to X$ a function.

Brendan W. Sullivan

Mellon University Graduate Student Seminar

Formal definition

Let (X, ρ) be a metric space and $T: X \to X$ a function.

Definition

We say T is a contraction map iff

 $\exists k \in [0,1). \ \forall a,b \in X. \ \rho(T(x),T(y)) \leq k\rho(x,y)$

Brendan W. Sullivan

Mellon University Graduate Student Semina

イロト 不得 とくきと くきとう き

Iterated Function Systems

Formal definition

Let (X, ρ) be a metric space and $T: X \to X$ a function.

Definition

We say T is a contraction map iff

 $\exists k \in [0,1). \ \forall a, b \in X. \ \rho(T(x), T(y)) \le k\rho(x, y)$

Theorem (Banach Fixed Point)

If (X, ρ) is a complete metric space and $T : X \to X$ a contraction map, then T has exactly one fixed point; i.e.

 $\exists ! \, \hat{x} \in X. \, T(\hat{x}) = \hat{x}$

Brendan W. Sullivan

Formal definition

Definition

An **IFS** is a finite set of contraction maps $\mathcal{T} = \{T_i \mid i = 1, ..., N\}$ on a complete metric space (X, ρ) .

Brendan W. Sullivan

Mellon University Graduate Student Seminau

(日) (四) (전) (전) (전) (전)

Formal definition

Definition

An **IFS** is a finite set of contraction maps $\mathcal{T} = \{T_i \mid i = 1, ..., N\}$ on a complete metric space (X, ρ) .

The Hutchinson Operator H applies an IFS to any subset $S \in \mathcal{P}(X)$ via

 $H(S) = \bigcup_{i=1}^{N} T_i(S)$

Brendan W. Sullivan

Mellon University Graduate Student Seminar

イロト 不得 とくきと くきとう き

イロト 不得 とくきと くきとう き

Iterated Function Systems

Formal definition

Definition

An **IFS** is a finite set of contraction maps $\mathcal{T} = \{T_i \mid i = 1, ..., N\}$ on a complete metric space (X, ρ) .

The Hutchinson Operator H applies an IFS to any subset $S \in \mathcal{P}(X)$ via

$$H(S) = \bigcup_{i=1}^{N} T_i(S)$$

Question: Does H have any "fixed points"?

Brendan W. Sullivan

Iterated Function Systems

Formal definition

Partial Answer:

Theorem (Hutchinson, 1981)

For $X = \mathbb{R}^d$ with the standard metric, every IFS admits a unique compact set $A \subset \mathbb{R}^d$ satisfying H(A) = A.

A is the **attractor** of the IFS and is a fractal.

Brendan W. Sullivan

Iterated Function Systems

Formal definition

Partial Answer:

Theorem (Hutchinson, 1981)

For $X = \mathbb{R}^d$ with the standard metric, every IFS admits a unique compact set $A \subset \mathbb{R}^d$ satisfying H(A) = A.

Proof.

Show that H is a contraction map on K(X), the set of compact subsets of X. Apply Banach Fixed Point.

A is the **attractor** of the IFS and is a fractal.

Brendan W. Sullivan

Background

Formal definition

Constructive approach:

• Choose an initial compact set $S_0 \in K(X)$

▲□▶ ▲圖▶ ▲国▶ ▲国▶ ▲国 ● のへの

Brendan W. Sullivan

Mellon University Graduate Student Seminar

Background

Formal definition

Constructive approach:

- Choose an initial compact set $S_0 \in K(X)$
- Iteratively apply H:

$$S_{i+1} = H(S_0) = T_1(S_i) \cup \cdots \cup T_N(S_i)$$

Brendan W. Sullivan

Mellon University Graduate Student Seminar

(日) (四) (전) (전) (전) (전)

Background

Formal definition

Constructive approach:

- Choose an initial compact set $S_0 \in K(X)$
- Iteratively apply H:

$$S_{i+1} = H(S_0) = T_1(S_i) \cup \cdots \cup T_N(S_i)$$

■ Take limit:

$$A = \lim_{i \to \infty} H^i(S_0)$$

Brendan W. Sullivan

<ロト < 母ト < 書 > < 書 > 美 のへ(

Background

Formal definition

Constructive approach:

- Choose an initial compact set $S_0 \in K(X)$
- Iteratively apply H:

$$S_{i+1} = H(S_0) = T_1(S_i) \cup \cdots \cup T_N(S_i)$$

■ Take limit:

$$A = \lim_{i \to \infty} H^i(S_0)$$

Proof.

Corollary to Banach Fixed Point: this limit converges to A for any choice of S_0 .

Brendan W. Sullivan

Examples

Background

Standard contraction maps in \mathbb{R}^d are scalings (with factor r < 1), rotations, reflections, translations.

Brendan W. Sullivan

Mellon University Graduate Student Seminar

Examples

Example

Cantor Set, C:

н п	нп			
шп	11.11	11.11.11.11	11 11 11 11	

- ▲日 > ▲園 > ▲目 > ▲目 > - ④ ● - ④ ● ●

Brendan W. Sullivan

Mellon University Graduate Student Seminar

Examples

Example

Cantor Set, C:

н п	11 11			
II II -	11.11	11.11.11.11	11 11 11 11	

$$T_1(x) = \frac{x}{3} \qquad T_2(x) = \frac{x}{3} + \frac{2}{3}$$
$$\mathcal{C} = T_1(\mathcal{C}) \cup T_2(\mathcal{C})$$

Brendan W. Sullivan

Examples

Example

Brendan W. Sullivan

Examples

Example

Cantor-style dust:

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 三目 - のみぐ

Brendan W. Sullivan

Mellon University Graduate Student Seminar

Standard context

 $X = [0, 1]^2$ with standard metric and $\mathcal{T} = \{T_1, T_2, T_3, T_4\}$, where

$$T_1(x,y) = \left(\frac{x}{2}, \frac{y}{2}\right) + \left(0,0\right)$$
$$T_2(x,y) = \left(\frac{x}{2}, \frac{y}{2}\right) + \left(\frac{1}{2},0\right)$$
$$T_3(x,y) = \left(\frac{x}{2}, \frac{y}{2}\right) + \left(0,\frac{1}{2}\right)$$
$$T_4(x,y) = \left(\frac{x}{2}, \frac{y}{2}\right) + \left(\frac{1}{2},\frac{1}{2}\right)$$

Brendan W. Sullivan

э

1-IFS

Standard context

 $X = [0,1]^2$ with standard metric and $\mathcal{T} = \{T_1, T_2, T_3, T_4\}$, where

$$T_{1}(x,y) = \left(\frac{x}{2}, \frac{y}{2}\right) + \left(0, 0\right)$$

$$T_{2}(x,y) = \left(\frac{x}{2}, \frac{y}{2}\right) + \left(\frac{1}{2}, 0\right)$$

$$T_{3}(x,y) = \left(\frac{x}{2}, \frac{y}{2}\right) + \left(0, \frac{1}{2}\right)$$

$$T_{4}(x,y) = \left(\frac{x}{2}, \frac{y}{2}\right) + \left(\frac{1}{2}, \frac{1}{2}\right)$$

$$1$$

$$2$$

Brendan W. Sullivan

イロン イボン イヨン イヨン

Standard context

 $X = [0, 1]^2$ with standard metric and $\mathcal{T} = \{T_1, T_2, T_3, T_4\}$, where

$T_1(x,y) = \left(\frac{x}{2}, \frac{y}{2}\right) + \left(0, 0\right)$	33	34	43	44
$T_2(x,y) = \left(\frac{x}{2}, \frac{y}{2}\right) + \left(\frac{1}{2}, 0\right)$	31	32	41	42
$T_3(x,y) = \left(\frac{x}{2}, \frac{y}{2}\right) + \left(0, \frac{1}{2}\right)$	13	14	23	24
$T_4(x,y) = \left(\frac{x}{2}, \frac{y}{2}\right) + \left(\frac{1}{2}, \frac{1}{2}\right)$	11	12	21	22

Brendan W. Sullivan

< □ > < □ > < □ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > ○ Q
 Mailand University Constructor Statistics Statistics Statistics

Standard context

 $X = [0, 1]^2$ with standard metric and $\mathcal{T} = \{T_1, T_2, T_3, T_4\}$, where

$$T_1(x,y) = \left(\frac{x}{2}, \frac{y}{2}\right) + \left(0,0\right)$$
$$T_2(x,y) = \left(\frac{x}{2}, \frac{y}{2}\right) + \left(\frac{1}{2}, 0\right)$$
$$T_3(x,y) = \left(\frac{x}{2}, \frac{y}{2}\right) + \left(0, \frac{1}{2}\right)$$
$$T_4(x,y) = \left(\frac{x}{2}, \frac{y}{2}\right) + \left(\frac{1}{2}, \frac{1}{2}\right)$$

333	334	343	344	433	434	443	444
331	332	341	342	431	432	441	442
313	314	323	324	413	414	423	424
311	312	321	322	411	412	421	422
133	134	143	144	233	234	243	244
131	132	141	142	231	232	241	242
113	114	123	124	213	214	223	224
111	112	121	122	211	212	221	222

(ロ) (同) (ヨ) (ヨ)

ъ

Brendan W. Sullivan

Standard context

Being in state *i* means applying T_i Addresses indicate the *reverse* order of the transformations required to land in that box.

Example

- Map composition: $(T_2 \circ T_1 \circ T_4)(X)$
- Address: 214
- State transformation: $4 \rightarrow 1 \rightarrow 2$

Brendan W. Sullivan

Mellon University Graduate Student Seminar

イロト 不得 とくきと くきとう き

Standard context

Being in state i means applying T_i Addresses indicate the *reverse* order of the transformations required to land in that box.

Example

- Map composition: $(T_2 \circ T_1 \circ T_4)(X)$
- Address: 214
- State transformation: $4 \rightarrow 1 \rightarrow 2$

Brendan W. Sullivan

Memory Reduction in Iterated Function Systems

Mellon University Graduate Student Seminar

Standard context

Being in state i means applying T_i

Addresses indicate the *reverse* order of the transformations required to land in that box.

Example

- Map composition: $(T_2 \circ T_1 \circ T_4)(X)$
- Address: 214
- State transformation: $4 \rightarrow 1 \rightarrow 2$

14	

Brendan W. Sullivan

Memory Reduction in Iterated Function Systems

e Mellon University Graduate Student Seminar

Standard context

Being in state i means applying T_i

Addresses indicate the *reverse* order of the transformations required to land in that box.

Example

- Map composition: $(T_2 \circ T_1 \circ T_4)(X)$
- Address: 214
- State transformation: $4 \rightarrow 1 \rightarrow 2$

		214	

Brendan W. Sullivan
(日) (周) (日) (日) (日)

1-IFS

Forbidden pairs: 1-IFS

Main idea: Restrict the constructive approach by disallowing certain pairs of transformations from occurring consecutively.

The system has "1 level of memory" because it looks at the currently-applied transformation in the construction to determine which transformations can be applied next.

Where you are (but not how you got there) affects where you are allowed to go.

Brendan W. Sullivan

Forbidden pairs: 1-IFS

Questions:

- What types of attractors does this yield?
- How does forbidding multiple pairs affect the attractors?
- Can we look at an attractor and determine which pairs were forbidden?
- Which attractors can be realized as a *standard* IFS (with "0 levels of memory") by redefining the set of contraction maps?
- Which attractors can be realized as a standard 0-IFS but require *infinitely* many contraction maps?
- Which attractors cannot be realized as a standard 0-IFS?

(ロ) (同) (ヨ) (ヨ)

Brendan W. Sullivan

Forbidden pairs: 1-IFS

Questions:

- What types of attractors does this yield?
- How does forbidding multiple pairs affect the attractors?
- Can we look at an attractor and determine which pairs were forbidden?
- Which attractors can be realized as a *standard* IFS (with "0 levels of memory") by redefining the set of contraction maps?
- Which attractors can be realized as a standard 0-IFS but require *infinitely* many contraction maps?
- Which attractors cannot be realized as a standard 0-IFS?

(ロ) (同) (ヨ) (ヨ)

Brendan W. Sullivan

Forbidden pairs: 1-IFS

Questions:

- What types of attractors does this yield?
- How does forbidding multiple pairs affect the attractors?
- Can we look at an attractor and determine which pairs were forbidden?
- Which attractors can be realized as a *standard* IFS (with "0 levels of memory") by redefining the set of contraction maps?
- Which attractors can be realized as a standard 0-IFS but require *infinitely* many contraction maps?
- Which attractors cannot be realized as a standard 0-IFS?

(ロ) (同) (ヨ) (ヨ)

Brendan W. Sullivan

Forbidden pairs: 1-IFS

Questions:

- What types of attractors does this yield?
- How does forbidding multiple pairs affect the attractors?
- Can we look at an attractor and determine which pairs were forbidden?
- Which attractors can be realized as a *standard* IFS (with "0 levels of memory") by redefining the set of contraction maps?
- Which attractors can be realized as a standard 0-IFS but require *infinitely* many contraction maps?
- Which attractors cannot be realized as a standard 0-IFS?

(ロ) (同) (ヨ) (ヨ)

Brendan W. Sullivan

Forbidden pairs: 1-IFS

Questions:

- What types of attractors does this yield?
- How does forbidding multiple pairs affect the attractors?
- Can we look at an attractor and determine which pairs were forbidden?
- Which attractors can be realized as a *standard* IFS (with "0 levels of memory") by redefining the set of contraction maps?
- Which attractors can be realized as a standard 0-IFS but require *infinitely* many contraction maps?
- Which attractors cannot be realized as a standard 0-IFS?

(ロ) (同) (ヨ) (ヨ)

Brendan W. Sullivan

Forbidden pairs: 1-IFS

Questions:

- What types of attractors does this yield?
- How does forbidding multiple pairs affect the attractors?
- Can we look at an attractor and determine which pairs were forbidden?
- Which attractors can be realized as a *standard* IFS (with "0 levels of memory") by redefining the set of contraction maps?
- Which attractors can be realized as a standard 0-IFS but require *infinitely* many contraction maps?
- Which attractors cannot be realized as a standard 0-IFS?

(ロ) (同) (ヨ) (ヨ)

Brendan W. Sullivan

Forbidden pairs: 1-IFS

Example

Cannot go from state 1 to state 4

<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 < 0</p>

Brendan W. Sullivan

Mellon University Graduate Student Seminar

Forbidden pairs: 1-IFS

Example

Cannot go from state 1 to state 4 $\iff T_4$ cannot follow T_1

Brendan W. Sullivan

Mellon University Graduate Student Seminar

(日) (四) (전) (전) (전) (전)

Forbidden pairs: 1-IFS

Example

Cannot go from state 1 to state 4 $\iff T_4$ cannot follow T_1 $\iff (T_4 \circ T_1)(A) = \emptyset$

Brendan W. Sullivan

Mellon University Graduate Student Seminar

(日) (四) (전) (전) (전) (전)

Forbidden pairs: 1-IFS

Example

Cannot go from state 1 to state 4

 $\iff T_4 \text{ cannot follow } T_1$

$$\iff (T_4 \circ T_1)(A) = \emptyset$$

 \iff Any address with 41 as a substring is empty

Brendan W. Sullivan

Mellon University Graduate Student Seminar

Forbidden pairs: 1-IFS

Example

Any address with 41 as a substring is empty

3	4	
1	2	

Brendan W. Sullivan

Forbidden pairs: 1-IFS

Example

Any address with 41 as a substring is empty

33	34	43	44
31	32		42
13	14	23	24
11	12	21	22

Brendan W. Sullivan

Forbidden pairs: 1-IFS

Example

Any address with 41 as a substring is empty

333	334	343	344	433	434	443	444
331	332		342	431	432		442
313	314	323	324			423	424
311	312	321	322			421	422
133	134	143	144	233	234	243	244
131	132		142	231	232		242
113	114	123	124	213	214	223	224
111	112	121	122	211	212	221	222

Brendan W. Sullivan

Forbidden pairs: 1-IFS

Example

Any address with 41 as a substring is empty

333	334	343	344	433	434	443	444
331	332		342	431	432		442
313	314	323	324			423	424
311	312	321	322			421	422
133	134	143	144	233	234	243	244
131	132		142	231	232		242
113	114	123	124	213	214	223	224
111	112	121	122	211	212	221	222

Brendan W. Sullivan

Forbidden pairs: 1-IFS

Example

Any address with 41 as a substring is empty

333	334	343	344	433	434	443	444
331	332		342	431	432		442
313	314	323	324			423	424
311	312	321	322			421	422
133	134	143	144	233	234	243	244
131	132		142	231	232		242
113	114	123	124	213	214	223	224
111	112	121	122	211	212	221	222

Brendan W. Sullivan

Forbidden pairs: 1-IFS

Example

Any address with 41 as a substring is empty

333	334	343	344	433	434	443	444
331	332		342	431	432		442
313	314	323	324			423	424
311	312	321	322			421	422
133	134	143	144	233	234	243	244
131	132		142	231	232		242
113	114	123	124	213	214	223	224
111	112	121	122	211	212	221	222

Brendan W. Sullivan

Forbidden pairs: 1-IFS

Example

Any address with 41 as a substring is empty

333	334	343	344	433	434	443	444
331	332		342	431	432		442
313	314	323	324			423	424
311	312	321	322			421	422
133	134	143	144	233	234	243	244
131	132		142	231	232		242
113	114	123	124	213	214	223	224
111	112	121	122	211	212	221	222

Brendan W. Sullivan

Forbidden pairs: 1-IFS

Example

Any address with 41 as a substring is empty

333	334	343	344	433	434	443	444
331	332		342	431	432		442
313	314	323	324			423	424
311	312	321	322			421	422
133	134	143	144	233	234	243	244
131	132		142	231	232		242
113	114	123	124	213	214	223	224
111	112	121	122	211	212	221	222

Brendan W. Sullivan

Forbidden pairs: 1-IFS

Example

Any address with 41 as a substring is empty

333	334	343	344	433	434	443	444
331	332		342	431	432		442
313	314	323	324			423	424
311	312	321	322			421	422
133	134	143	144	233	234	243	244
131	132		142	231	232		242
113	114	123	124	213	214	223	224
111	112	121	122	211	212	221	222

Brendan W. Sullivan

Forbidden pairs: 1-IFS

Example

Forbid $1 \rightarrow 4, 4 \rightarrow 1, 2 \rightarrow 3, 3 \rightarrow 2$

メロト スピト メヨト メヨト ヨー もくら

Brendan W. Sullivan

Mellon University Graduate Student Seminar

Forbidden pairs: 1-IFS

Example

Addresses with 14, 41, 23, 32 are empty

メロト メ起ト メヨト メヨト 三国 うろくの

Brendan W. Sullivan

Mellon University Graduate Student Seminar

Forbidden pairs: 1-IFS

Example

Addresses with 14, 41, 23, 32 are empty

33	34	43	44
31			42
13			24
11	12	21	22

Brendan W. Sullivan

Forbidden pairs: 1-IFS

Example

Addresses with 14, 41, 23, 32 are empty

333	334	343	344	433	434	443	444
331			342	431			442
313							424
311	312					421	422
133	134					243	244
131							242
113			124	213			224
111	112	121	122	211	212	221	222

Brendan W. Sullivan

Forbidden pairs: 1-IFS

Example

Addresses with 14, 41, 23, 32 are empty

333	334	343	344	433	434	443	444
331			342	431			442
313							424
311	312					421	422
133	134					243	244
131							242
113			124	213			224
111	112	121	122	211	212	221	222

Brendan W. Sullivan

Forbidden pairs: 1-IFS

Example

Addresses with 14, 41, 23, 32 are empty

333	334	343	344	433	434	443	444
331			342	431			442
313							424
311	312					421	422
133	134					243	244
131							242
113			124	213			224
111	112	121	122	211	212	221	222

Brendan W. Sullivan

Forbidden pairs: 1-IFS

Example

Addresses with 14, 41, 23, 32 are empty

333	334	343	344	433	434	443	444
331			342	431			442
313							424
311	312					421	422
133	134					243	244
131							242
113			124	213			224
111	112	121	122	211	212	221	222

Brendan W. Sullivan

Forbidden pairs: 1-IFS

Example

Addresses with 14, 41, 23, 32 are empty

333	334	343	344	433	434	443	444
331			342	431			442
313							424
311	312					421	422
133	134					243	244
131							242
113			124	213			224
111	112	121	122	211	212	221	222

Brendan W. Sullivan

Forbidden pairs: 1-IFS

Example

Addresses with 22, 23, 33 are empty

		343	344		434	443	444
		341	342	431	432	441	442
313	314		324	413	414		424
311	312	321		411	412	421	
	134	143	144			243	244
131	132	141	142			241	242
113	114		124	213	214		
111	112	121		211	212		

Brendan W. Sullivan

Forbidden pairs: 1-IFS

Example

Addresses with 22, 23, 33 are empty

		343	344		434	443	444
		341	342	431	432	441	442
313	314		324	413	414		424
311	312	321		411	412	421	
	134	143	144			243	244
131	132	141	142			241	242
113	114		124	213	214		
111	112	121		211	212		

Brendan W. Sullivan

Forbidden pairs: 1-IFS

Example

Addresses with 22, 23, 33 are empty

		343	344		434	443	444
		341	342	431	432	441	442
313	314		324	413	414		424
311	312	321		411	412	421	
	134	143	144			243	244
131	132	141	142			241	242
113	114		124	213	214		
111	112	121		211	212		

Brendan W. Sullivan

Forbidden pairs: 1-IFS

Example

Addresses with 22, 23, 33 are empty

		343	344		434	443	444
		341	342	431	432	441	442
313	314		324	413	414		424
311	312	321		411	412	421	
	134	143	144			243	244
131	132	141	142			241	242
113	114		124	213	214		
111	112	121		211	212		

Brendan W. Sullivan

Memory Reduction in Iterated Function Systems

Mellon University Graduate Student Seminar

Forbidden pairs: 1-IFS

Example

Addresses with 22, 23, 33 are empty

		343	344		434	443	444
		341	342	431	432	441	442
313	314		324	413	414		424
311	312	321		411	412	421	
	134	143	144			243	244
131	132	141	142			241	242
113	114		124	213	214		
111	112	121		211	212		

Brendan W. Sullivan

Forbidden pairs: 1-IFS

Example

Addresses with 22, 23, 33 are empty

		343	344		434	443	444
		341	342	431	432	441	442
313	314		324	413	414		424
311	312	321		411	412	421	
	134	143	144			243	244
131	132	141	142			241	242
113	114		124	213	214		
111	112	121		211	212		

Brendan W. Sullivan

Forbidden pairs: 1-IFS

Example

Addresses with 22, 23, 33 are empty

		343	344		434	443	444
		341	342	431	432	441	442
313	314		324	413	414		424
311	312	321		411	412	421	
	134	143	144			243	244
131	132	141	142			241	242
113	114		124	213	214		
111	112	121		211	212		

Brendan W. Sullivan

Forbidden pairs: 1-IFS

Example

Addresses with 22, 23, 33 are empty

		343	344		434	443	444
		341	342	431	432	441	442
313	314		324	413	414		424
311	312	321		411	412	421	
	134	143	144			243	244
131	132	141	142			241	242
113	114		124	213	214		

Brendan W. Sullivan
1-IFS

Forbidden pairs: 1-IFS

Example

Addresses with 22, 23, 33 are empty

		343	344		434	443	444
		341	342	431	432	441	442
313	314		324	413	414		424
311	312	321		411	412	421	
	134	143	144			243	244
131	132	141	142			241	242
113	114		124	213	214		
111	112	121		211	212		

Brendan W. Sullivan

Representing allowed transitions

Vertex set is \mathcal{T} . Directed edge from T_i to T_j if $i \to j$ is allowed.

Brendan W. Sullivan

Mellon University Graduate Student Seminar

Representing allowed transitions

Vertex set is \mathcal{T} . Directed edge from T_i to T_j if $i \to j$ is allowed.

Brendan W. Sullivan

<ロト (個) / E / (E) / E / のへ(Action Christian Christian

イロト イボト イヨト イヨト

Transition Graphs/Matrices

Representing allowed transitions

Vertex set is \mathcal{T} . Directed edge from T_i to T_j if $i \to j$ is allowed.

Brendan W. Sullivan

Transition matrices

Represent directed edges by a 0-1 matrix. Rows/columns indexed by *states*. $M_{ij} = 1 \iff j \rightarrow i$ is allowed.

<ロト < 部 > < 注 > < 注 > の < 0</p>

Brendan W. Sullivan

Mellon University Graduate Student Seminar

Transition matrices

Represent directed edges by a 0-1 matrix. Rows/columns indexed by *states*.

 $M_{ij} = 1 \iff j \to i$ is allowed.

[1	1	1	1	٦
1	0	0	1	
1	1	0	1	
1	1	1	1	

Brendan W. Sullivan

Transition matrices

Represent directed edges by a 0-1 matrix. Rows/columns indexed by *states*. $M_{ij} = 1 \iff j \rightarrow i$ is allowed.

Γ1	1	1	1	٦
1	0	1	0	
1	1	0	0	
[1	0	0	1	

Brendan W. Sullivan

Memory Reduction in Iterated Function Systems

<ロト < 母 ト < 書 ト < 書 ト 達 のへの

Dimensional analysis

Can use transition matrix M to compute Hausdorff dimension of the attractor A.

Let r_j be the contraction factor of T_j .

Brendan W. Sullivan

Mellon University Graduate Student Seminar

イロト 不得ト イヨト イヨト

Transition Graphs/Matrices

Background

Dimensional analysis

Can use transition matrix M to compute Hausdorff dimension of the attractor A.

Let r_j be the contraction factor of T_j .

Theorem

The Hausdorff dimension of A is the unique d for which the spectral radius of

$$M(d) = \left[m_{ij}r_j^d\right]_{ij}$$

is exactly 1.

Recall: the **spectral radius** of a matrix M is

 $\rho(M) = \max\{|\lambda_i| \mid \lambda_i \text{ is an eigenvalue of } M\}$

Brendan W. Sullivan

イロト 不得 とくきと くきとう き

Classification

Terminology

Definition

The attractor of a 1-IFS is ...

- **IFS-able** *if it can be realized by a 0-IFS.*
- ∞-IFS-able if it can be realized by a 0-IFS with countably-many transformations.
- non-IFS-able if it cannot be realized by any 0-IFS, regardless of how many transformations are used.

Brendan W. Sullivan

Terminology

Definition

A transformation T_i is called a **full state** if it can immediately follow any other transformation;

i.e. $1 \rightarrow i, 2 \rightarrow i, 3 \rightarrow i, 4 \rightarrow i$ are all allowed.

Brendan W. Sullivan

Vellon University Graduate Student Seminar

イロト イポト イヨト イヨト 一日

イロト 不得 とくきと くきとう き

Classification

Terminology

Definition

A transformation T_i is called a **full state** if it can immediately follow any other transformation;

i.e. $1 \rightarrow i$, $2 \rightarrow i$, $3 \rightarrow i$, $4 \rightarrow i$ are all allowed.

Also known as a **Rome**, because all roads in the transition graph lead to it. (Not to be confused with a **roam**.)

Corresponds to a row of 1s in transition matrix.

Brendan W. Sullivan

Main result: 1-IFS to 0-IFS

- **1** There exists a Rome.
- **2** Every transformation has a path to it starting at a Rome.
- **3** There are infinite sequences of non-Romes.

Brendan W. Sullivan

Mellon University Graduate Student Semi

イロト 不得 とくきと くきとう き

Main result: 1-IFS to 0-IFS

- **1** There exists a Rome.
- **2** Every transformation has a path to it starting at a Rome.
- **3** There are infinite sequences of non-Romes.

Theorem

The attractor of a 1-IFS is ...

- IFS-able \iff (1) and (2) hold.
- ∞ -IFS-able \iff (1) and (2) and (3) hold.
- non-IFS-able \iff (1) or (2) fails.

Brendan W. Sullivan

Mellon University Graduate Student Seminar

Main result: 1-IFS to 0-IFS

- **1** There exists a Rome.
- **2** Every transformation has a path to it starting at a Rome.
- **3** There are infinite sequences of non-Romes.

Theorem

The attractor of a 1-IFS is ...

- IFS-able \iff (1) and (2) hold.
- ∞ -IFS-able \iff (1) and (2) and (3) hold.
- non-IFS-able \iff (1) or (2) fails.

Proof.

Manipulating strings and addresses ... [13]

Brendan W. Sullivan

Classifying examples

Main idea: look for scaled copies of the attractor within itself.

Brendan W. Sullivan

Classifying examples

Main idea: look for scaled copies of the attractor within itself.

IFS-able with 8 transformations

Brendan W. Sullivan

<ロト 〈四ト 〈臣 〉 〈臣 〉 〈臣 〉 (王) 〈 臣 ·) ()

Classifying examples

Main idea: look for scaled copies of the attractor within itself.

Brendan W. Sullivan

< □ > < 個 > < 필 > < 필 > < 필 > < 필 > < 0,

Classifying examples

Main idea: look for scaled copies of the attractor within itself.

∞ -IFS-able

Brendan W. Sullivan

< □ > < 图 > < 된 > < 된 > < 된 < ○

< ○

イロト イボト イヨト イヨト

Classification

Classifying examples

Main idea: look for scaled copies of the attractor within itself.

Brendan W. Sullivan

Classifying examples

Main idea: look for scaled copies of the attractor within itself.

non-IFS-able

Brendan W. Sullivan

< □ > < □ > < □ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ○
Statistical Statis

2-IFS and beyond

Forbidden pairs and triples: 2-IFS

Define IFS by set \mathcal{F} of forbidden strings.

2-IFS means \mathcal{F} contains triples and pairs.

In general, *n*-IFS means \mathcal{F} contains strings with length at most n + 1, and contains at least one with exactly that length.

Brendan W. Sullivan

e Mellon University Graduate Student Semi

イロト 不得ト イヨト イヨト

2-IFS and beyond

Forbidden pairs and triples: 2-IFS

Working example:
$$\mathcal{F} = \{14, 23, 32, 441\}$$

Brendan W. Sullivan

Subshifts of finite type

Let A be a finite alphabet. Let X be the set of bi-infinite strings from A, called the **full shift**:

$$X = A^{\mathbb{Z}} = \{(\dots x_{-1} \cdot x_0 x_1 \dots) \mid x_i \in A\}$$

Brendan W. Sullivan

Mellon University Graduate Student Semina

(日) (四) (전) (전) (전) (전)

イロト 不得 とくきと くきとう き

Theory

Subshifts of finite type

Let A be a finite alphabet. Let X be the set of bi-infinite strings from A, called the **full shift**:

$$X = A^{\mathbb{Z}} = \{(\dots x_{-1} \cdot x_0 x_1 \dots) \mid x_i \in A\}$$

Given set of words \mathcal{F} from A, the **shift space determined by** \mathcal{F} is the set of strings from X that contain no element of \mathcal{F} as a substring, written as $X_{\mathcal{F}}$.

If \mathcal{F} is finite, $X_{\mathcal{F}}$ is a subshift of finite type.

If the longest string in \mathcal{F} has length N + 1, say $X_{\mathcal{F}}$ is an N-step shift.

Brendan W. Sullivan

Graph vertex shifts

Let G be a directed graph. The **vertex shift** of G has alphabet A = V (vertices of G) and is

$$\hat{X}_G = \{ \dots v_1 . v_0 v_1 \dots \mid \forall i. \ (v_i, v_{i+1}) \in E \}$$

the set of all infinite paths in G.

Brendan W. Sullivan

Mellon University Graduate Student Sem

イロト 不得 とくきと くきとう き

イロト 不得 とくきと くきとう き

Theory

Graph vertex shifts

Let G be a directed graph. The **vertex shift** of G has alphabet A = V (vertices of G) and is

$$\hat{X}_G = \{ \dots v_1 . v_0 v_1 \dots \mid \forall i. \ (v_i, v_{i+1}) \in E \}$$

the set of all infinite paths in G.

Lemma

Graph vertex shifts are 1-step shifts of finite type.

Goal: Exploit graph shifts to reduce *n*-IFS to 1-IFS.

Brendan W. Sullivan

Higher block shifts

Given A, \mathcal{F} , and $X_{\mathcal{F}}$ (an N-step shift). Let $B_N(X_{\mathcal{F}})$ be the set of allowed strings of length N in $X_{\mathcal{F}}$.

Brendan W. Sullivan

Mellon University Graduate Student Semina

イロト 不得 とくきと くきとう き

イロト 不得 とくきと くきとう き

Theory

Higher block shifts

Given A, \mathcal{F} , and $X_{\mathcal{F}}$ (an *N*-step shift). Let $B_N(X_{\mathcal{F}})$ be the set of allowed strings of length *N* in $X_{\mathcal{F}}$. Let $\beta_N : X_{\mathcal{F}} \to (B_N(X_{\mathcal{F}}))^{\mathbb{Z}}$ be defined by $(\beta_{-}(x)) = \alpha x = -\alpha$

$$(\beta_N(\underline{\mathbf{x}}))_i = x_i x_{i+1} \dots x_{i+N-1}$$

where $\underline{\mathbf{x}} = \dots x_{-1} \cdot x_0 x_1 \dots$

Brendan W. Sullivan

Higher block shifts

Example

Let
$$A = \{1, 2, 3, 4\}, \mathcal{F} = \{14, 23, 32, 441\}$$
 (i.e. $N = 2$).

Consider $\underline{\mathbf{x}} = \dots 12443\dots$

Brendan W. Sullivan

Mellon University Graduate Student Semin

イロト イヨト イヨト イヨト ヨー のへで

Higher block shifts

Example

Let
$$A = \{1, 2, 3, 4\}, \mathcal{F} = \{14, 23, 32, 441\}$$
 (i.e. $N = 2$).

Consider $\underline{\mathbf{x}} = \dots 12443\dots$

$$\beta_2(\underline{\mathbf{x}}) = \dots 12$$

Brendan W. Sullivan

Mellon University Graduate Student Seminar

Higher block shifts

Example

Let
$$A = \{1, 2, 3, 4\}, \mathcal{F} = \{14, 23, 32, 441\}$$
 (i.e. $N = 2$).

Consider $\underline{\mathbf{x}} = \dots 12443\dots$

$$\beta_2(\underline{\mathbf{x}}) = \dots 1224$$

Brendan W. Sullivan

Mellon University Graduate Student Seminar

Higher block shifts

Example

Let
$$A = \{1, 2, 3, 4\}, \mathcal{F} = \{14, 23, 32, 441\}$$
 (i.e. $N = 2$).

Consider $\underline{\mathbf{x}} = \dots 12443\dots$

 $\beta_2(\underline{\mathbf{x}}) = \dots 122444$

Brendan W. Sullivan

Mellon University Graduate Student Seminar

イロト イヨト イヨト イヨト ヨー のへで

Higher block shifts

Example

Let
$$A = \{1, 2, 3, 4\}, \mathcal{F} = \{14, 23, 32, 441\}$$
 (i.e. $N = 2$).

Consider $\underline{\mathbf{x}} = \dots 12443\dots$

 $\beta_2(\underline{\mathbf{x}}) = \dots 12244443\dots$

Brendan W. Sullivan

Mellon University Graduate Student Seminar

イロト イヨト イヨト イヨト ヨー のへで

Higher block shifts

Definition

The N-th higher block shift is the image

$$X_{\mathcal{F}}^{[N]} = \beta_N(X_{\mathcal{F}})$$

Brendan W. Sullivan

Jellon University Graduate Student Semin

(日) (四) (전) (전) (전) (전)

(日) (周) (日) (日) (日)

Theory

Higher block shifts

Definition

The N-th higher block shift is the image

$$X_{\mathcal{F}}^{[N]} = \beta_N(X_{\mathcal{F}})$$

Theorem

If $X_{\mathcal{F}}$ is an N-step shift, then there exists a directed graph G such that

$$X_{\mathcal{F}}^{[N]} = \hat{X}_G$$

i.e. N-th higher block shift can be realized as a 1-step shift!

Brendan W. Sullivan
Theory

Higher block shifts as graph shifts

Proof is in [14]. Vertices of G are $B_N(X_{\mathcal{F}})$, the allowed N-length strings. Edge from $a_1 \ldots a_N$ to $b_1 \ldots b_N$ iff

1
$$a_2 \dots a_N = b_1 \dots b_{N-1}$$

2 $a_1 a_2 \ldots a_N b_N$ is an allowed string in $X_{\mathcal{F}}$

Brendan W. Sullivan

Mellon University Graduate Student Semi

(日) (周) (日) (日) (日)

イロト 不得 とくきと くきとう き

Theory

Higher block shifts as graph shifts

Proof is in [14]. Vertices of G are $B_N(X_{\mathcal{F}})$, the allowed N-length strings. Edge from $a_1 \ldots a_N$ to $b_1 \ldots b_N$ iff

1
$$a_2 \dots a_N = b_1 \dots b_{N-1}$$

2 $a_1 a_2 \ldots a_N b_N$ is an allowed string in $X_{\mathcal{F}}$

Condition (1) ensures correct overlap. Condition (2) ensures overlap is allowed.

Directed graph encodes which N-length strings of $X_{\mathcal{F}}$ can follow one another; i.e. it encodes which sequences of transformations are allowed by considering longer strings as the most basic elements. Demonstration

Reducing 2-IFS to 1-IFS: $\mathcal{F} = \{14, 23, 32, 441\}$

 $X_{\mathcal{F}}$ is all strings from $I = \{1, 2, 3, 4\}$ without a substring in \mathcal{F} .

Brendan W. Sullivan

Mellon University Graduate Student Seminar

イロト 不同下 イヨト イヨト ヨー ろんの

Demonstration

Reducing 2-IFS to 1-IFS: $\mathcal{F} = \{14, 23, 32, 441\}$

 $X_{\mathcal{F}}$ is all strings from $I = \{1, 2, 3, 4\}$ without a substring in \mathcal{F} . $X_{\mathcal{F}}^{[2]}$ has alphabet J consisting of 13 allowed pairs:

 $J = \{11, 12, 13, 21, 22, 24, 31, 33, 34, 41, 42, 43, 44\}$

Construct directed graph with J as vertex set.

Encode edges via transition matrix.

Ensure conditions (1) and (2) from Theorem in [14] are satisfied, i.e. *correct* and *allowed* overlaps.

Brendan W. Sullivan

Demonstration

Reducing 2-IFS to 1-IFS: $\mathcal{F} = \{14, 23, 32, 441\}$

 $J = \{11, 12, 13, 21, 22, 24, 31, 33, 34, 41, 42, 43, 44\}$ Column is source of edge, row is target.

 $M_{ij,km} = 1 \iff i = m$ and kij is allowed.

- * ロ * * 個 * * 注 * * 注 * 三臣 * つへで

Brendan W. Sullivan

Mellon University Graduate Student Seminar

(日) (周) (日) (日) (日)

Demonstration

Reducing 2-IFS to 1-IFS: $\mathcal{F} = \{14, 23, 32, 441\}$

 $J = \{11, 12, 13, 21, 22, 24, 31, 33, 34, 41, 42, 43, 44\}$ Column is source of edge, row is target.

 $M_{ij,km} = 1 \iff i = m$ and kij is allowed.

Overlap conditions yield many 0 entries. (Only 41/169 nonzero entries in this example.) Helpful in computational applications, such as computing Hausdorff dimension, powers of transition matrix, etc.

Brendan W. Sullivan

Background

Memory Reduction

Demonstration

 $M_{ij,km} = 1 \iff m = i \text{ and } kij \text{ is allowed. Recall } \mathcal{F} = \{14, 23, 32, 441\}$

		11	12	13	21	22	24	31	33	34	41	42	43	44	
	11	1	1	1	0	0	0	0	0	0	0	0	0	0]
	12	0	0	0	1	1	1	0	0	0	0	0	0	0	
	13	0	0	0	0	0	0	1	1	1	0	0	0	0	
	21	1	1	1	0	0	0	0	0	0	0	0	0	0	
	22	0	0	0	1	1	1	0	0	0	0	0	0	0	
	24	0	0	0	0	0	0	0	0	0	1	1	1	1	
M =	31	1	1	1	0	0	0	0	0	0	0	0	0	0	
	33	0	0	0	0	0	0	1	1	1	0	0	0	0	
	34	0	0	0	0	0	0	0	0	0	1	1	1	1	
	41	1	1	1	0	0	0	0	0	0	0	0	0	0	
	42	0	0	0	1	1	1	0	0	0	0	0	0	0	
	43	0	0	0	0	0	0	1	1	1	0	0	0	0	
	44	0	0	0	0	0	0	0	0	0	0	1	1	1	
										< • • •	< ₽		•	≡×	Э

Brendan W. Sullivan

llon University Graduate Student Seminar

IFS with Memory

Memory Reduction

Demonstration

 $M_{ij,km} = 1 \iff m = i \text{ and } kij \text{ is allowed. Recall } \mathcal{F} = \{14, 23, 32, 441\}$

		11	12	13	21	22	24	31	33	34	41	42	43	44	
	11	1	1	1	0	0	0	0	0	0	0	0	0	0	1
	12	0	0	0	1	1	1	0	0	0	0	0	0	0	
	13	0	0	0	0	0	0	1	1	1	0	0	0	0	
	21	1	1	1	0	0	0	0	0	0	0	0	0	0	
	22	0	0	0	1	1	1	0	0	0	0	0	0	0	
	24	0	0	0	0	0	0	0	0	0	1	1	1	1	
M =	31	1	1	1	0	0	0	0	0	0	0	0	0	0	
	33	0	0	0	0	0	0	1	1	1	0	0	0	0	
	34	0	0	0	0	0	0	0	0	0	1	1	1	1	
	41	1	1	1	0	0	0	0	0	0	0	0	0	0	
	42	0	0	0	1	1	1	0	0	0	0	0	0	0	
	43	0	0	0	0	0	0	1	1	1	0	0	0	0	
	44	0	0	0	0	0	0	0	0	0	0	1	1	1	
									•		(7)	< = >	< ≣	۶ E	1

Brendan W. Sullivan

ellon University Graduate Student Semina

Background

IFS with Memory

Memory Reduction

Demonstration

 $M_{ij,km} = 1 \iff m = i \text{ and } kij \text{ is allowed. Recall } \mathcal{F} = \{14, 23, 32, 441\}$

		11	12	13	21	22	24	31	33	34	41	42	43	44
	11	[1	1	1	0	0	0	0	0	0	0	0	0	0
	12	0	0	0	1	1	1	0	0	0	0	0	0	0
	13	0	0	0	0	0	0	1	1	1	0	0	0	0
	21	1	1	1	0	0	0	0	0	0	0	0	0	0
	22	0	0	0	1	1	1	0	0	0	0	0	0	0
	24	0	0	0	0	0	0	0	0	0	1	1	1	1
M =	31	1	1	1	0	0	0	0	0	0	0	0	0	0
	33	0	0	0	0	0	0	1	1	1	0	0	0	0
	34	0	0	0	0	0	0	0	0	0	1	1	1	1
	41	1	1	1	0	0	0	0	0	0	0	0	0	0
	42	0	0	0	1	1	1	0	0	0	0	0	0	0
	43	0	0	0	0	0	0	1	1	1	0	0	0	0
	44	0	0	0	0	0	0	0	0	0	0	1	1	1 _
										< • • •	< (T) >	 → 	< E	× 3

Brendan W. Sullivan

ellon University Graduate Student Semina

Demonstration

Reducing 2-IFS to 1-IFS: $\mathcal{F} = \{14, 23, 32, 441\}$

Recall $J = \{11, 12, 13, 21, 22, 24, 31, 33, 34, 41, 42, 43, 44\}.$

Define \mathcal{F}' to be the forbidden pairs from alphabet J:

$$\mathcal{F}' = \{ij, km \in J \mid M_{ij,km} = 0\}$$

Brendan W. Sullivan

Mellon University Graduate Student Semin

イロト 不得 とくきと くきとう き

Demonstration

Reducing 2-IFS to 1-IFS: $\mathcal{F} = \{14, 23, 32, 441\}$

Recall $J = \{11, 12, 13, 21, 22, 24, 31, 33, 34, 41, 42, 43, 44\}.$

Define \mathcal{F}' to be the forbidden pairs from alphabet J:

$$\mathcal{F}' = \{ij, km \in J \mid M_{ij,km} = 0\}$$

The same attractor is realized from this 1-IFS, $J(\mathcal{F}')$!

Brendan W. Sullivan

llon University Graduate Student Semin

• • = • =

Reducing n-IFS to 1-IFS

Generalizing this procedure, any *n*-IFS (forbidden strings of length $\leq n + 1$) can be reduced to a 1-IFS (forbidden pairs only):

- **1** List all allowed strings of length n
- 2 Populate transition matrix by following overlap conditions
- **3** Apply constructive procedure to this new IFS

Brendan W. Sullivan

Aellon University Graduate Student Semin

イロト 不得 とくきと くきとう き

Reducing n-IFS to 1-IFS

Generalizing this procedure, any *n*-IFS (forbidden strings of length $\leq n + 1$) can be reduced to a 1-IFS (forbidden pairs only):

- **1** List all allowed strings of length n
- 2 Populate transition matrix by following overlap conditions
- **3** Apply constructive procedure to this new IFS

Theorem The n-IFS $I(\mathcal{F})$ and the 1-IFS $J(\mathcal{F}')$ have the same attractor.

Proof.

Compare addresses of attractors, rewrite as *I*-strings. [11]

Brendan W. Sullivan

Reducing n-IFS to 1-IFS

Observations:

- Procedure doesn't reduce 1-IFS to 0-IFS.
 Overlap conditions are vacuous.
- Previous results in [13] still helpful.
- \blacksquare Can now characterize all $n\text{-}\mathrm{IFS}$ as IFS-able / $\infty\text{-}\mathrm{IFS}\text{-}\mathrm{able}$ / non-IFS-able

Brendan W. Sullivan

Aellon University Graduate Student Semina

イロト 不得 とくきと くきとう き

イロト 不得 とくきと くきとう き

Results

Reducing n-IFS to 1-IFS

Observations:

- Procedure doesn't reduce 1-IFS to 0-IFS.
 Overlap conditions are vacuous.
- Previous results in [13] still helpful.
- \blacksquare Can now characterize all $n\text{-}\mathrm{IFS}$ as IFS-able / $\infty\text{-}\mathrm{IFS}\text{-}\mathrm{able}$ / non-IFS-able
- If \mathcal{F} contains strings of length n + 1, alphabet J may have up to 4^n elements!

Question: What is the most *efficient* memory reduction procedure, yielding the least number of transformations?

Efficient memory reduction: $\mathcal{F} = \{14, 23, 32, 441\}$

Notice 441 is a *primary string*, i.e. it does not contain a forbidden substring.

- * ロ > * @ > * 注 > * 注 > ・ 注 ・ の 9

Brendan W. Sullivan

Mellon University Graduate Student Seminar

Efficient memory reduction: $\mathcal{F} = \{14, 23, 32, 441\}$

Subdivide T_4 into four transformations. Define new set S by

$$S_{1} = T_{1}$$

$$S_{2} = T_{2}$$

$$S_{3} = T_{3}$$

$$S_{4} = T_{4} \circ T_{1}$$

$$S_{5} = T_{4} \circ T_{2}$$

$$S_{6} = T_{4} \circ T_{3}$$

$$S_{7} = T_{4} \circ T_{4}$$

Brendan W. Sullivan

Mellon University Graduate Student Seminar

イロト 不得 とくきと くきとう き

Efficient memory reduction: $\mathcal{F} = \{14, 23, 32, 441\}$

Subdivide T_4 into four transformations. Define new set S by

$$S_{1} = T_{1}$$

$$S_{2} = T_{2}$$

$$S_{3} = T_{3}$$

$$S_{4} = T_{4} \circ T_{1}$$

$$S_{5} = T_{4} \circ T_{2}$$

$$S_{6} = T_{4} \circ T_{3}$$

$$S_{7} = T_{4} \circ T_{4}$$

$$\mathcal{F}_{S} = \{14, 15, 16, 17, 23, 32, 44, 45, 46, 47, 53, 62, 71, 74\}$$

Brendan W. Sullivan

イロト 不得 とくきと くきとう き

Results

Efficient memory reduction: $\mathcal{F} = \{14, 23, 32, 441\}$

Subdivide T_4 into four transformations. Define new set S by

$S_1 = T_1$			1	2	3	4	5	6	7
$S_2 = T_2$		1	1	1	1	0	0	0	0
$S_{3} = T_{3}$		2	1	1	0	1	1	1	1
$S_4 - T_4 \circ T_1$		3	1	0	1	1	1	1	1
	M =	4	1	1	1	0	0	0	0
$S_5 = T_4 \circ T_2$		5	1	1	0	1	1	1	1
$S_6 = T_4 \circ T_3$		6	1	0	1	1	1	1	1
$S_7 = T_4 \circ T_4$		7	0	1	1	0	1	1	1
$\mathcal{F}_{\mathcal{S}} = \{14, 15, 16, 17, 23, 32\}$	2, 44, 48	5,46	, 47,	53,	62	71	74	}	

Brendan W. Sullivan

(日) (周) (日) (日) (日)

Results

Efficient memory reduction: 2-IFS to 1-IFS

Conjecture

Given 2-IFS, $I(\mathcal{F})$, efficiently equivalent 1-IFS is generated by

- **1** Remove non-primary strings from \mathcal{F}
- **2** $\forall ijk \in \mathcal{F}, subdivide i and j$
- **3** Reduce forbidden ijk; 2 cases on whether k subdivided
- **4** Reduce forbidden ij; 4 cases on whether i, j subdivided
- **5** Reduce forbidden i; remove compositions

Cases determine how many transformations needed in total.

To be proved and investigated for n-IFS in [15].

Brendan W. Sullivan

Results

- Can reduce any *n*-IFS to 1-IFS, perhaps efficiently.
- Can classify any *n*-IFS as IFS-able or not.
- Can apply method of [16] to calculate Hausdorff dimension.

Brendan W. Sullivan

Viellon University Graduate Student Semina

イロト 不得 とくきと くきとう き

Results

- Can reduce any *n*-IFS to 1-IFS, perhaps efficiently.
- Can classify any *n*-IFS as IFS-able or not.
- Can apply method of [16] to calculate Hausdorff dimension.
- Know that memory length is *not* a measure of fractal complexity.

Brendan W. Sullivan

fellon University Graduate Student Semina

イロト 不得 とくきと くきとう き

Lingering questions

- Is the efficient procedure correct?
- Is the efficient procedure actually helpful in applications?

Brendan W. Sullivan

Mellon University Graduate Student Semij

イロト 不得ト イヨト イヨト

3

Lingering questions

- Is the efficient procedure correct?
- Is the efficient procedure actually helpful in applications?
- What exactly is the trade-off between memory length and # of transformations? Are certain formulations best for different applications?
- How many memory reductions are there with a fixed # of transformations?

Brendan W. Sullivan

Aellon University Graduate Student Semi

イロト 不得 とくきと くきとう き

イロト 不得 とくきと くきとう き

Conclusions and Future Work

Background

Lingering questions

- Is the efficient procedure correct?
- Is the efficient procedure actually helpful in applications?
- What exactly is the trade-off between memory length and # of transformations? Are certain formulations best for different applications?
- How many memory reductions are there with a fixed # of transformations?
- What is the relationship between *m*-IFS and *n*-IFS? Are there embeddings? Is calculting Hausdorff dimension easier in certain settings? (Partially investigated in [12])

Brendan W. Sullivan

References I

S. Edgar.

Measure, Topology, and Fractal Geometry. Springer, 2008.

📡 B. B. Mandelbrot The Fractal Geometry of Nature. W.H. Freeman and Co., 1982.

Univ. Illinois Urbana-Champaign Geometry Center Graphics Archive

http://www.geom.uiuc.edu/graphics/

Brendan W. Sullivan

(ロ) (同) (ヨ) (ヨ)

(ロ) (同) (ヨ) (ヨ)

References II

Earth's Most Stunning Natural Fractal Patterns

http://www.wired.com/wiredscience/2010/09/fractal-patterns-in-nature/?pid=164

Univ. New South Wales

Can Science Be Used To Further Our Understanding Of Art?

http://phys.unsw.edu.au/phys_about/PHYSICS!/FRACTAL_EXPRESSIONISM/fractal_taylor.html

Third Apex to Fractovia

http://www.fractovia.org/art/fmusic/index.html

Dmitry Kormann

http://bowerbird-studios.com/aicaramba/page2.html

Brendan W. Sullivan

- ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

References III

Yale Univ.

Fractal geometry course

http://classes.yale.edu/fractals/

Yale Univ., Fractals Panorama

http://classes.yale.edu/fractals/panorama/Biology/Physiology/Physiology.html

Eric Green, Univ. Wisc. Iterated Function Systems

http://pages.cs.wisc.edu/ ergreen/honors_thesis/IFS.html

 R. Bedient, M. Frame, K. Gross, J. Lanski, B. Sullivan Higher Block IFS 1: Memory Reduction and Dimension Computations Fractals, Vol. 18, No. 2 (2010) 145-155

Brendan W. Sullivan

イロト イポト イヨト イヨト

References IV

- R. Bedient, M. Frame, K. Gross, J. Lanski, B. Sullivan Higher Block IFS 2: Relations Between IFS with Different Levels of Memory Fractals, Vol. 18, No. 4 (2010) 399-408
- M. Frame, J. Lanski When is a recurrent IFS attractor a standard IFS attractor?

Fractals, 7 (1999), 257-266.

D. Lind, B. Marcus

An Introduction to Symbolic Dynamics and Coding Cambridge Univ. Press, 1995

Brendan W. Sullivan

(ロ) (同) (ヨ) (ヨ)

References V

- **K**. Gross, R. Bedient, M. Frame Efficient memory reduction of IFS with memory
- R. Mauldin, S. Williams
 Hausdorff dimension in graph directed constructions
 Trans. Am. Math. Soc. 309 (1988) 811-829
- AI Game Programmers Guild, Rescue on Fractalus!

http://gameai.com/wiki/index.php?title=Rescue_on_Fractalus!

Applications of Fractals - Molecules

http://library.thinkquest.org/26242/full/ap/ap13.html

Fractals for the Classroom

http://www.squidoo.com/fractalsclassroom

Brendan W. Sullivan

THANK YOU

 \bigcirc

Brendan W. Sullivan

Mellon University Graduate Student Seminar