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Iterated Function Systems (IFS)

• Set of transformations from R2 to R2

– Contractions, rotations, translations

r s θ φ e f

T1 ½ ½ 0 0 0 0

T2 ½ ½ 0 0 ½ 0

T3 ½ ½ 0 0 0 ½

r s θ φ e f

T1 ½ ½ 0 0 0 0

T2 ½ ½ 90 90 1 0

T3 ½ ½ 90 90 ½ ½
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Uniqueness of Attractors

• For every set of transformations T, there 
exists a unique nonempty, compact subset 
of R2 that is fixed by T
– This is called the attractor of T

• Random IFS converges to the same 
attractor at infinity
– Varying probabilities only affects the “rate” of 

convergence
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What Convergence Means

• Continually applying each transformation to the previous generation yields 
the attractor (“at ∞”)
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• Let’s see an animation of convergence:
http://classes.yale.edu/fractals/IntroToFrac/IFS/GasketCat.html#GCAnchor

http://classes.yale.edu/fractals/IntroToFrac/IFS/GasketCat.html
http://classes.yale.edu/fractals/IntroToFrac/IFS/GasketCat.html


  

What Else Can We Do?

• We know we can get different fractals by 
changing the transformations
– We can also change the # of transformations

• What if we keep the same set of 
transformations but restrict the order in 
which they can be applied?
– Can we get new fractals?
– Does this add anything to the big picture?
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Our Standard IFS

• 4 transformations:
• T fixes the unit square, S

– S is the attractor of T

• Applying transformation 
k = “being in state k”

• A sequence of 
transitions is written as, 
for example:
1→3→3→4→2

r s θ φ e f

T1 ½ ½ 0 0 0 0

T2 ½ ½ 0 0 ½ 0

T3 ½ ½ 0 0 0 ½

T4 ½ ½ 0 0 ½ ½ 6/19



  

Addresses & Sequences

• This is how we 
gather information 
about the fractals 
we produce

7/19



  

Forbid a Pair of Transformations

• For example: T4 never 
immediately follows T1

– If we’re in state 1, we 
can’t enter state 4

• This is akin to restricting 
the allowed sequences 
of transitions so that we 
never see:

…. →1→4→ ….
• Equivalent statement 

about addresses:
– Any box with address …

41… is empty
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Forbid Multiple Pairs

• For example:
– T1 never immediately 

follows T4

– T2 never immediately 
follows T3

– T3 never immediately 
follows T2

– T4 never immediately 
follows T1
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Transition Graph

• This is a way to visualize the allowed 
transitions
– Vertices represent each state
– Directed edges represent the allowed 

transitions

• For example:
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Probability Matrix

• This is another way of encoding 
which transitions are allowed and 
which are forbidden

• P is an n x n matrix for T with n 
transformations
– j→k is allowed iff Pjk>0

• This can be simplified by knowing 
that the probabilities do not 
matter
– Will converge to the same attractor 

as the deterministic rIFS
– We only care whether Pjk is 0 or not
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Classifying Attractors

• When do we get a fractal that can be produced 
by a standard IFS without forbidden transitions?
– We call such an attractor IFS-able

• Might there be an infinite # of transformations? 
– We call such an attractor Infinitely IFS-able

• When do we get a fractal that cannot be 
produced by a standard IFS?
– We call such an attractor Non-IFS-able

• How can we determine the answer by looking at 
the transition graph and/or probability matrix?
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Full States

• We say that the state k is full iff k can 
immediately follow any other transition:
– All of 1→k, 2 →k, 3 →k, 4 →k are allowed

1 4
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Criteria for Classification

• IFS-able
– There exists a full state

• Infinitely IFS-able
– There exists a full state, and

an infinite sequence of non-full states

• Non-IFS-able
– There are no full states
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“When is a recurrent IFS attractor a standard IFS attractor?” 
M. Frame, J. Lanski, Fractals, 7 (1999), 257-266.



  

Some Classified Attractors

Finitely IFS-able Infinitely IFS-able Non-IFS-able
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Forbidding Triples

• For example, 1→1→3 is forbidden
• We ask the same question:

– When do we get a fractal that is IFS-able, Infinitely 
IFS-able, or Non-IFS-able?

– Also, when do we get a fractal that cannot also be 
generated by a 1-memory system?

• We believe we have established criteria to 
classify an attractor produced by a 2-memory 
system as IFS-able, Infinitely IFS-able, or Non-
IFS-able
– Must look at probability matrix, not transition graph
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Examples of 2-Memory Fractals

Finitely IFS-able Infinitely IFS-able Non-IFS-able

We also believe none of these 3 attractors 
are produce-able by a 1-memory system.
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Generalizing The Problem

• Open questions:
– When is an attractor produced by an n-

level memory system also produce-able 
by an m-level memory system (m ≤ n)?

– Given a fractal, what is the least integer n 
such that the attractor can be generated 
by an n-level memory IFS system?
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