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0 Introduction

1 Matchings

1.1 Matchings in Bipartite Graphs

Definition 1.1. A matching is ************

Theorem 1.2 (Hall, 1930). ************

Proof. **********

Definition 1.3. A k-factor of a graph G is a k-regular spanning subgraph of G.

Note: a 1-factor is a complete matching and a 2-factor divides G into cycles.

Theorem 1.4. Any k-regular bipartite graph has a 1-factor.

Proof. Let S ⊆ A. Then e(S,N(S)) = k|S| and e(N(S), A) = k|N(S)|. Certainly, e(N(S), A) ≥ e(S,N(S))
so |N(S)| ≥ |S|. Thus, Hall’s condition is satisfied and so ∃ a matching, i.e. a 1-factor.

Theorem 1.5 (Petersen, 1891). Every regular graph of positive, even degree has a 2-factor.

Proof. Let G be 2k-regular. Then we can find an Eulerian tour through G (i.e. a closed walk through
vertices, of the form v0v1 · · · v` = v0, that visits every edge). Replace every v by (v−, v+) and add edge
e?
i = vivi+1

********
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1.2 Matchings in General (Simple) Graphs

For a given graph G, let q(G) denote the number of odd components of G.

Theorem 1.6 (Tutte, 1947). G has a 1-factor ⇐⇒ q(G− S) ≤ |S| ∀S ⊆ V (Tutte’s Condition, or TC).

Proof. (⇒) If G has a 1-factor then
(⇐) Suppose TC holds and G has no 1-factor. Add edges to G to form G? such that G? has no 1-factor

but G? + e contains a 1-factor for any possible additional edge e. Then q(G? − S) ≤ q(G− S) ≤ |S| for all
S ⊆ V . If S = ∅ then q(G?) = 0 and |V | is even. Consider U = {v ∈ V : dG?(v) = n− 1} where n = |V |.
Notice U 6= V otherwise G? is a complete graph on n = 2k vertices, so it would have a matching.
Claim: G? − U is a disjoint union of complete graphs. Proof : Suppose not. Then ∃x, y, z such that
xy, yz ∈ E(G?) and xz /∈ E(G?). Since y /∈ U , ∃ such that yw /∈ E(G?). Let M1 be the matching in G? +xz
and M2 be the matching in G? + yw. Let H = M1∆M2. Notice H is a disjoint union of even cycles.
Case 1: xz and yw belong to different cycles. ****
Case 2: xz and yw belong to the same cycle. ******

Theorem 1.7 (Petersen). Every bridgeless cubic graph has a 1-factor.

Proof. Pick S, arbitrary. Let C be an odd component of G− S. Then e(C, S) ≥ 3. Let e be the number of
edges from S to odd components. Then 3q(G− S) ≤ e ≤ 3|S| by our assumptions. Thus, TC holds and so
G has a 1-factor.

*****
Goal for today is to state and prove a theorem stronger than Tutte’s theorem in that it implies Tutte’s

theorem and tells us some other stuff.

Definition 1.8. A graph G = (V,E) is factor-critical if G 6= ∅ and G− v has a 1-factor ∀v ∈ V .

Definition 1.9. Let Cg be the components of G. A vertex set S ⊆ V is called matchhable to CG−S if the
graph obtained by contracting components of G− S to single vertices and deleting edges within S contains a
matching of S.

The following is Theorem 2.2.3 from Diestel.

Theorem 1.10. Every graph G = (V,E) contains a vertex set S ⊆ V with the following two properties:

1. S is matchable to CG−S

2. Every component of G− S is factor-critical

Given such an S, the graph contains a 1-factor ⇐⇒ |S| = |CG−S |.

Why does this imply Tutte’s theorem? The first property of S implies |S| ≤ |CG−S | and the second
condition implies |CG−S | = q(G−S). Tutte’s condition then implies |CG−S | = q(G−S) ≤ |S|, so |S| = |CG−S |.

Proof. The 1-factor ⇐⇒ part follows from properties (1) and (2):
(⇒) If ∃ 1-factor then q(G− S) ≤ |S| ≤ q(G− S) so |S| = |CG−S |.
(⇐) If |S| = |CG−S | then match S to one vertex of each component in CG−S and then use factor-criticality
to find a matching in each component with one vertex removed (accounting for the matchability to S).

Now, to show existence of S, we use induction on |G|.
Base case: |G| = 0. Take S = ∅.
Indcutive step: Let G be given, |G| > 0 and suppose the theorem holds for graphs with fewer vertices.
Conisder the sets T ⊆ V where Tutte’s condition fails “the worst”, i.e.

d(T ) := dG(T ) := q(G− T )− |T |

is a maximum. So d(T ) ≥ d(∅) ≥ 0. Let S be a largest such set.
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Claim 1: Every component C ∈ CG−S =: C is odd.
Proof of Claim 1: Suppose some C ∈ C is even. Pick a vertex c ∈ C and let T := S ∪ {c}. WWTS
d(T ) ≥ d(S) to obtain a contradiction. Notice C − {c} has odd order and so it has at least one odd
component which is also a component of G− T . Then

d(T ) = q(G− T )− |T | ≥ q(G− S) + 1− (|S|+ 1) = q(G− S)− |S| = d(S)

and this contradicts our assumption that S was the largest set that maximumized d. This proves Claim 1.
Claim 2: Every C ∈ C is factor-critical.

Proof of Claim 2: Suppose ∃C ∈ C and c ∈ C such that C ′ := C − {c} has no 1-factor. By the inductive
hypothesis, ∃S′ ⊆ V (C ′) such that q(C ′−S′) > |S′| (using the fact that the current theorem implies Tutte’s
Theorem). Notice |C ′| is even, so if |S′| is even then q(C ′−S′) is even (since |C ′−S′| is even, too); similarly,
if |S′| is odd then q(C ′ − S′) is odd. Thus, q(C ′ − S′) ≥ |S′|+ 2, using the previously established inequality.
Furthermore, we have two equalities involving |T | := S ∪ {c} ∪ S′:

q(G− T ) = q(G− S) + q(C ′ − S′) and |T | = |S|+ 1 + |S′|

Then,

d(T ) = q(G− T )− |T | = q(G− S)− 1 + q(C ′ − S′)− |S| − 1− |S′| ≥ q(G− S)− |S| = d(S)

This proves Claim 2.
Claim 3: S is matchable to CG−S .

Proof of Claim 3: Suppose not. Then ∃S′ ⊆ S such that |NC(S′)| < |S′| by Hall’s Theorem. Let T = (S′)c

and S = S′ ∪ T . So,

d(T ) = q(G− T )− |T | ≥ q(G− S)− |NC(S′)| − |T | > q(G− S)− |S′| − |T | = q(G− S)− |S|

This proves Claim 3 and completes the proof.

Let M be any matching and kM := number of edges in M with at least 1 end in S, and let kG := number
of edges in M with both ends in G − S. Notice M satisfies kS ≤ |S| and kG ≤ 1

2 (|V | − |S| − |C|). Any
maximum matching satisfies these at equality.

Theorem 1.11 (Gallai-Edmonds Structure Theorem). Let G = (V,E) be any graph. Let D be the set of
vertices which are not covered by at least one maximal matching. Let A be the vertices in V −D which are
adjacent to at least 1 vertex in D. Let C = V −D −A. Then

1. The components of G[D] are factor critical.

2. G[C] has a perfect matching

3. The bipartite graph on A ∪ CG[D] has positive surplus viewed from A; that is, N(S) > |S| for every
S ⊆ A (S 6= ∅).

4. Any maximal matching has

• a near perfect matching of components of G[D]

• perfect matchings on components of G[C]

• matches each vertex with distinct components of G[D]

5. |M | = 1
2 (|V | − c(G[D]) + |A|), where c(·) is the number of components.

Proof. *******************

3



Definition 1.12. H has the Erdös-Posa property if there ∃f : N → R, k 7→ f(k), such that ∀k either G
contains k disjoint subgraphs, each isomorphic to a graph in H, or there is a set U ⊆ V (G) with |U | ≤ f(k)
such that G− U has no subgraph in H.

Goal: prove class of all cycles has E-P property (with f(k) ≈ 4k log k). For the rest of today, consider

rk := log k + log log k + 4 sk :=

{
4krk if k ≥ 2
1 if k ≤ 1

Lemma 1.13. Let k ∈ N and let H be a cubic (3-regular) multigraph (loops and multiple edges allowed). If
|H| ≥ sk then H contains k disjoint cycles.

Proof. Induction on k. Base case: k ≤ 1 trivial. Inductive step: Let k ≥ 2 be given and let C be a
shortest cycle in H. CLaim: H−C contains a subdivision of a cubic multigraph H ′ with |H ′| ≥ |H|−2|C|.

*** subdivision picture ***
Proof of claim: Let m be the number of edges between C and H − C. Since H is 3-regular and the

average degree of C is 2, m ≤ |C|. Now, consider the following sequence of bipartitions of V , {V1, V2}. Start
with V1 = V (C). If H[V2] has a vertex of degree ≤ 1, move it to V1. Then the number of crossing edges
decreases by ≥ 1 each time. Suppose you can do this n times, but no more. Then {V1, V2} is crossed by
≤ m − n edges. Hence H[V2] has at most m − n vertices of degree < 3 and these vertices have degree = 2
(otherwise we moved it over to V1). Now “suppress” the vertices of degree 2 in H[V2] (i.e. delete such a
vertex v and add an edge between its neighbors). This yields a cubic graph multigraph H ′. Notice

|H ′| ≥ |H| − |C|︸︷︷︸
original cycle

− n︸︷︷︸
move-over provess

− (m− n)︸ ︷︷ ︸
suppress degree 2s

≥ |H| − 2|C|

This proves the claim.
Now, we just have to show |H ′| ≥ sk−1. Corollary 1.3.5 (in Diestel) says if δ(G) ≥ 3 then g(G) ≤ 2 log |G|

(where g(·) is the girth, i.e. length of shortest cycle). So |C| ≤ 2 log |H|. Since |H| ≥ sk ≥ 6 and x− 4 log x
is increasing for x ≥ 6, we get

|H ′| ≥ |H| − 2|C| ≥ |H| − 4 log |H| ≥ sk − 4 log sk

To complete the proof WWTS sk − 4 log sk ≥ sk−1. For k = 2 we have 4 · 2 · (1 + 0 + 4)− 4 log 40 ≥ 1 = s1.
Also, notice rk ≤ 4 log k for k ≥ 3 (for k = 3 use a calculator, and for k ≥ 4 it’s obvious). So for k ≥ 3

sk − 4 log sk = 4krk − 4 log(4krk) = 4(k − 1)rk + 4 log k + 4 log log k + 16− (8 + 4 log k + 4 log rk)
≥ sk−1 + 4 log log k + 8− 4 log(4 log k) = sk−1

Theorem 1.14 (Erdös, Posa, 1965). The class of all cycles has E-P property.

Proof. Let f(k) := sk + k− 1. Let k be given and G be any graph (and assume G has a cycle, otherwise it’s
trivial). So it has a maximal (with respect to the subgraph relation) subgraph H where all degrees in H are
either 2 or 3. Let U be its set of degree 3 vertices and let C be the set of cycles in G that avoid U and meet
H in exactly 1 vertex. Let Z ⊆ V (H)−U be the set of vertices in a member of C. For each z ∈ Z, pick one
cycle Cz ∈ C and let C′ = {Cz : z ∈ Z}. The cycles in C′ are disjoint by maximality of H (otherwise take
part of cycles until first meeting point and add to H). Let D be the set of 2-regular components of H that
avoid Z. Then C′ ∪ D is a set of disjoint cycles. So if |C′ ∪ D| ≥ k then we’re done. Otherwise, take one
vertex from each D-cycle and add it to Z to get a set X of size ≤ k − 1 which meet all cycles in C and all
2-regular components of H. Consider any cycle of G which avoids X. It has to meet H by maximality. It
has to meet U because: it can’t be all in H (otherwise in D), it can’t meet H in just one vertex (otherwise
in C), and it can’t connect 2 vertices of H − U with a path outside of H, so it must hit U . So every cycle
in G meets X ∪ U . We know |X| ≤ k − 1. If |U | < sk then we have < f(k) vertices meeting each cycle. If
|U | ≥ sk, suppress all degree 2 vertices in H to get a 3-regular multigraph H ′ with |H ′| = |U | ≥ sk. Apply
the lemma.
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1.3 Tree Packing

Let G be a given graph.

Theorem 1.15 (Menger’s Theorem). If G is k-edge connected, then ∃k disjoint paths between any 2 vertices
in G.

Question: How many edge-disjoint spanning trees exist in G?
Necessary condition: k-edge connectivity.
Is this condition sufficient? No. Consider k = 2 and take a cycle with 4 vertices.
Another necessary condition: for all partitions of V (G) into r sets, each spanning tree has ≥ r−1 cross-edges
(edges with ends in different partitions).

Theorem 1.16 (Nash-Williams 1961, Tutte 1961). A multigraph G has k edge-disjoint spanning trees
⇐⇒ G has ≥ k(r − 1) cross edges for any partition of size r.

Corollary 1.17. Every 2k-edge connected multigraph G has k edge-disjoint spanning trees.

Proof of Corollary. ***** picture ⇒ G has ≥ 1
2

∑r
i=1 2k = kr ≥ k(r − 1). Open: is this bound sharp?

Set up for proof of theorem: Let G be a given multigraph and k ∈ N. Let F be the set of all
k-tuples F = (F1, F2, . . . , Fk) where the Fis are edge-disjoint spanning forests such that ‖F‖ := |E[F ]| =
|E[F1] ∪ · · · ∪ E[Fk]| is as large as possible.

If F ∈ F and e ∈ E \ E[F ] then Fi + e for i = 1, 2, . . . , k constains a cycle. For some fixed i, take e′ in
this cycle (e′ 6= e). Then setting F ′i := Fi + e − e′ and F ′j := Fj for j 6= i yields a new F ′ = (F ′1, . . . , F

′
k)

such that F ′ ∈ F . We say F ′ is obtained from F by the replacement of e′ with e. Note: for every path
x . . . y ∈ F ′i ∃!xFiy.

Consider the fixed k-tuple F 0 = (F 0
1 , . . . , F

0
k ) ∈ F . Let F0 be the set of all k-tuples that can be obtained

from F 0 by a series of edge replacements. Let E0 :=
⋃

F∈F0

(E \ E[F ]) and G0 := (V,E0).

Lemma 1.18. For any e0 ∈ E \ E[F 0] there exists U ⊆ V (G) that is connected in every F 0
i and contains

the ends of e0.

Proof. *** “we believe the lemma”

Proof of Theorem. (⇐) Induction on |G|. Base case: |G| = 2. Done. Induction step: Suppose for each
partition P of V (G), ∃ ≥ k(|P | − 1) cross edges. We will construct k edge-disjoint spanning trees.

Fix a k-tuple F 0 = (F 0
1 , . . . , F

0
k ) ∈ F . If each F 0

i is a tree, done; otherwise,

‖F 0‖ =
k∑

i=1

‖F 0
i ‖ < k(|G| − 1)

(Recall: ‖ ·‖ denotes # of edges.) We have ‖G‖ ≥ k(|G|−1) by assumption, when we consider P to be single
vertices. Thus, ∃e0 ∈ E \ E[F 0]. By the Lemma , ∃U ⊆ V (G) that is connected in each F 0

i and contains
ends of e0. In particular, |U | ≥ 2.

Since every partition of the contracted multigraph G \ U induces a partition of G with the same # of
cross edges, G \ U has ≥ k(|P | − 1) cross edges, with respect to any partition P . By induction, G \ U has k
disjoint spanning trees T1, . . . , Tk. In each Ti, replace VU by the spanning tree F 0

i ∩G[U ].
Apparently the other direction is obvious.

We say subgraphs G1, . . . , Gk partition G if their edge sets form a partition of E(G).
Question: Into how many connected spanning subgraphs can we partition a given G?
If we can answer that question, then we can answer the question: Into how few acyclic spanning subgraphs
can we partition G? Or, for a given k, which graphs can be partitioned into k forests?
Necessary: ∀U ⊆ V (G) induces ≤ k(|U | − 1) edges.
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Theorem 1.19 (Nash-Williams 1961). A multigraph G can be partitioned into at most k forests ⇐⇒
‖G[U ]‖ ≤ k(|U | − 1) for all u ⊆ V (G).

Proof. We will show: every k-tuple F = (F1, . . . , Fk) ∈ F partitions G. Suppose otherwise; then ∃e ∈
E \ E[F ]. Use the Lemma By the Lemma, ∃U ⊆ V connected in every Fi and containing ends of e.
Therefore, G[U ] has |U | − 1 edges in each Fi in addition to e, so ‖G[U ]‖ > k(|U | − 1), a contradiction.

1.4 Path Covering (for digraphs)

Definition 1.20. A path partition in a digraph D is a family of vertex disjoint directed paths that cover all
of the vertices of D. We let α(D) denote the maximum size of an independent set in D.

Theorem 1.21 (Gallai-Milgram 1960). Every digraph D has a path partition with ≤ α(D) paths.

Proof. By induction on |D|. Will show: if P is a path partition with |P| > α(D) then ∃Q with |Q| = |P|− 1
and Start(Q) ⊆ Start(P) where Start(P) is the set of starting vertices of paths in P.

****** picture
Let Pu be a path starting at u, for some u ∈ Start(P). Since |P| > α(D), ∃ ~uv where v ∈ Start(P). If

len(Pu) = 0, replace Pv by uvPv and we’re done. If len(Pu) ≥ 1, then ∃ ~uw ∈ Pu. Let D′ = D − u. Notice
α(D′) ≤ α(D). Let Q be a path partition of D′. Notice |Q| = |P| > α(D) ≥ α(D′). By induction, ∃Q such
that |Q′| = |Q| − 1 and Start(Q′) ⊆ Start(P)− {u}+ {w}.

Let µ be the size of a maximal matching in a bipartite digraph. Then the min size of a path cover is
n− 2µ+ µ = n− µ where X has n vertices. ***** picture

Corollary 1.22. König’s Theorem

Corollary 1.23 (Dilworth 1960). In every finite poset (P,≤), max size of an antichain = min size of chain
partition.

Proof. Let e be a chain partition and A the max antichain. Certainly |e| ≥ |A|. WWTS |A| chains suffice.
Use Gallai-Milgram on D with edges {(x, y) : x < y}. In this graph, antichain ↔ independent set and chain
cover ↔ path cover.

1.5 Connectivity

Definition 1.24. G is k-connected if the minimum size of a separator is ≥ k. The connectivity κ(G) =
max k such that G is k-connected.

Definition 1.25. A block is a maximal connected (sub)graph with no cut-vertex.

Examples of blocks are K1, bridges, maximal 2-connected subgraphs, etc. We can form a natural block
graph that is a bipartite graph with one set of vertices as the blocks and the other set as the cut vertices
that blocks share.

***** picture

Proposition 1.26. The block graph of a connected graph is a tree.

Proof. G is connected ⇒ the block graph is connected. Can the block graph have cycles? No, by the
maximality of blocks.

Proposition 1.27. A graph is 2-connected ⇐⇒ ∃ sequence cycle = G0, G1, . . . , Gn = G such that Gi+1 is
obtained from Gi by adding a Gi-path.

***** picture ***** “ear decomposition”
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Proof. (⇐) Trivial, since Gi 2-connected ⇒ Gi+1 2-connected.
(⇒) Given a sequence G0, G1, . . . , Gi, suppose Gi 6= G. Then ∃e ∈ E(G) − E(Gi). Let e = xy with
x ∈ V (Gi). We know G− x is connected so ∃ path from y to z ∈ V (Gi). Adding e gives Gi+1.

Theorem 1.28 (Tutte 1961). G is 3-connected ⇐⇒ ∃ seq G0, G1, . . . , Gn = G such that Gi+1 has an edge
e = xy with deg(x),deg(y) ≥ 3 and Gi = Gi+1/e.

Lemma 1.29. If G is 3-connected with |V (G)| > 4 then ∃e ∈ E(G) such that G/e is 3-connected.

Proof. Suppose not. Then ∀e = xy ∈ E(G), G/e has a cut-set of ≤ 2 vertices. We know, then, that Vxy ∈ S,
the cut-set, since κ(G) ≥ 3. Let S = {Vxy, z}. Then X = {x, y, z} is a cut-set of G ⇒ every vertex in X
has an edge to every component of G − X. Let C be the smallest component of G − X over all {x, y, z}.
Let w ∈ N(z) ∩ C. By assumption, G/f has a cut-set of size ≤ 2, so ∃v such that {v, z, w} is a cut-set of
G and each of these vertices has an edge to every component of G − {v, z, w}. Since x, y are connected, ∃
component D that does not contain x and y. Thus, ∅ 6= D ⊆ N(w) ∩ V (C), so D ( C, contradiction our
assumption that C was the smallest such component. ******* picture *********

Proof of theorem. (⇒) by Lemma
(⇐) K4 is 3-connected. Suppose Gi is 3-connected but Gi+1 is not. Then Gi = Gi+1/e (e = xy) where
Gi+1 is 2-connected. Let S be a cut-set of size ≤ 2; let C1, C2 be two components of Gi+1 − S. Since x, y
are connected, we may assume V (C1) ∩ {x, y} = ∅. Also, C2 cannot contain both x and y (otherwise S
is a cutset of Gi), nor can it contain any v /∈ {x, y} (otherwise Vxy will be disconnected from C1 in Gi by
removing ≤ 2 vertices). This is a contradiction of the degree assumption!

Theorem 1.30 (Tutte’s Wheel Theorem). Every 3-connected graph can be obtained by the following proce-
dure:

• Start with K4

• Given Gi pick a vertex v

• Split into v′ and v′′ and add edge {v′, v′′}

Today we decide whether k-connectivity is equivalent to having k independent paths.

Definition 1.31. Let A,B ⊆ V (G). An A − B path is a path P = (u, . . . , v) where P ∩ A = {u} and
P ∩B = {v}.

A set S is an A−B separator if there is no A−B path in G− S.

Theorem 1.32 (Menger 19217). The minimum size of an A−B separator = maximum number of disjoint
A−B paths.

Proof. Let k = min size of an A − B separator. Clearly #paths ≤ k. We will construct k disjoint A − B
paths, by induction on |E(G)|.
Base: |E(G)| = 0. Here |A ∩B| = k and k vertices form trivial paths.
Inductive: Suppose xy = e ∈ E(G). Consider G/e. Put Vxy in A or B (or both) if x or y is in A or B.
Suppose the max # of disjoit A − B paths in G is ≤ k − 1. Then the same holds in G/e. By induction,
∃A−B separator S′ of size ≤ k − 1 and Vxy ∈ S′ (otherwise S′ is an A−B separator in G).
Now, S = S′ \{Vxy}∪{x, y} is a separator in G of size k. Consider G′ = G− e. Note: every A−S separator
and every S − B separator is also an A − B separator; therefore, the mnimum size of an A − S separator
is ≥ k. By induction, ∃k disjoint paths from A to S, likewise from S to B. These paths cannot intersect
outside A ∪ S ∪B. Since |S| = k, combine the 2 sets of paths. Done.

Definition 1.33. Suppose B ⊆ V (G) and a ∈ V (G) \ B. An a − B fan is a set of paths from a to B that
intersect only at a.
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Corollary 1.34 (Fan Theorem). Min # of vertices needed to separate a from B = max size of an a − B
fan.

Proof. Apply Menger’s Theorem to A = N(a) and B.

Corollary 1.35 (Local Version of Menger’s Theorem). 1. If ab /∈ E(G), then min size of a− b separator
= max # internally disjoint a− b paths.

2. If a 6= b, min # edges needed to separate a from b = max # edge disjoint a− b paths.

Proof. 1. Apply Menger’s Theorem to A = N(a) and B = N(b).

2. Apply Menger’s Theorem to the line graph of G: A = E(a) := {e ∈ E(G) : e is incident to a} and
B = E(b).

Corollary 1.36 (Global Version of Menger’s Theorem). 1. G is k-connected ⇐⇒ ∃k independent paths
between any 2 vertices.

2. G is k-edge-connected ⇐⇒ ∃k edge-disjoint paths.

Proof. 1. Done except when ab ∈ E(G) (rest follows from Local Version 1). Suppose ab ∈ E(G) and let
G′ = G− ab. If G′ has k− 1 disjoint a− b paths, we’re done, so suppose otherwise. Then we know the
max # disjoint a − b paths in G′ is ≤ k − 2 and so, by Menger’s Theorem, ∃ an a − b separator S of
size ≤ k − 2. Since |V (G)| > k, ∃w /∈ S ∪ {a, b}. S is either an a − w separator or a b − w separator
(otherwise ∃ an a− b path not hitting S), but S ∪ {b} is an a−w separator in G of size k− 1. This is
a contradiction.

2. Follows from the Local Version 2.

Definition 1.37. A graph G is k-linked if for any two sets of size k (say, with vertices {a1, . . . , ak} and
{b1, . . . , bk}) we can find disjoint paths from ai to bi.

Observation: k-linked ⇒ k-connected.
Question: If a graph is f(k)-connected, can this be enough to guarantee k-linked? Is this even possible? If
so, for which f(k) is this true?

Theorem 1.38 (Jung, Larman, Mani 1970). If a graph is 210k2
, this be enough to guarantee k-linked.

Observation: If graph is k-connected then the average degree ≥ minimum degree ≥ k.

Proposition 1.39. If a graph has average degree d, then it has a subgraph with all degrees > d
2 .

Proof sketch, algorithmic. Algorithm for finding that subgraph: if we have any vertex of degree ≤ d
2 , throw

it away. Question: Why does this stop before all vertices gone? Answer: As we do this, the average degree
is nondecreasing (basically...). The condition E ≥ d

2n is preserved.

New E = Old E− degree of deleted vtx ≥ Old E− d

2
≥ d

2
n− d

2
=
d

2
(n− 1)

Proposition 1.40. If all degrees in graph are ≥ δ then graph has cycle of length ≥ δ + 1.

Proof. Suppose you take the longest path and let v be the last vertex. All neighbors of v must fall back onto
path, otherwise there’s a longer path. Since there are ≥ δ such neighbors, choose the furthest one from v
along the path and close the path to make a cycle. This has length ≥ δ + 1.
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Corollary 1.41. If average degree ≥ d then we have a cycle of length ≥ d
2 + 1.

Definition 1.42. A graph has a topological Kr minor if ∃r branch vertices and
(
r
2

)
vertex-disjoint paths

connecting them.

Question: What average degree, if any, is enough to guarantee existence of a topological Kr minor?

Remark 1.43. Turán’s Theorem says average degree ≥≈ r−2
r−1n ⇒ Kr subgraph. We hope for a bound that

does not depend on n.

Lemma 1.44. Average degree ≥ 2(r
2) ⇒ we have a topological K − r minor.

Proof. Consider only r ≥ 3. Induction (on m): Prove the statement: average degree ≥ 2m where m =
r, r + 1, . . . ,

(
r
2

)
then we have a topological minor with r vertices and m edges (topologically, meaning we

have r branch vertices and some m vertex-disjoint paths between them).
Base case: Given average degree d ≥ 2r, find a topological minor with r vertices and r edges, i.e. an
r-cycle. By the previous proposition/observation, we have a cycle of length ≥ 2r−1 + 1 ≥ r. We can turn
this topologically into an r-cycle by choosing r of the vertices if the length is > r.
Inductive step: Assume true for m − 1. Given average degree d ≥ 2m. Would be nice if we could get
a connected set U such that inside N(u) the average degree is ≥ 2m−1. Then, by induction we can find a
topological copy of r vertices with m − 1 edges. Connected back to U gives us an extra edge to make m,
since U is connected. Now, we need to find such a set U .
Since the average degree ≥ 2m in all of G some component of G has average degree ≥ 2m, so WOLOG G
is connected. Pick U maximal such that U is connected and if U is contracted then edges

vtxs ≥ 2m−1. Suppose
deg(v) inside N(U) is < 2m−1. Then what if we were to add v to U? U would still be connected, and after
contracting U + v then nw edges ≥ 2m−1(vtxs)− 2m−1. This contradicts U being maximal. We know such
a U exists because we can pick U to be any one vertex with high degree.

Theorem 1.45. If a graph is
(
≥ 2(3k

2 ) + 2k
)

-connected then it is k-linked.

Proof. Fix any vertex sets {a1, . . . , ak} and {b1, . . . , bk} and find disjoint paths between each ai and bi.
Find a topological K3k; notice it’s still ≥ 2(3k

2 )-connected. Menger’s Theorem allows us to connect 3k
branch vertices with 2k vertex-disjoint paths **** picture **** while minimizing the # of edges not on the
topological K3k. Let c1, . . . , ck be the unused branch vertices. **** picture **** show there can’t be crossing
of topological T path and Menger M path.

Theorem 1.46 (Thomas, Wollan 2005). 2k-connected and average degree ≥ 10k ⇒ k-linked.

Note: 10k-connected implies hypotheses of theorem.

Corollary 1.47. Average degree ≥ 8r2 ⇒ ∃ topological Kr minor.

Proof. (Mader’s Theorem, Diestel Thm 1.4.3) ⇒ have subgraph which is ≥ r2-connected and has average
degree ≥ 5r2 ⇒ 1

2r
2-linked. Pick r branch vertices and r − 1 neighbors of each. This is r2 vertices and can

dictate links between all 1
2r

2 pairs of vertices.

Let G = (V,E) with an enumeration of the edges e1, e2, . . . , em. We want to define a vector space with
m dimensions.

Definition 1.48. Formally, we let G = (V,E) be a fixed graph with |V | = n and |E| = m. The edge
space E(G) is the vector space over F2 of all functions f : E → F2 with the usual vector addition on F2 (so
this corresponds to the symmetric difference ∆ of two subgraphs of G). Note: a basis for the edge space is
{{e1}, {e2}, . . . , {em}}.
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For any subspace F ⊆ E(G), let

F⊥ = {D ∈ E(G) : 〈F,D〉 = 0 ∀F ∈ F}

where

〈F, F ′〉 =
m∑

i=1

λiλ
′
i for F = (λ1, . . . , λm), F ′ = (λ′1, . . . , λ

′
m)

Notice dimF + dimF⊥ = m.

Definition 1.49. The cycle space C = C(G) is the subspace of E(G) spanned by all cycles in G.

Question: What is dim C? Goal: Prove dim C = m − n + 1 (when G is connected, otherwise we just
consider each component separately).

Proposition 1.50. The induced cycles in G generate its entire cycle space.

Proof. By induction on the number of vertices in a given cycle.

Proposition 1.51. TFAE:

1. F ∈ C(G).

2. F is a disjoint union of (edges sets of) cycles.

3. All vertex degrees of the graph (V, F ) are even.

Proof. (1)⇒(3): Symmetric difference preserves the even parity.
(3)⇒(2): Induction on |F |. If F 6= ∅ then F contains a cycle C. Remove those edges and repeat.
(2)⇒(1): By definition, disjoin union is a sum of vectors.

Definition 1.52. The cut space of G is *****************

Proposition 1.53. Together with ∅, the cuts in G form a subspace C?. This space is generated by cuts of
the form E(v).

Example 1.54. ******* picture

Proof. Let C? denote the set of all cuts in G, plus ∅. WWTS D,D′ ∈ C? ⇒ D + D′ ∈ C?. Recall
D +D′ = D∆D′. Set V̂1 = (V1 ∩ V ′1) ∪ (V2 ∩ V ′2) and V̂2 = (V1 ∩ V ′2) ∪ (V2 ∩ V ′1). Then D +D′ corresponds
to all edges between V̂1 and V̂2, so it is also a cut. (“pick the diagonal”, essentially)

Next, E(V1, V2) =
∑

v∈V1
E(v). ********** picture

Definition 1.55. A minimal non-empty cut in G is a bond.

Remember: minimal in the sense of containment of the sets of crossing edges.

Example 1.56. ************** pictures

Observation: A cut is a bond (in a connected graph) ⇐⇒ both sides of the corresponding vertex
partition are conneceted induced subgraphs.

Proposition 1.57. Every cut is a disjoint union of bonds.

Proof. Take D ∈ C?. Look at the components of V1 and V2 .... ************

Theorem 1.58. The cycle space C and the cut space C? of any graph satisfy

1. C = (C?)⊥ and

2. C? = C⊥
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Proof. (1) WWTS C ⊆ (C?)⊥. Note that any cycle in G has an even number of edges in each cut. Also,
observe that 〈F, F ′〉 = 0 ⇐⇒ F and F ′ have an even number of edges in common. So 〈C,D〉 = 0 for all
D ∈ C?.
For the other direction, WWTS F /∈ C ⇒ F /∈ (C?)⊥. So ∃v ∈ V (F ) such that deg(v) is odd. So then
〈E(v), F 〉 = 1.

(2) It suffices to show that C? = ((C?)⊥)⊥. [This is true, for free, assuming some knowledge of finite-
dimensional vector spaces.]
First, F ∈ C? ⇒ ∀F ′ ∈ (C?)⊥ we have 〈F, F ′〉 = 0. Next, dim C? + dim(C?)⊥ = m = dim(C?)⊥ +
dim((C?)⊥)⊥.

Definition 1.59. Let G be a given connected graph and let T be a spanning tree of G. Let e ∈ E(G)\E(T ).
Then Ce is the fundamental cycle with respect to T .

Definition 1.60. Given G and T a spanning tree and e ∈ E(T ), then De is the fundamental cut.

Theorem 1.61. Let G be a fixed connected graph and let T be a fixed spanning tree of G. Then the
corresponding fundamental cycles and cuts form a basis of C and C?, respectively. Also, dim C = n−m+ 1
and dim C? = n− 1.

Proof. Pick e ∈ E(T ) and try to write the fundamental cut as a sum. You can’t! So the set of fundamental
cuts is a linearly independent subset of C?, and thus dim C? ≥ n− 1. Similarly, dim C ≥ m− n+ 1. Now,

dim C? + dim C = m = (n− 1) + (m− n+ 1) ≤ dim C? + dim C

so they’re all equal.
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