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0 Introduction

0.1 What is CM?

What is Continuum Mechanics? Essentially, it is a set of axioms that extend
Newton’s Laws for the motion of particles to the behavior of continua. Recall
that Newton’s Laws for particles are:

• Particles have mass m

• Positions are characterized by position x(t) ∈ Rd (where d = 3, usually)
and velocity v(t) = ẋ(t), etc. This is kinematics.

• forces f(t) act on the particles and mẍ(t) = f(t). This is dynamics.

0.2 Systems of Particles

Consider a collection of particles with masses mi and positions xi(t) ∈ R3 with
forces f

i
(t) acting on them. We can now write down Newton’s Laws for each

particle, at least.

miẍi(t) = f
i
(t)⇒

(∑
i

mixi

)··
=
∑
i

f
i

This roughly corresponds to an “integral over a body” when we take the number
of particles to infinity. We now define the center of mass to be

xC(t) =
1
M

∑
i

mixi(t) , M :=
∑
i

mi

which is really a weighted average. Then,

MẍC(t) =
∑
i

f
i
(t)
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We now decompose the forces into external and interparticle forces

f
i

= fe
i

+
∑
j 6=i

f
ij

and so

MẍC =
∑
i

fe
i

+
∑
j 6=i

f
ij


Next, we use Newton’s Third Law, f

ij
= −f

ji
, to eliminate the second term in

the sum, yielding
MẍC =

∑
i

fe
i

Example 0.1. We may have gravitational forces, where fe
i

= mig so Mg =∑
i f

e

i
.

0.2.1 Angular Momentum about a point

Consider a point x0(t). Then

L0(t) =
∑
i

(xi(t)− x0(t))×miẋi(t)

and so

L̇0(t) = −ẋ0 ×

(∑
i

miẋi

)
+
∑
i

(xi − x0)×miẍi

= −Mẋ0 × ẋC +
∑
i

(xi − x0)× f
i

Recall that we write f
i

= fe
i

+
∑
i6=j f ij , so we can simplify the last term in the

line above by utilizing the Newtonian assumptions f
ij

= −f
ji

and f
ij
‖xi − xj .

This allows us to cancel many terms and conclude

L̇0(t) = −Mẋ0 × ẋC +
∑
i

(xi − x0)× fe
i

We can now make convenient and natural choices for x0, namely either some
fixed x0 ∈ R3 independent of t or x0 = xC . In the second case, we would just
have the second term remaining, since ẋC × ẋC = 0.

Example 0.2. Uf fe
i

= mig (gravity), then

M (xi − x0)× g =
∑
i

(xi − x0)× fe
i

The formula MẍC = F =
∑
i f

e

i
and L̇0 =

∑
i (xi − x0)× fe

i
gives a system

of 6 ODEs for certain averages of a system of particles.
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0.2.2 Rigid Motions

Consider motions of particles where |xi(t)− xj(t)| = |Pi −Pj |, with Pi = xi(0).

Theorem 0.3. Assume X : Rd : Rd satisfies |X (p) − X (q)| = |p − q| for all
p, q ∈ Rd. Then ∃x0 ∈ Rd and Q ∈ Rd×d an orthogonal matrix (i.e. QTQ = I)
such that X (p) = x0 +Qp.

The matrix Q represents a rotation. If a system is undergoing a rigid motion,
then we know

xi(t) = x0(t) +Q(t)p
i

and notice, then, that

ẋi = ẋ0 + Q̇QTQp
i

= ẋ0 + Q̇QT (xi − x0)

Also, note that Q̇QT + QQ̇T = 0, so Q̇QT = −QQ̇T = −(Q̇QT )T , i.e. Q̇QT is
skew symmetric. Let W := Q̇QT . Then, Wa = ω × a, where

W =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0


Thus, ẋi(t) = ẋ0(t) + ω(t)× (xi(t)− x0(t)) and Q̇ = W (ω)Q.

Note that the space of orthogonal matrices is a set of 2 3-manifolds in the
9-D space R3×3 (we have 2 since detW = ±1).

If we selct the origin at t = 0 to be the origin, i.e. 1
M

∑
imiϕi = 0, then

xc(t) =
1
M

∑
i

mixi(t) =
1
M

∑
i

mi

(
x0(t) +Qp

i

)
= x0(t) +Q

(
1
M

∑
i

mipi

)
= x0(t)

i.e. with this choice of origin at t = 0, we have

xi(t) = xC(t) +Q(t)p
i

For angular momentum, we have

LC =
∑
i

(xi − xc)×miẋi

We now use x = xC + Qp and ẋ = xC + ω × (xi − xC) and the identity
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a× (b× c) = (a · c)b− (a · b)c to write

LC =
∑
i

Qp
i
×mi

(
xC + ω ×Qp

i

)
= Q

∑
i

mipi × xC +
∑
i

miQpi × (ω ×Qp
i
)

=
∑
i

mi

(
|Qp

i
|2ω − (Qp

i
· ω)Qp

i

)
=
∑
i

mi

(
|p
i
|2QQTω −Q(p

i
⊗ p

i
)QTω

)
= Q

∑
i

mi

(
|p
i
|2I − p

i
⊗ p

i

)
QT =: QJ0Q

T

which is independent of t. We will use the notation J0 to denote the sum term
above. We can now write LC = J(t)ω(t) where

J(t) = Q(t)J0Q
T (t)

Let’s summarize where we stand thus far:

MẍC = F =
∑
i

fei

(Jω)· = NC =
∑
i

(xi − xC)× fei

Q̇ = W (ω)Q where W (ω)a = ω × a

We can simplify the expression (Jω)· by using the relation W = Q̇QT = QQ̇T

and write

(Jω)· =
(
QTJ0Qω

)·
= Jω̇ + Q̇(QTQ)J0Q

Tω +QJ0(QTQ)Q̇Tω
= Jω̇ +WJω + JWω = Jω̇ + ω × Jω + Jω × ω
= Jω̇ + ω × Jω = NC

0.3 Rigid Bodies

We have some set Br ⊂ R3 and a map x = xC(t) +Q(t)p to a new set B(t). We
assume the following:

1. The continuum Br can be “approximated” by a collection of particles
{mi}Ni=1 with initial positions {p

i
}Ni=1 undergoing a rigid motion.

2. If ϕ : R3 → R3 is a smooth function, then

lim
N→∞

N∑
i=1

ϕ(p
i
)mi =

∫
Br

ϕ(p)ρr(p) dp

where ρr : R3 → [0,∞) is the mass density of Br.
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Observe that

xC =
1
M

∑
i

mixi =
1
M

∑
i

mi

(
x0(t) +Q(t)p

i

)
= x0(t) +

1
M
Q(t)

(∑
i

mipi

)

and so
x0(t) +Q(t)

1
M

∫
Br

pρr(p) dp

We select the origin in the configuration so that
∫
pρ(p) dp = 0. We have

MẍC = F =
∑
i

fi =
∑
i

(
fi
mi

)
mi

and we are thinking of mi → 0. If, for example, fi
mi

= g(xC(t) + Qp
i
) with g

the gravitational force at xi, then we have

MẍC =
∫
Br

f(xC +Qp)ρr(p) dp

Note: under the change of variables x = xC +Qp, so dx = detQdp = dp, then

MẍC =
∫
B(t)

g(x, t)ρr
(
QT (x− xC)

)
dx

This shows a fundamental dichotomy of knowledge; when we integrate
∫
f(··)ρ(·)

versus
∫
f(·)ρ(··), we know either the force or the point but not both. So as we

let mi → 0, we have

J0 =
∑
i

mi

(
|p
i
|2I − p

i
⊗ p

i

)
→
∫
Br

(
|p|2I − p⊗ p

)
ρr(p) dp

where we think of ρr(p) dp as a measure.

1 Balance Laws

1.1 Balance of Mass

Note that we don’t discuss the “conservation” of mass. The content here is
found in Chapter 3 of Gurtin’s book.

Assumptions:

• We are given a reference configuration of a body Br ⊆ Rd, where the
set Br is measurable.

• Kinematics. We have a measurable map X : Br → Rd.
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• Mass density. The measurable function ρr : Br → [0,∞) represents the
density in the reference configuration

In some sense, this set of assumptions is minimal. We don’t require everything
to be continuous, say, but measurability is mathematically essential.

Definition 1.1. The mass density ρ : Rd → [0,∞) is the function characterized
by ∫

Rd
ϕ(x)ρ(x) dx =

∫
Br
ϕ
(
X (p)

)
ρr
(
p
)
dp ∀ϕ ∈ Cc(Rd)

where
Cc(Rd) = {ϕ : Rd → R with compact support}

This is roughly akin to the “push-forward” of a measure.

Example 1.2. If A1, A2 ⊂ Br both get mapped into a set A ⊂ B, then we can
take ϕ(x) = χA(x), the characteristic function of the set A, and find that∫

Rd
ϕρ dx =

∫
A

ρ dx⇒
∫
Br

(ϕ ◦ X )ρr dp =
∫
A1∪A2

ρr dp

so ρ = 2.

Remark 1.3. If B = X (Br) then ρ vanishes outside B; i.e. supp(ρ) ⊆ B.

Classical statements: Assume X : Br → Rd is a diffeomorphism onto its
range B = X (Br). Under the change of variables x ∈ X (p) we have

dx = det
[
∂x

∂p

]
dp where

[
∂x

∂p

]
iα

=
∂xi
∂pα

Standard notation: We write F =
[
∂x
∂p

]
to be the Jacobian of the change of

variables; it is also called the deformation gradient. Then the balance of mass
says∫

Rd
ϕ(x)ρ(x) dx =

∫
Br

(ϕ◦X )(ρ◦X ) det(F ) dp =
∫
Br

(ϕ◦X )ρr dp ∀ϕ ∈ Cc(Rd)

Localization (as in the method of Calculus of Variations) yields

(ρ ◦ X ) det(F ) = ρr ⇒ ρ(x) =
ρr(p)

det(F (p))

where x = X (p). This is useful for solid mechanics when we want to compute
x = X (p).
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1.1.1 Calculus

Chain rule. Consider a time dependent motion X (t, ·) : Br → B(t) ⊆ Rd.
Consider the change of variables x = X (t, p). Given ϕr(t, ·) : Br → R, define
ϕ(t, ·) : B → R by ϕ(t, x) = ϕr(t, p). Then,

∂ϕ

∂t
�p=

∂ϕ

∂t
+
∑
i

∂ϕ

∂xi

∂xi
∂t

�p= ϕt + v · ∇ϕ

where �p indicates we are keeping p constant, and v(t, x) = ẋ(t, p) and ẋ = ∂x
∂t �p.

Definition 1.4. The convective derivative of ϕ(t, ·) : B → R is ϕ̇ = ϕt+v ·∇ϕ.

Derivative of the Jacobian. We write

Ḟiα =
∂

∂t
�p F (t, p)iα =

∂

∂t

∂xi
∂pα

(t, p) =
∂

∂pα

∂xi
∂t

=
∂ẋi
∂pα

=
∑
j

∂vi
∂xj

∂xj
∂pα

=
∑
j

∂vi
∂xj

Fjα

and notice that the last expression above is a matrix product. We write

Ḟ = (∇v)F where (∇v)ij =
∂vi
∂xj

If we write F = F (t, x) then the equation becomes

(Fiα)t + v · ∇Fiα = (∇vF )iα

and we write
Ft + (v · ∇)F = (∇v)F

where the operation (v · ∇) is done component-wise on F .

Remark 1.5. Given ρr : Br → [0,∞), we define ρ by ρ dx = ρr dϕ and think of
it as the “push-forward” of a measure or the Radon-Nikodym derivative. That
is, we require∫

Br
ϕ · X (ϕ)ρr(ϕ) dϕ =

∫
Rd
ϕ(x)ρ(x) dx ∀ϕ ∈ Cc(Rd)

Classical case: If X : Br → B is a diffeomorphism (smooth enough) with
Jacobian F =

[
∂xi
∂pα

]
, where x = X (ϕ), then

ρ(x) =
ρr(ϕ)

det(F (ϕ))

Note: this is the static (equilibirum) problem, with no time. Now, let’s consider
the same problem with time.
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1.1.2 Evolutionary form

Let X : (0, T )× Br → Rd. Then∫
Br
ϕ · X (t, ϕ)ρr(ϕ) dϕ =

∫
Rd
ϕ(t, x)ρ(t, x) dx ∀Cc

(
(0, T )× Rd

)
We still get

ρ(t, x) =
ρr(ϕ)

det (F (t, ϕ))

where x = X (t, ϕ).
Chain rule: ϕ(t, x) = ϕr(t, ϕ) under x = X (t, ϕ), a family of (smooth

enough) diffeomorphisms. Given ϕr : (0, T )× Br → R, then

ϕ(t, x) = ϕr
(
t,X−1(t, x)

)
Alternatively, given ϕ : (0, T )× B(t)→ R, define

ϕr(t, ϕ) = ϕ (t,X (t, ϕ))

So,

ϕ̇r(t, ϕ) =
∂

∂t
�ϕ ϕr(t, ϕ) = ϕt(t, x) + (v · ∇)ϕ(t, x)

Derivative of Jacobian. Recall F =
[
∂xi
∂pα

]
. Then, using v(t, x) = ẋ(t, ϕ),

we have
Ḟiα =

∂

∂t
�ϕ

∂xi
∂pα

=
∂ẋi
∂pα

=
∑
j

∂vi
∂xj

∂xj
∂pα

and thus Ḟ = (∇v)F . Note that ∇v is a matrix with entries (∇v)ij = ∂vi
∂xj

.
Gurtin uses the notation L = ∇v. Also, we point out that Roman indices (like
i) are used for “real world” variables, and Greek indices (like α) are used for
“reference” variables.

Derivative of determinant. Observe that

det (A+ δA) = det
(
A
(
I +A−1δA

))
= det(A) det

(
I +A−1δA

)
= det(A)

(
1 + tr

(
A−1δA

)
+O(δA2)

)
and so

det(A+ δA)− det(A) = det(A)tr
(
A−1δA

)
+O(δA2)

Recall the Frobenius inner product on matrices A,B ∈ Rd×d, defined by

A : B =
∑
i,j

AijBij ≡
∑
i

∑
j

Aij(BT )ji =
∑
i

(ABT )ii = tr(ABT )

Similarly, one can show

A : B = tr(ABT ) = tr(ATB) = tr(BTA) = tr(BAT )
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and so |A|2 = A : A = tr(ATA). This implies

det(A+ δA)− det(A) = det(A)
(
A−T : δA

)
+O(δA2)

That is,
∂ det(A)
∂Aij

= det(A)
(
A−T

)
ij

which is sometimes written as D det(A) = det(A)A−T . Thus,

ρ̇(t, x) =
−ρr(ϕ)

det (F (t, ϕ))2 det(F )·

= − ρr
det(F )2

det(F )
(
F−T : Ḟ

)
= − ρr

det(F )
(
F−T : (∇v)F

)
= −ρ (I : ∇v) = −ρ div(v)

where we have used the facts that A : BC = BTA : C = ACT : B and
I : A = tr(A). Finally, we can write

ρt + v · ∇ρ+ ρdiv(v) = 0⇒ ρt + div(ρv) = 0

Reynolds transport formula. Suppose X : (0, T )× Br → B(t) ⊆ Rd is a
family of diffeomorphisms and ϕ : (0, T )× Rd → R is smooth. Then,

d

dt

∫
B(t)

ϕ(t, x)ρ(t, x) dx =
d

dt

∫
Br
ϕ ◦ X (t, ϕ)ρr(ϕ) dϕ

=
∫
Br
ϕ̇ ◦ X (t, ϕ)ρr(ϕ) dϕ

(1)

so then
d

dt

∫
B(t)

ϕρ dx =
∫
B(t)

ϕ̇ρ dx

where B(t) is the image of Br under X and ρ is the density on B(t) under X .
Leibniz’s Formula. In 1-D,

d

dt

∫ b(t)

a(t)

f(t, x) dx =
∫ b(t)

a(t)

ft(t, x) dx+ f (t, b(t)) b′(t)− f (t, a(t)) a′(t)

and in many-D

d

dt

∫
B(t)

f(t, x) dx =
∫
B(t)

ft(t, x) dx+
∫
∂B(t)

fvn da

where vn(t, s) is the normal velocity of the point s ∈ ∂B(t). We often write
vn = v · n where v(t, x) is the velocity of points x ∈ ∂B(t) and n(t, s) is the
normal at s ∈ ∂B(t).
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Note: if R ⊆ Rd is a fixed region, then the divergence theorem implies

0 =
∫
R
ρt + div(ρv) dx =

∫
R
ρt +

∫
∂R

ρv · n

and therefore
d

dt

∫
R
ρ = −

∫
∂R

ρv · n

1.2 Balance of Momentum

Q: How can we generalize Newton’s Laws?
Kinematics: Suppose X : (0, T ) × Br → B(t) ⊆ Rd is a smooth family

of diffeomorphisms. Given a “part” Pr of the body Br (i.e. Pr ⊆ Br) at the
current location P(t) ⊆ B(t), then

1. The linear momentum of Pr is

I(t,Pr) :=
∫
P(t)

ρv dx =
∫
Pr
ρrẋ

and

2. the angular momentum of P about 0 ∈ Rd is

a(t,Pr) :=
∫
P(t)

(x− 0)× ρv dx

Q: What forces act on P(t)? First, there are external forces per unit volume,
denoted by b(t, x). The external force acting on P(t) is

∫
P(t)

b(t, x) dx. What
about the force that B(t) \ P(t) exerts upon P(t)? To answer this, we follow
the ideas of Cauchy.

Cauchy’s Hypotheses

1. The force exerted on a part P(t) of a body B(t) by the complement B(t) \
P(t) can be represented as a surface attraction (force per unit area) acting
on ∂P(t), so that the force is

∫
∂P(t)

s

2. The surface traction at x ∈ ∂P(t) can be expressed as a function of the
form s(t, x, n), so that s only depends on ∂P(t) via the normal vector n.

Note: If P1(t),P2(t) are two parts of the body with a point x ∈ ∂P1 ∩∂P2 with
common normal vector, then the traction that B \P1 exerts on P1 at x is equal
to the traction that B \ P2 exerts on P2 at x. Notation from Gurtin: A force
“system” for Br is a pair (b(t, x), s(t, x, n)) of body forces and tractions.
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1.2.1 Classical statements of balance of momentum

d

dt

∫
P(t)

ρv dx =
∫
P(t)

b dx+
∫
∂P(t)

s du

⇒ d

dt

∫
P(t)

(x− 0)× (ρv) dx =
∫
P(t)

(x− 0)× b dx

=
∫
∂P(t)

(x− 0)× s da

Remark 1.6. If the balance of linear momentum holds and the balance of angular
momentum about 0 holds, then the balance of angular momentum holds about
any 0′ ∈ Rd

Proof. Observe that

d

dt

∫
P(t)

(x− 0′)× ρv −
∫
P(t)

(x− 0′)× b−
∫
∂P(t)

(x− 0′)× s

=
d

dt

∫
P(t)

(x− 0)× ρv −
∫
P(t)

(x− 0)× b−
∫
∂P(t)

(x− 0)× s

− (0− 0′)×

(
d

dt

∫
P(t)

ρv −
∫
P(t)

b−
∫
∂P(t)

s

)
= 0 + 0 = 0

We summarize here the classical statements for Linear Momentum

d

dt

∫
P(t)

ρv =
∫
P(t)

b+
∫
∂P(t)

s ∀P(t) = X (t,Pr),Pr ⊆ Br (2)

and Reynolds’ form thereof,∫
∂P(t)

ρv̇ =
∫
P(t)

b+
∫
∂P(t)

s (3)

as well as Angular Momentum

d

dt

∫
P(t)

(x× v)ρ =
∫
P(t)

x× b+
∫
∂P(t)

x× s (4)

and Reynolds’ form thereof∫
P(t)

(x× v̇)ρ =
∫
P(t)

x× b+
∫
∂P(t)

x× s (5)

since (x× v)· = ẋ× v + x× v̇ = 0 + x× v̇.
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Theorem 1.7 (Cauchy). Suppose Br undergoes a classical motion (i.e. smooth
diffeomorphisms) subjected to a (smooth) force system (b, s) and assume the
postulates of Cauchy hold (i.e. s = s(t, x, n)). Then a necessary and sufficient
condition for the Balance of Linear Momentum to hold is the existence of a
stress tensor T = T (t, x) for which

1. s(t, x, n) = T (t, x)n, and

2. ρv̇ = div(T ) = b where

div(T )i =
3∑
j=1

∂

∂xj
Tij =

∑
j

Tij,j

In this situation, the Balance of Angular Momentum holds ⇐⇒ T = TT .

Proof. (⇒) Fix t > 0 and x ∈ B(t) and write s(n) = s(t, x, n).
Step 1: Let {ei}3i=1 be a basis for R3 and let k ∈ S2 be a unit vector

such that k · ei > 0. Let Kε be the right tetrahedron with center x and force
normal K with volume ε3. Select P(t) = Kε. (Note that the normal to the
xz, xy, yz coordinate planes of the tetrahedron are −e2,−e3,−e1 respectively,
and the normal to the skew plane is k.) Now, the Balance of Linear Momentum
states

1
ε2

∫
∂Kε

s(n) =
1
ε2

∫
Kε

(ρv̇ − b) = O

(
|Kε|
ε2
‖ρv̇ − b‖L∞

)
= O(ε)

Note the following fact:

1
|Bε(x)|

∫
Bε(x)

f(y) dy −−−→
ε→0

f(x)

So then,

1
ε2

∫
∂Kε

s(n) =
1
ε2

(
3∑
i=1

∫
Ai

s(−ei) +
∫
A0

s(k)

)

=
1
ε2

(
3∑
i=1

|Ai|s(−ei) + |A0|s(k) + |∂K|o(1)

)

=
|A0|
ε2

(
3∑
i=1

|Ai|
|A0|

s(−ei) + s(k) + o(1)

)

since the normals are constant on the faces, s(t, ·, n) is continuous, and both
|A0|, |∂Kε| = O(ε2). Also, note that |Ai||A0| = k · ei. This tells us

O(ε) =
1
ε2

∫
∂Kε

s(n) = C ·

(
3∑
i=1

(k · ei)s(−ei) + s(k) + o(1)

)
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Letting ε→ 0, we find

s(k) =
3∑
i=1

−(k · ei)s(−ei) for k · ei > 0 , i = 1, 2, 3

Step 2: Note that s(ei) = −s(−ei). This follows because s(t, x, n) is con-
tinuous in k ∈ S2, so we may let k → ei and so

s(ei) = lim
k→ei

s(k) = lim
k→ei

3∑
j=1

−(k · ej)s(−ej) = −s(−ei)

Thus,

s(k) =
3∑
i=1

(k · ei)s(ei) ∀k ∈ S2 with k · ei ≥ 0

where we have applied continuity to relax the condition to ≥ 0.
Step 3: Let k ∈ S2 be arbitrary and define ēi = sgn(k · ei)ei = ±ei. Then

{ēi}3i=1 is an orthonormal basis for R3 and k · ēi ≥ 0 for i = 1, 2, 3. Thus,

s(k) =
3∑
i=1

(k · ēi)s(ēi) =
3∑
i=1

sgn(k · ei)2(k · ei)s(ei) =
3∑
i=1

(k · ei)s(ei)

for every k ∈ S2. So we have shown that s(k) is linear in k, and thus it must
be a matrix. Define

T :=
3∑
i=1

s(ei)⊗ ei

Then

Tk =
3∑
i=1

(k · ei)s(ei) = s(k)

since (a⊗ b)c = (b · c)a.

Recall that the Balance of Momentum holds ⇐⇒ s(n) = Tn, in which case

s(n) =
∫
∂P(t)

Tn =
∫
P(t)

dω(t)

and all integrands are continuous. Also, note that∫
P

div(T )i =
∫
P
Tij,j =

∫
∂P

Tij · nj =
∫
∂P

(Tn)i

i.e.
∫
P div(T ) =

∫
∂P Tn. Then the Balance of Momentum implies

∫
P(t)

ρv̇ −
div(T ) =

∫
P(t)

b, and so
ρv̇ − div(T ) = b

14



Furthermore, this implies∫
P(t)

ρv̇ =
∫
P(t)

b+
∫
∂P(t)

Tn

so if s(n) = Tn then the Balance of Momentum (M) holds. Thus, we have the
equivalency

(M) ⇐⇒ s(n) = TN, ρv̇ − div(T ) = b

Given s(n) = Tn, then the Balance of Angular Momentum holds ⇐⇒ T = TT .
Recall the Balance of Angular Momentum∫

P(t)

ρ(x× v̇) =
∫
P(t)

x× b+
∫
∂P(t)

x× s(n)

We compute (using the Levi-Civita symbol εijk)

(x× Tn)i = εijkxj(Tn)k = εijkxjTk`n`

and so ∫
∂P(t)

(x× Tn)i =
∫
P

(εijkxjTk`),`

=
∫
P
εijk (δj`Tk` + xjTk`,`)

=
∫
P
εijkTkj + xj div(T )k

Define Rot(T )i = εijkTjk. Then∫
∂P

x× (Tn) =
∫
P
−Rot(T ) + x× div(T )

and then ∫
P
x× (ρv̇) =

∫
P
x× b+

∫
∂P

x× (Tn)

which holds ⇐⇒∫
P
x× (ρv̇) =

∫
P
x× b+

∫
P
−Rot(T ) + x× div(T )

and so ∫
P
x× (ρv̇ − div(T )− b)︸ ︷︷ ︸

linear momentum

+Rot(T ) = 0

which finally implies∫
P

Rot(T ) = 0 ∀P ⊆ B(t) ⇒ Rot(T ) = 0

Observe that

Rot(T ) =

T23 − T32

T31 − T13

T12 − T21

 = 0 ⇐⇒ TT = T
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1.2.2 Classical Configurations

1. Given a surface S with normal n,

(a) the normal traction is Tn · n = nTTn or (nTTn)n = (n⊗ n)Tn, and

(b) the shearing traction is (I − n⊗ n)Tn

2. A “hydrostatic” stress tensor is one of the form T = −pI, so then Tn =
−pn for all normals n. Note that T ′ = T − 1

d tr(T )I which is trace-free.

1.2.3 Alternative Forms of the Momentum Equation

The standard statement + Leibniz’s Rule gives us∫
P(t)

(ρv)t + div(ρv ⊗ v)− div(T ) =
∫
P(t)

b

and localizing yields

(ρv)t + div(ρv ⊗ v)− div(T ) = b

This is the conservation form of the equation. We also have the skew sym-
metrized form, which is used in numerical codes:

1
2

(ρv̇ + (ρv)t + div(ρv ⊗ v))− div(T ) = b

Lemma 1.8. Suppose the Balance of Mass, Linear Momentum and Angular
Momentum hold. Then,

d

dt

∫
P(t)

ρ
|v|2

2
+
∫
P(t)

T : D(v) =
∫
P(t)

b · v +
∫
∂P(t)

Tn · v

This is called the “principal of virtual work”. The first term represents kinetic
energy, the middle term is some kind of dissipation, and the right hand side
represents power.

Proof. Apply Reynolds’ formula to write

d

dt

∫
P(t)

ρ
|v|2

2
=
∫
P(t)

ρ

(
|v|2

2

)·
=
∫
P(t)

ρv · v̇ =
∫
P(t)

(div(T ) + b) · v

=
∫
P(t)

b · v − T : ∇v +
∫
∂P(t)

Tn · v

Thus,
d

dt

∫
P(t)

ρ
|v|2

2
+
∫
P(t)

T : ∇v =
∫
P(t)

b · v +
∫
∂P(t)

Tn · v

If T = TT , then T : ∇v reduces to the desired form, according to the identities
A : B = 1

2A : B + 1
2A

T : BT = A : 1
2 (B +BT ) for any symmetric matrix A and

arbitrary B, and recalling that D(v) = 1
2 (∇v + (∇v)T ).
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Before moving on to study fluids, we note the following properties of incom-
pressible materials:

detF − 1 ⇐⇒ div(v) = 0 ⇐⇒ ρ = const.

Proof.

ρ̇+ ρ div(v) = 0 ⇒ (ρ̇ = 0 ⇐⇒ div(v) = 0 ⇐⇒ ρ(t, x(t, p)) = ρr(p))

and

ρ(t, x(t, p)) =
ρr(p)

det(F (t, p))
⇒ (ρ = const. ⇐⇒ detF = const.

⇐⇒ detF = detF (0) = det I = 1)

2 Classical Fluids

Inviscid fluids have a stress tensor given by T (t, x) = −p(t, x)I. Then,

div(T )i = Tij,j = (−pδij),j = −p,jδij − pδj,j = −p,i = −(∇p)i

Take ρv̇ −∇p = b. Then

v̇ = vt + (v.∇)v = vt +∇
(
|v|2

2

)
− v × curl(v)

which implies

vt +∇
(
|v|2

2

)
− v × curl(v) =

1
ρ
∇p =

1
ρ
b

1. If the fluid is incompressible then ρ =const.

2. If p = p(ρ), then

1
ρ
∇p = ∇

∫ ρ p′(ξ)
ξ

dξ =
p′(ρ)
ρ
∇p =

1
ρ
∇p = ∇

(
1
ρ
p

)
=: ∇P

3. If the force per unit mass f = 1
ρb is the gradient of a potential, i.e. f =

∇F , then we obtain

vt +∇
(
|v|2

2
+ P (ρ)− F

)
− v × curl(v) = 0

If v = ∇ϕ for some scalar ϕ, then curl(v) = 0 and vt = ∇ϕt, so

∇
(
ϕt +

|v|2

2
+ P (ρ)− F

)
= 0
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(from classical fluid study), so then

ϕt +
|v|2

2
+ P (ρ)− F = const.

This is Bernoulli’s Equation!

Example 2.1. Consider a steady flow on an incompressible fluid. Then

|v|2

2
+
p

ρ
− g = C

for some constant C, where f = gz and g ≈ 9.81 (gravity). Consider the setup
of a Pitot tube, with pressure p0 at v = 0. Then

|v|2

2
+
P

ρ
− gz = 0 +

p0

ρ
− gz ⇒ |v|

2

2
=
p− p0

ρ

2.1 Inviscid Fluids

We assume T = −pI. For a barotropic fluid, p = p(ρ). Bernoulli’s equation
states that if v = ∇ϕ and f = b

ρ = ∇F , then

ϕt +
|v|2

2
+ P (p) = F

We have two natural questions: Why should v = ∇ϕ? And why should p = p(ρ)
and not p = p(ρ, θ), where θ is the temperature in the gas law p

ρ = Rθ.

Theorem 2.2 (Velocity transport theorem). Assume T = −pI, where p = p(ρ),

and f = b
ρ = ∇F . Then

(
F−1

(
ω
ρ

))·
= 0.

Proof. Recall

(v.∇)v = ∇
(
|v|2

2

)
− v × ω , where ω = curl(v)

Then the momentum equation becomes

vt +∇
(
|v|2

2
+ P (ρ)− F

)
− v × ω = 0

where

P (ρ) =
∫ ρ p′(r)

r
dr

Take the curl of both sides to get

ωt − curl(v × ω) = 0
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since curl(∇H) = 0 for any smooth H. Now, we use the identity

curl(v × ω) = (ω.∇)v − (v.∇)ω − div(v)ω

to write
ωt + (v.∇)ω + div(v)ω = (ω.∇)v

which simplifies to
ω̇ + div(v)ω = (∇v)ω (6)

since (ω.∇)vi = ωjvi,j = vi,jωj = [(∇v)ω]i. Observe that(
1
ρ

)·
= − 1

ρ2
ρ̇ =

1
ρ

div(v)

which we will write as (
1
ρ

)·
− 1
ρ

div(v) = 0 (7)

Now, we take the sum of 1
ρ times (6) and ω times (7) and apply the product

rule to write (
ω

ρ

)·
= (∇v)

ω

ρ

Now, recall that F =
[
∂xi
∂pα

]
and Ḟ = (∇v)F , and notice that

0 = İ = (FF−1) ⇒
(
F−1

)·
= −F−1ḞF−1 = −F−1∇vFF−1 = −F−1∇v

Then, (
F−1

(
ω

ρ

))·
=
(
F−1

)· ω
ρ

+ F−1

(
ω

ρ

)·
= −F−1∇vω

ρ
+ F−1∇vω

ρ
= 0

Corollary 2.3. If every particle in the flow originates from a region with zero
vorticity (and the flow is smooth), then ω = curl(v) = 0.

Example 2.4. Designing an aerofoil.

2.2 Balance of Energy

Assumptions:

1. The energy per unit mass is e+ |v|2
2 , where e is the “internal energy” (i.e.

inherent to the material)

2. ∃(r, q) where r is the ”energy source” and q is the “energy flux”. Specifi-
cally, r : B(t)→ R and q : ∂P(t)→ Rd for all parts P(t) ⊆ B(t).
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3. The Balance of Energy equation holds:

d

dt

∫
P(t)

ρ

(
e+
|v|2

2

)
=
∫
P(t)

r + b · v +
∫
∂P(t)

−q · n+ s · v

Using Reynolds’ Formula and Gauss’ Divergence Theorem (plus Balance of
Mass) and the fact that S = Tn ⇒ s · v = (TT v) · n, we can prove that
the Balanceof Energy equation above implies∫

P(t)

ρ(ė+ v̇ · v) =
∫
P(t)

r + b · v − div(q) + div(TT v)

Note that

div(TT v) =
∑
i

(TT v)i,i =
∑
j

∑
i

(Tjivj),i =
∑
j

∑
i

Tji,ivj + Tjivj,i

=
∑
j

div(T )jvj + Tji(∇v)ji = div(T ) · v + T : ∇v

This allows us to write∫
P(t)

ρė+ (ρv̇ − div(T )− b)︸ ︷︷ ︸
=0 by Momentum Eqn

·v + div(q) =
∫
P(t)

r + T : ∇v

and localizing shows that

ρė+ div(q) = r + T : ∇v

This is an example of the phenomenon of the “decoupling” of kinetic and ther-
mal/internal energy. The equation in the linea above has something to do with
“mechanized heating”.

Also, when T = TT , then T : ∇v = T : D(v) where D(v) = (∇v)sym.

Example 2.5. Let θ be temperature, and e = cθ for some c ∈ R+, a specific
heat, and q = −k∇θ for some k ∈ R+, a conductivity. This is where heat flows
down a temperature gradient. Suppose v = 0 (a rigid solid). Then ∇v = 0 and
θ̇ = θt + v∇θ = θt. Thus,

cθt − k∆θ = r

which is the classical heat equation!

Let’s return to the case of an inviscid fluid and try to convince ourselves why
p = p(ρ) and not p = p(ρ, θ). We assume T = −pI and p = p(e, ρ). Suppose,
for example, we have an ideal gas, so e = cθ and p(e, ρ) = ρθ = R

c ρe. Suppose
further that the fluid is non-heat conducting, so q = 0. Finally, suppose r = 0.
Then the energy equation becomes

ρė = T : ∇v = −pdiv(v) ⇒ ρė+ pdiv(v) = 0 (8)

20

http://en.wikipedia.org/wiki/Heat_equation


Also, we have

ρ̇+ ρ div(v) = 0 (⇐⇒ ρt + div(ρv) = 0) (9)

We take ρ times Equation (8) and subtract p times Equation (9) to get

ρ2ė− pṗ = 0

which we write as
ė− p

ρ2
ṗ = 0

Suppose, now, that p = p(e, ρ) and we can construct η(e, ρ) (which is like
entropy) such that

dη

dρ
= −p(e, ρ)

ρ2
· dη
de

Then η is constant along curves of the form ·e(ρ) = −p(e,ρ)ρ2 (see method of
characteristics). This implies

dη

de
ė+

dη

dρ
ρ̇ = 0 i.e. η̇ = 0

Thus, if the flow originates from a state where η∞ =const., then

η (e(t, x), ρ(t, x)) = η∞ ∀(t, x)

That is, η(e, ρ) = η∞ implies that we could write e = e(ρ), which in turn
implies that p(e(ρ), p) = p̃(ρ), by the Implicit Function Theorem (since e(ρ) is
increasing). This shows that, indeed, pressure is a function of density only, and
not temperature. Note that for an ideal gas, we typically have η = ln

(
p
ργ

)
for

some constant γ. Let’s look at this example more specifically:

Example 2.6 (Ideal Gas). Set

η(p, e) = η∞ + C ln
(
p

ργ

)
= η∞ + C ln

(
eρ1−γ)

where the second equality follows from the ideal gas law pc
Re = ρ. Also. we are

still assuming e = cθ. Then,
dη

de
=
c

e
=

1
θ

and

dη

dρ
=

C

eρ1−γ (1− γ)ρ−γ

=
C(γ − 1)

ρ
·
(
−p
Rρθ

)
=
(
dη

de

)
·
(
− p

ρ2

)
provided γ = 1 + R

c . Note: η(p, e) represents the (specific) entropy of the ideal
gas (where “specific” indicates “per unit mass”).
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Bernoulli’s Formula

ϕt +
|v|2

2
+ P (ρ) = F , v = ∇ϕ

follows as a corollary to this example.

Theorem 2.7. Let ω : R2 → R2 be a C1 vector field, and suppose ω does not
vanish in a neighborhood R2 ⊇ U 3 x0 with U open. Then ∃η : V ⊆ U → R
differentiable that is constant on trajectories of ω and ∇η 6= 0 on V .

Example 2.8. As in the previous example (ideal gas), for entropy we define
ω = [−p, ρ2]T . Then having η constant on trajectories of ω means

0 = ∇η · ω =
dη

dρ
(−p) +

dη

de
(ρ2)

which is true, as we have seen.

Proof. We sketch the proof of the theorem above. Select coordinates so that x0

lies at the origin and ω(x0) lies along the x-axis. Consider the system of ODEs

ẋ(t; η) = ω(x(t; η))

x(0; η) =
[
0
η

]
Show that the mapping (t, η) 7→ (x(t; η), y(t; η)) is a bijection (by Implicit Func-
tion Theorem). Thus, η = η(x, y) is the required function.

2.3 Frame-Indifference

To distinguish materials, we have the quantities b, s = Tn, r, q. We still wonder
about the properties of T , and frame-indifference (a.k.a. “change of observer”)
will dictate certain properties of T .

Definition 2.9. Given a reference body Br ⊆ Rd and two motions x = X (t, p)
and x? = X ?(t, p), we say x and x? are related by a change of observer provided

x?(t, p) = y(t) +Q(t)x(t, p)

for some y : (0, T ) → Rd and Q : (0, T ) → Orth+ (i.e. Q(t) is orthogonal and
det(Q(t)) = +1 ∀t).

If f(t, x) := y(t) +Q(t)x, this just says x?(t, p) = f ◦ x(t, p).

Remark 2.10. A cynical aside: Gurtin’s book uses the term Q(t)(x − 0) to
“vectorize” the point x. But really, these quantities are interchangeable because
there is a canonical isomorphism and a linear map between tangent spaces to
manifolds.
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Consider the quantities

F =
[
∂xi
∂pα

]
and F ? =

[
∂x?i
∂pα

]
Then x = y +Qx = yi +

∑
j Qijxj , and so

∂x?i
∂pα

= Qij
∂xj
∂pα

which implies F ? = QF .

Theorem 2.11 (Polar Decomposition). Given F ∈ Rd×d, ∃R,U, V ∈ Rd×d,
with R orthogonal and U, V symmetric and positive semi-definite, such that
F = RU = V R. (This decomposition is unique when F is nonsingular.)

Proof. We leave the full proof as an exercise and sketch the idea here. We would
guess that we need to satisfy

FT = UTRT = URT ⇒ FTF = URTRU = U2

so it would make sense to set U =
√
FTF . This is okay since FTF is symmetric

and positive semi-definite. Defininf V is similar.

We use this theorem to write

F ? = R?U? = V ?R? , F = RU = V R ⇒ F ? = QF

and furthermore

(U?)2 = (F ?)TF ? = FTQTQF = FTF = U2

so U? = U is invariant under a change of observer! Also,

R?U? = F ? = QF = QRU ⇒ R? = QR

since detF 6= 0. Finally, we also observe

V ?R? = F ? = QF = QV R ⇒ V ?QR = QV R ⇒ V ? = QV QT

so V is not invariant.
Notation: The matrix C = FTF = U2 is sometimes called the right

Cauchy-Green tensor and B = FFT = V 2 is sometimes called the left Cauchy-
Green tensor or finger tensor. These are defined to be such that

C? = (F ?)TF ? = FTF = C

is invariant, but
B? = F ?(F ?)T = FFT = QBQT
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is not. Also, notice that Cαβ = FiαFjβ so C uses only Greek indices and is thus
invariant, whereas Bij = FiαFjα uses Latin indices and so it depends on the
frame, i.e. the “spectacles” with which we view our experiment.

Start from
x?(t, p) = y(t) +Q(t)x(t, p)

and take a t derivative to get

ẋ?(t, p)︸ ︷︷ ︸
v?(t,x?)

= ẏ(t) + Q̇(t)x(t, p) +Q ẋ(t, p)︸ ︷︷ ︸
v(t,x)

and then take ∂
∂xj

of both sides using the chain rule to get

∂v?i
∂x?k
· ∂x

?
k

∂xj
= 0 + Q̇δij +Qik

∂vk
∂xj

where we have used the fact that
∂x?k
∂xi

= Qki, which follows from the equation

for x? a few lines above. We now write this derivative equation as

∇?v?Q = Q̇+Q∇v ⇒ ∇?v? = Q̇QT +Q∇vQT

Note that QTQ = I ⇒ Q̇Q is skew. Thus,

(∇?v?)sym = Q (∇v)symQT

which we write as
D?(v?) = QD(v)QT

where D(v) = 1
2

(
∇v +∇vT

)
.

2.3.1 Normals to Surfaces

Consider a surface Sr of Br with normal nr(p), and the corresponding surface
S of B with normal n(x). Given p ∈ Sr, we construct (locally) the function
ϕ : Br → R for which

Sr = {p : ϕr(p) = 0} ≡ the zero level set of ϕr

Then
nr =

∇pϕr
|∇pϕr|

since ∇ϕr is ⊥ to level sets. Taking S = X (Sr) and ϕ(x) = ϕr(p), then (locally)

S = {x : ϕ(x) = 0} and
∂ϕr
∂pα

=
∂ϕ

∂xi
· ∂xi
∂pα︸︷︷︸
=Fiα

Thus, ∇pϕr = FT∇xϕ and ∇pϕr ‖ nr and ∇xϕ ‖ n. Accordingly, nr = cFTn
or n = cF−Tnr for some constant. It follows that c(F ?)Tn? = nr = kFTn,
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and since we can write F ? = QF , we can reduce this to cn? = kQn. But,
|n?| = |n| = |Qn| = 1 sok = c = 1. Thus, n? = Qn!

This shows that a vector-valued quantity in the reference configuration is
“transported” by the maps x = X (p) and x? = X ?(p) corresponding to a
change of observer related by n? = Qn.

Thus, if s? = T ?n? and s = Tn and the surface forces correspond to the
same “experiment” then s? = Qs. Thus,

T ?n? = Q(Tn) ⇒ T ?Qn = QTn

This should hold for all n, so T ?Q = QT and therefore T ? = QTQT . This now
rules out many possibilities for what T can be.

Traditionally, a formula for T is frame-indifferent if under a change of ob-
server given by x? = y +Qx we have T ? = QTQT .

Example 2.12. 1. If T = −pI then T ? = −pI = −pQQT = Q(−pI)QT =
QTQT which works.

2. If T = µD(v) then we have shown D?(v?) = QD(v)QT so T ? = QTQT

which works.

3. If T = µB = µFFT then F ? = QF implies T ? = F ?(F ?)T = QFFTQT =
QTQT which works.

4. However, if T = µC = µFTF then (F ?)TF ? = (QF )T (QF ) = FTF 6=
Q(FTF )QT so C is T = µC is not frame-indifferent.

2.4 Newtonian Fluids

How do we distinguish a solid from a fluid? Thinking about forces, we can say
that solids resist (static) shear whereas a fluid will deform and “relax” to a state
of zero stress.

For instance, consider

x =
[
1 γ
0 1

]
p ≡ X (p) and F =

[
1 γ
0 1

]
For a fluid, T doesn’t depend upon F . A fluid will resist a state of shear, e.g. a
nontrivial velocity gradient. A solid resists a deformation gradient.

We consider constitutive relations of the form

T = −πI + C(L)

where π denotes the pressure (so as not to coincide with the coordinate p),
L ≡ ∇v, and C : Lin→ Lin (i.e. C : Rd×d → Rd×d) is linear. Think of C as the
1st term in some Taylor expansion:

T = T (L) = −πI + C(L) + o(|L|2)

1. If L = ∇v = 0 then T = −πI is a hydrostatic stress.
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2. There is a degeneracy

T = −πI + C(L) = −π̃I + C̃(L)

with
π̃ = π + β(L) and C̃(L) = C(L) + β(L)I

where β : Lin→ R is linear, i.e. β ∈ L(Rd×d,R). By convention, we select
the representation for which tr(C(L)) = 0, so then

C(L) = C̃(L)− 1
d

tr(C̃(L))I

where d is the dimension.

3. With this convention, tr(T ) = −πtr(I) = −dπ.

4. If the fluid is incompressible, 0 = div(v) = tr(L). In general,

C : Lin→ Lin0 :=
{
A ∈ Rd×d : tr(A) = 0

}
but when the fluid is incompressible, we have C : Lin0 → Lin0 since
L ∈ Lin0.

5. If the Balance of Angular Momentum is to hold, we should have T = TT ;
i.e. we need

C : Lin→ Sym0 := {A ∈ Lin : A = AT } ∩ Lin0

Note dim (Sym0) = d(d+1)
2 − 1 which is 5 in 3D. For incompressible fluids,

dim (Lin0) = d2 − 1 which is 8 in 3D.

6. The quantity T0 = T − 1
d tr(T )I is called the deviatoric stress; it is, in

some sense, the “amount” that we are “away” from being incompressible.
We write T = −πI + T0. (Note: T0 is sometimes denoted by T ′.) This is
closely related to the shear.

Definition 2.13. A Newtonian fluid is one for which T0 = C(L) (where L =
∇v) and C : Lin→ Sym0.

Theorem 2.14. A necessary and sufficient condition for a Newtonian fluid to
be frame-indifferent is

T0 = 2µD(v) = µ(L+ LT )

where µ = µ(p) is a scalar (that is frame-indifferent, i.e. µ? = µ).

Proof. (⇐) Suppose T0 = 2µD(v) and x(t, p) and x?(t, p) are related by a change
in observer (so that x? = y +Qx). We have shown that D? = QDQT . Thus,

T ?0 = 2µD? = 2µQDQT = QT0Q
T

Then

T ? = −π?I + T ?0 = −π?QQT +QT0Q
T = Q (−π?I + T0)QT = QTQT

using the fact that π? = π since π is a scalar, so π?(x?) ≡ π(x).
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Note: If a response function T = T̂ (· · · ) is independent of observer, then

tr(T ?) = tr(QTQT ) = tr(T )

For Newtonion fluids,

T0 ≡ T −
1
3

tr(T )I = C(L0)

where C : Lin0 → Sym0 is linear (and L = ∇v, L0 = trace-free part of L). This
should tell us how to make the “correct” statement in the theorem below.

Theorem 2.15. The response function of a Newtonian fluid is independent of
observer ⇐⇒ C(L0) = 2µD0 and the trace of the stress tensor is a “scalar”
(i.e. independent of observer).

Proof. (⇐) Let x, x? : (0, T ) × Br → R6d be related by a change of observer.
Then

L? = QLQT + Q̇QT︸ ︷︷ ︸
skew

and D? = QDQT

Now,

T ? =
1
3

tr(T ?)I + 2µ?D?
0

=
1
3

tr(T )I + 2µD?
0 (by hypothesis)

= Q

(
1
3

tr(T )I + 2µD0

)
QT = QTQT

i.e. frame-indifference.
(⇒) Suppose the response function T = −πI + C(L) is independent of ob-

server. If x, x? are related by a change of observer and T ? = −π?I + C(L?),
then tr(T ) = tr(T ?)⇒ π = π? since C : Lin→ Sym0. Thus,

T ? = −πI + C(L?) = −πI + C
(
QLQT + Q̇QT

)
and frame-indifference requires

QC(L)QT = C
(
QLQT + Q̇QT

)
(10)

since C is linear. We complete the proof in the following steps.

1. If L ∈ Lin is fixed and F (t) = exp(Lt), then set x(t, p) = F (t)p, so that

ẋ = Ḟ p = L exp(Lt)p = LFp = Lx ⇒ ∇v = L

Thus, (10) holds for all (fixed) L and arbitrary Q, since we can define
x?(t, p) = Q(t)x(t, p) = QFp.
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2. Also, for L fixed, let Q(t) = exp(−Wt), where W = 1
2 (L − LT ). Then

Q̇ = −WQ so Q̇QT = −W and Q(0) = I. Evaluating (10) with this
choice of L and Q(0) gives

C(L) = C(L−W ) = C(D) where D =
1
2

(L+ LT )

i.e. C depends only upon the symmetric part of L.

3. Since tr(T ) = tr(T ?), it follows that T ?0 = QT0Q
T , i.e.

C(QDQT ) = C(D?) = C(D)

We now make the claim:
C : Sym→ Sym

C(QDQT ) = C(D)
Q ∈ Orth
C linear

 ⇒ C(D) = λtr(D)I + 2µD

for some scalars λ, µ. This claim then tells us tr(C(D)) = 0 ⇒ C(D) =
2µD0.

2.5 Isotropic Functions

Definition 2.16. A function ϕ : Lin → R is isotropic provided ϕ(A) =
ϕ(QAQT ) for all Q ∈ Orth.

A function G : Lin → Lin is isotropic provided QG(A)QT = G(QAQT ) for
all Q ∈ Orth.

Theorem 2.17 (Representation of scalar-valued isotropic functions). A func-
tion ϕ : A ⊆ Sym→ R is isotropic ⇐⇒ ∃ψ : IA → R such that ϕ(A) = ψ(IA)
where IA ∈ Rd are the invariants of A and IA = {IA : A ∈ A}.
Proof. (⇒) It suffices to show that IA = IB ⇒ ϕ(A) = ϕ(B). If IA = IB then
A andB have the same set of eigenvalues (since they have the same characteristic
polynomial), call them {ωi}. Then write

A =
∑
i

ωiei ⊗ ei and B =
∑
i

ωifi ⊗ fi

where {ei}, {fi} are orthonormal bases of eigenvectors for A and B, respectively.
(Remember A,B are symmetric.) Let Qei = fi with QQT = I. Specifically, we
can define Q =

∑
i ei ⊗ fi. Then,

ϕ(A) = ϕ(QAQT ) = ϕ

(∑
i

ωiQ(ei ⊗ ei)QT
)

= ϕ
(∑
i

ωiQei ⊗Qei︸ ︷︷ ︸
=fi⊗fi

)
= ϕ(B)

(⇐) Note IA = IQAQT .
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2.5.1 Tensor-Valued Functions

Lemma 2.18. Let G : A ⊆ Sym→ Lin be isotropic. Then each eigenvector of
A ∈ A is an eigenvector of G(A).

Proof. Let e = e1 be an eigenvector of A ∈ A. By the Spectral Theorem,
∃{ei}3i=1 an orthonormal basis of eigenvectors of A. Let

Q = −e1 ⊗ e1 + e2 ⊗ e2 + e3 ⊗ e3

so that QQT = I. Claim: QAQT = A. To see why, notice that

(QAQT )e1 = QA(−e1) = Q(−λ1e1) = λ1e1 = Ae1

(QAQT )ei = QA(ei) = Q(λiei) = λiei = Aei , i = 2, 3

i.e. QAQTx = Ax for a basis, and hence for all x, which proves the claim. Next,

QG(A)QT = G(QAQT ) = G(A)

and applying all of these tensors e1, we have QG(A)e1 = −G(A)e1, so Q(x) =
−x, i.e. Qx is parallel to (with opposite sign of) x, where x = G(A)e1. It
follows that G(A)e1 is parallel to e1, i.e. G(A)e1 = ωe1.

Lemma 2.19. Let A ∈ Sym and set A =
∑
i ωiei ⊗ ei to be the spectrail

decomposition.

1. If A has 3 dsitrinct eigenvalues, then {I,A,A2} are linearly independent
and span{I, A,A2} = span{ei ⊗ ei}3i=1.

2. If A has 2 distinct eigenvalues, then write A = ω1e ⊗ e + ω2(I − e ⊗ e).
Then {I,A} are linearly independent and span{I, A} = span{e ⊗ e} =
span{e⊗ e, I − e⊗ e}.

3. If A has 1 distinct eigenvalue, then A = λI for λ ∈ R.

Proof. 1. Suppose αA2 + βA+ γI = [0]. Multiply by ei to get

(αω2
i + βωi + γ)e = 0 ⇒ p(ωi) = αω2

i + βωi + γ = 0 for i = 1, 2, 3

i.e. p(ω) is a quadratic with 3 roots, which means p(ω) ≡= 0 and hence
α = β = γ = 0. Thus, {I, A,A2} are, indeed, linearly independent. Next,

Aα =
∑
i

ωαi (ei ⊗ ei) for α = 0, 1, 2 ⇒ {I,A,A2} = span{ei ⊗ ei}3i=1

We know dim(ei ⊗ ei) = 3 and dim{I, A,A2} = 3 (since they’re linearly
independent), so the spaces must agree.

The other two statements are similar.

29



Theorem 2.20 (Representation of isotropic tensor-valued functions). The func-
tion G : A ⊆ Sym→ Sym is isotropic ⇐⇒ ∃ϕ0, ϕ1, ϕ2 : IA → R isotropic such
that

G(A) = ϕ0(IA)I + ϕ1(IA)A+ ϕ2(IA)A2

Proof. (⇐) Suppose G(A) takes the form shown. Then

G(QAQT ) = ϕ0(IQAQT )I + ϕ1(IQAQT )QAQT + ϕ2(IQAQT )Q

=A2︷ ︸︸ ︷
AQTQAQT

= Q
(
ϕ0(IA)I + ϕ1(IA)A+ ϕ2(IA)A2

)
QT = QG(A)QT

(⇒) Suppose A has 3 distinct eigenvalues and write A =
∑
i ωiei ⊗ ei. We

showed that G(A)ei = βi(A)ei for some βi(A) and since G(A) ∈ Sym, it follows
that

G(A) =
∑
i

βi(A)ei ⊗ ei = α0(A)I + α1(A)A+ α2(A)A2

Claim: αi : Sym→ R are isotropic. To see why, notice that

0 = QG(A)QT −G(QAQT ) =
(
α0(A)− α0(QAQT )

)
I

+
(
α1(A)− α1(QAQT )

)
QAQT︸ ︷︷ ︸

=A

+
(
α2(A)− α2(QAQT )

)
QA2QT︸ ︷︷ ︸

=A2

Since A has three distinct eigenvalues, {I, A,A2} are linearly independent, so

α0(A) = α0(QAQT )︸ ︷︷ ︸
isotropic scalar

= ϕ0(IA)

The other two cases are similar.

Remark 2.21. If A is invertible, then

A3 + i1A
2 + i2A+ i1I = 0 ⇒ A2 = −i1 − i2I − i3A−1

Thus, on invertible matrices,

G(A) = ψ0(IA)I + ψ1(IA)A+ ψ−1(IA)A−1

where ψ0 = ϕ0 − i2ϕ2, etc.

Corollary 2.22. A linear function G : Sym→ Sym is isotropic ⇐⇒ G(A) =
λtr(A)I + 2µA for constants λ, µ ∈ R.

Proof. (⇐) Trivial.
(⇒) Let e be a unit vector and set A = e ⊗ e. Then σ(A) = {0, 0, 1} so
IA = (1, 0, 0) = (i1, i2, i3). Also, A2 = (e⊗ e)2 = e⊗ e. Thus,

G(e⊗ e) = ϕ0(1, 0, 0)I + ϕ1(1, 0, 0)(e⊗ e) + ϕ2(1, 0, 0)(e⊗ e)
= ϕ0(1, 0, 0)︸ ︷︷ ︸

:=λ

I + (ϕ1(1, 0, 0) + ϕ2(1, 0, 0))︸ ︷︷ ︸
:=2µ

(e⊗ e)
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Given A ∈ Sym, write A =
∑
i ωiei ⊗ ei and use the linearity of G to write

G(A) =
∑
i

ωiG(ei ⊗ ei) = λ(
∑

ωi)I + 2µ
∑
i

ωiei ⊗ ei

= λtr(A)I + 2µA

Corollary 2.23. 1. A linear function G : Sym0 → Sym is isotropic ⇐⇒
G(A) = 2µA for some µ ∈ R.

2. A linear function G : Sym → Sym0 is isotropic ⇐⇒ G(A) = 2µ(A −
1
3 tr(A)I).

Proof. 1. Given G : Sym0 → Sym isotropic, define

Ĝ : Sym→ Sym by Ĝ(A) = G

(
A− 1

3
tr(A)I

)
Then Ĝ(A) = G(A) for A ∈ Sym0 and Ĝ(A) = λtr(A) + 2µA for λ, µ ∈ R.

2. Exercise.

Theorem 2.24. Let U ⊆ Lin be a linear subspace and let A ⊆ U be open. Let
G ⊆ Orth be any subset. Suppose G : A → Lin is invariant under G, i.e.

G(QAQT ) = QG(A)QT ∀Q ∈ G

Then

QDG(A)(U)QT = DG(QAQT )(QUQT ) ∀A ∈ A,∀U ∈ U ,∀Q ∈ G

Proof. Note: the definition of invariance requires QAQT = A for any Q ∈ G.
Claim: QUQT = U . To see why, fix U ∈ U ; since A ⊆ U is open then for any
A ∈ A, ∃ε > 0 such that A+ εU ⊆ A. Since QAQT = A, then

QAQT︸ ︷︷ ︸
∈A⊆U

+εQUQT ∈ A ⊆ U ⇒ QUQT ∈ U

Next,

G
(
Q(A+ U)QT

)
= G

(
QAQT +QUQT

)
= G(QAQT ) +DG(QAQT )(QUQT ) + o(U)

= QG(A)QT +DG(QAQT )(QUQT ) + o(U)

and

G
(
Q(A+ U)QT

)
= QG(A+ U)QT = Q (G(A) +DG(A)(U) + o(U))QT

= QG(A)QT +QDG(A)(U)QT + o(U)

so the last lines of these are equal.
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2.6 Navier-Stokes Equations

Classical Incompressible Navier-Stokes Fluid:

T = −πI + 2µD(v) , where D(v) =
1
2

(∇v +∇vT ), and div(v) = 0

The “homogeneous” case is where ρ = ρ0 = const. and µ = µ0 = const. Then

ρ0v̇ − div(−πI + 2µD(v)) = ρ0f ⇒ ρ0v̇ +∇π − µ∆v = ρ0f

Lemma 2.25. Let v satisfy the Navier-Stokes Equations with conservative
forces. Then

1. Ẇ +D(v)W +WD(v) = ∆W with W = 1
2 (∇v −∇vT ).

2. For any closed material curve,

d

dt

∮
c(t)

v · dx = ν

∮
c(t)

∆v · dx

with ν = µ
ρ .

3. In two dimensions, Ẇ = ν∆W .

Proof. To prove (1), we write the N-S equations as

v̇ = ν∇v +∇(F − π)

where f = ∇F . Then

∇v̇ = ν∆(∇v) +D2(F − π)

where D2(·) is the Hessian, so then

(∇v̇)skew = ν∆W + 0

Now,
(∇v̇) = (∇v)· +∇v∇v

and so
(∇v̇)skew = (∇v)·skew +

1
2

(∇v∇v −∇vT∇vT ) = ν∆W

Note that

DW +WD =
1
4

(∇v +∇vT )(∇v −∇vT ) +
1
4

(∇v −∇vT )(∇v +∇vT )

=
1
2

(∇v∇v −∇vT∇vT )

The proof of (2) is left as an exercise; the trick is to show

d

dt

∮
c(t)

v · dx =
∮
c(t)

v̇ · dx
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so then
d

dt

∮
c(t)

v · dx =
∮
c(t)

(ν∆v +∇(F − π)) · dx =
∮
c(t)

ν∆v

To prove (3), note that in 2D

W = ±w
[

0 1
−1 0

]
so

WD +DW = ±w div(v)
[

0 1
−1 0

]
= 0

Claim: ωi = 1
2εijkWkj . Proof :

(ω × a)i =
1
2
εijkωjak =

1
2
εijkεjmnWnmak

=
1
2

(Wikak −Wkiak) = (Wa)i

2.6.1 Stability/Comparison of Solutions

Suppose

v̇1 − div (−p1I + 2νD(v1)) = f1

v̇2 − div (−p2I + 2νD(v2)) = f2

with div(v1) = div(v2) = 0 and v1 �∂Ω= v2 �∂Ω, and assume Ω ⊂ Rd is bounded.
Write v = v2−v1, so that v �∂Ω= 0, and p = p2−p1 and f = f2−f1. Subtracting
the two equations yields

vt + (v2 · ∇)v2 − (v1 · ∇)v1 − div (−pI + 2νD(v)) = f

Take the dot product with w which vanishes on ∂Ω, yielding∫
vt · w − p div(w) + 2νD(v) : D(w) =

∫
Ω

f · w − [(v2 · ∇)v2 − (v1 · ∇)v1] · w

Put w = v, and recall div v = 0. Then

d

dt

∫
Ω

|v|2

2
+
∫

Ω

2ν|D(v)|2 =
∫

Ω

f · v − [(v2 · ∇)v2 − (v1 · ∇)v1] · v

We write

(v2 · ∇)v2 − (v1 · ∇)v1 = ((v2 − v1) · ∇) v2 + (v1 · ∇)(v2 − v1)
= (v · ∇)v2 + (v1 · ∇)v
= (v · ∇)v2 + (v2 · ∇)v − (v · ∇)v
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so now we have∫
Ω

((v · ∇)v2 − (v1 · ∇)v1) v =
∫

Ω

((v · ∇)v2 + (v2 · ∇)v) · v − v · ∇
(
|v|2

2

)
=
∫

Ω

((v · ∇)v2 + (v2 · ∇)v) · v +
(
|v|2

2

)
div v

≤ ‖∇v2‖∞‖v‖2 + ‖v2‖∞‖∇v‖‖v‖

where ‖ · ‖ = ‖ · ‖L2 . Returning to the equation above, we have

1
2
d

dt
‖v‖2 + 2ν‖D(v)‖2 ≤ ‖f‖‖v‖+ ‖∇v2‖∞‖v‖2 + ‖v2‖∞‖∇v‖‖v‖

We now apply the inequality

‖f‖‖v‖ ≤ 1
2
‖f‖2 +

1
2
‖v‖2

and Korn’s Inequality and Young’s ε-inequality with ε = 2ν

‖v2‖∞‖∇v‖‖v‖ ≤ C‖v2‖∞‖v‖‖D(v)‖ ≤ 1
4ν

(CK‖v2‖∞‖v‖)2 + ν‖D(v)‖2

Using these in the line above and absorbing terms, we have

1
2
d

dt
‖v‖2 + ν‖D(v)‖2 ≤ 1

2
‖f‖2 +

1
2
C‖v‖2

where, for completeness, we note

C = 1 +
C2
k

2ν
‖v2‖2∞ + 2‖∇v2‖∞

Multiply through by e−ct to write

d

dt

(
e−ct‖v‖2

)
+ e−ctν‖D(v)‖2 = e−ct‖f‖2

and then

e−ct‖v(t)‖2 + ν

∫ t

0

e−cs‖D(v(s))‖2 ds ≤ ‖v(0)‖2 +
∫ t

0

e−cs‖f(s)‖2 ds

Thus, if

• ‖∇v2‖∞, ‖v2‖∞ < +∞ (assumed) and

• ‖v1(t)‖ ≤ C and
∫ T

0
‖D(v)‖2 <∞ (from the PDE)

then for f2 = f1 and v1(0) = v2(0), it follows that

e−ct‖(v2 − v1)(t)‖2 +
∫ t

0

νe−cs‖D(v2 − v1)(s)‖2 ds ≤ 0

i.e. v2(t) = v1(t). Notice how we have assumed ‖v2‖, ‖∇v2‖ <∞; being able to
prove this would answer a million dollar question!
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3 Elastic Materials

Definition 3.1. An elastic body is one for which the stress at each point p ∈ Br
takes the form T (t, x) = T̂ (F (t, p), p) where x = X (t, p).

Proposition 3.2. An elastic response function T̂ : Lin+ → Sym is independent
of observer ⇐⇒ QT̂ (F )QT = T̂ (QF ) for all F ∈ Lin+ and Q ∈ Orth.

Proof. Recall that if

x? = y(t) +Q(t)(x− 0) for Q(t) ∈ Orth

then T is independent of observer ⇐⇒ T ? = QTQT and F ? = QF . Then we
know

T ? = QTQT ⇐⇒ T̂ (F ?) = QT̂ (F )QT ⇐⇒ T̂ (QF ) = QT̂ (F )QT

Recall: We write the polar decomposition of F as F = RU whereR ∈ Orth+

and U ∈ Sym+. Also, U = C1/2 = (FTF )1/2.

Corollary 3.3. The response function of an elastic material is determined by
restriction to Sym+. Specifically, if F = RU then

T̂ (F ) = T̂ (RU) = RT̂ (U)RT

Moreover, there are functions T1, T2, T3 : Sym+ → Sym such that

T̂ (F ) = FT1(U)FT

T̂ (F ) = RT2(C)RT

T̂ (F ) = FT3(C)FT

Proof. Write F = RU , so

T̂ (F ) = T̂ (RU) = RT̂ (U)RT = F

:=T1(U)︷ ︸︸ ︷
U−1T̂ (U)U−1 FT ≡ FT1(U)FT

and

T̂ (F ) = RT̂ (U)RT = R

:=T2(C)︷ ︸︸ ︷
T̂ (C1/2)RT ≡ RT2(C)RT

and

T̂ (F ) = RT2(C)RT = F

:=T3(C)︷ ︸︸ ︷
U−1T2(C)U−1 FT ≡ FT3(C)FT

knowing that U−1 = C−1/2.
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3.1 Material Symmetry

Consider conducting Experiment 1

x1 = p0 + F (p− p0) , ∇x1 = F

and then somebody rotates your symmetric material by Q and you conduct
Experiment 2

x2 = p0 + FQ(p− p0) (total deformation)

If for some Q ∈ Orth+ we have that T̂ (F ) = T̂ (FQ), then we call Q a symmetry
transformation (at p0 ∈ Br).

Lemma 3.4. Let T̂ be a (frame-indifferent) elastic response function. Then

Gp =
{
Q ∈ Orth+ : T̂ (F ) = T̂ (FQ) ∀F ∈ Lin+

}
is a subgroup of Orth+.

Proof. Clearly, I ∈ Gp. Next, if Q ∈ Gp then selecting F ∼ FQ−1 shows that
T̂ (FQ−1) = T̂ (FQ−1Q) = T̂ (F ) for all F , so Q−1 ∈ Gp. Finally, if Q,R ∈ Gp
then T̂ (F ) = T̂ (FQ) = T̂ ((FQ)R) = T̂ (F (QR)) so QR ∈ Gp.

Recall: We say T̂ : Lin→ Lin is invariant under Q ∈ Orth if T̂ (QFQT ) =
QT̂ (F )QT .

Lemma 3.5. Let T̂ be an elastic response function. Then T̂ is invariant under
Gp, as are T1, T2, T3 (as defined above).

Proof. Let Q ∈ Gp. Then

T̂ (QFQT ) = T̂ (QF ) = QT̂ (F )QT

by the facts that QT ∈ Gp and T̂ is independent of observer, respectively. Next,

T1(QUQT ) = (QUQT )−1T̂ (QUQT )(QUQT )−1

= (QU−1QT )QT̂ (U)QT (QU−1QT ) = QU−1T̂ (U)U−1QT = QT1(U)QT

The other two are similar.

Definition 3.6. An elastic material/reponse function is isotropic if Gp =
Orth+.

Recall the notation F = RU = V R and C = FTF = U2 and B = FFT =
V 2. Then

T̂ (F ) = RT2(FTF )RT = T2(RFTFRT ) = T2(V V ) = T2(B) = T2(FFT )

if T̂ is isotropic. Remember T2 : Sym+ → Sym and it is isotropic if Gp = Orth+.
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Corollary 3.7. The reponse of an elastic isotropic material (at p ∈ Br) takes
the form

T = β0(IB)I + β1(IB)B + β−1(IB)B−1

where B = FFT and IB = {ι0(B), ι1(B), ι2(B)} are the invariants and βi :
R3 → R.

Moving on, ∫
∂P

v · nda(x) =
∫
∂Pr

vr · cof(F )nr da(p)

Note n = C cof(F )nr ≈ CF−Tnr, so n = F−Tnr
|F−Tnr| .

Piola Stress: Also known as Piola-Kirchoff or 1st Piola Stress.∫
∂P

Tn da(x) =
∫
∂Pr

T cof(F )nr da(p)

Definition 3.8. The Piola stress is s = T cof(F ) = det(F )TF−T . So T =
1

det(F )SF
T .

Make the change of variables x = X (t.p), dx = det(F ) dp in the balance of
linear momentum

d

dt

∫
P(t)

ρv =
∫
P(t)

ρf +
∫
∂P(t)

Tn da

and recall that ρ(t, x) det(F (t, p)) = ρr(p). We obtain

d

dt

∫
Pr
ρrẋ =

∫
Pr
f(t, x(t, p)) +

∫
∂P(r)

Snr

and this is rewritten as ∫
Pr
ρrẍ− div

p
(S) =

∫
Pr
f

Localizing tells us
ρrẍ− div

p
(S) = f

in (0, T )× Br where f = f(t, x(t, p)).
The balance of angular momentum: T = TT , 1

J SF
T = 1

J (SFT )T where
J = det(F ), then SFT = FST ; i.e. S is not symmetric.

Energy Estimate: Take the dot product of the linear monetum equation
with ẋ and integrate by parts:

d

dt

∫
Pr
ρr
|ẋ|2

2
+
∫
Pr
S : ∇pẋ =

∫
Pr
f · ẋ+

∫
∂Pr

Snr · ẋ

d

dt

∫
Pr
ρr
|ẋ|2

2
+
∫
Pr
S : Ḟ =

∫
Pr
f · ẋ+

∫
∂Pr

Snr · ẋ
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Recall: Ḟ = ∇vF and S = det(F )TF−T , so S : Ḟ = det(F )TF−T : ∇vF .
Thus, ∫

Pr
S : Ḟ =

∫
P
T : ∇v

Independence of Observer: Recall, if T = T̂ (F ), then QT̂ (F )QT =
T̂ (QF ) for Q ∈ Orth+. Define

Ŝ(F ) = det(F )T̂ (F )F−T

Then

Ŝ(QF ) = det(QF )T̂ (QF )(QF )−T

= det(F )QT̂ (F )QTQF−T

= det(F )QT̂ (F )F−T = QŜ(F )

Thus, S = Ŝ(F ) is frame-indifferent ⇐⇒ Ŝ(QF ) = QŜ(F ).
Recall: If C = FTF , then T̂ (F ) = FT3(C)FT . Then

Ŝ(F ) = det(F )T̂ (F )F−T = det(F )FT3(C)

= F
(√

det(C)T3(C)
)

= FS3(C)

Then SFT = FST implies

FS3(C)FT = FS3(C)TFT

i.e. S3(C) = S3(C)T . Thus, S3 : Sym+ → Sym.

3.2 Hyperelastic Bodies

Motivation: Suppose f = 0 and Snr = 0. Then∫
Pr
ρr
|ẋ(t)|2

2
+
∫ t

0

∫
Pr
S : Ḟ︸ ︷︷ ︸

≥0

=
∫
Pr
ρr
|ẋ(0)|2

2

i.e. we expect things to slow down.

Definition 3.9. A (mechanical) process (x, T, f) (or (x, S, f)) is closed on
[t0, t1] if x(t0) = x(t1) and ẋ(t0) = ẋ(t1).

For a closed process on [t0, t1],∫ t1

t0

∫
Pr
S : Ḟ =

∫ t1

t0

∫
Pr
fẋ+

∫ t1

t0

∫
∂Pr

Snr · ẋ

or ∫ t1

t0

∫
P(t)

T : ∇v =
∫ t1

t0

∫
P(t)

ρfẋ+
∫ t1

t0

∫
∂P(t)

Tn · v
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Definition 3.10. The work is nonnegative in a closed process if for every part
Pr ⊆ Br, ∫ t1

t0

∫
Pr
S : Ḟ ≥ 0

for every closed process.

Note: localize, then this is equivalent to∫ t1

t0

S(t, p) : Ḟ (t, p) ≥ 0 ∀p ∈ Br

Definition 3.11. An elastic body is hyperelastic if there exists a (strain energy)
function σ̂ : Lin+ × Br → R such that

Ŝ(F, p) = Dσ̂(F, p)

i.e. Siα = ∂σ̂
∂Fiα

.

Theorem 3.12. An elastic body is hyperelastic ⇐⇒ the work is nonnegative
for every closed process.

Proof. (⇒) Notice that

d

dt
σ̂(F ) =

∂σ̂

∂Fiα

∂Fiα
∂t

= Dσ̂ : Ḟ = Ŝ(F ) : Ḟ

Then,

[σ̂(F )]t1t0 =
∫ t1

t0

Ŝ(F ) : Ḟ

and the LHS is zero for a closed process. Since x(t0, p) = x(t1, p) implies
F (t0) = ∇px(t0) = ∇px(t1) = F (t1), then we’re done.

(⇐) Assume nonnegativity of work during closed processes.
Step 1: Let F : [t0, t1] → Lin+ be smooth and satisfy F (t0) = F (t1) and
Ḟ (t0) = Ḟ (t1). Then ∫ t1

t0

Ŝ(F (t)) : Ḟ (t) dt = 0

Proof : Define x(t, p) = p0 + F (t)(p − p0), so ∇x(t) = F (t) and x(t0) = x(t1)
and ẋ(t0, p) = Ḟ (t0)p = Ḟ (t1)p = ẋ(t1, p). Thus, x is closed on [t0, t1], which
implies ∫ t1

t0

Ŝ(F ) : Ḟ dt ≥ 0

Next, define the “reversal”, x?(t, p) = p0+F (t0+t1−t)(p−p0). Then∇x?(t, p) =
F (t0 + t1 − t) and

x?(t0, p) = p0 + F (t1)(p− p0) = p0 + F (t0)(p− p0) = x?(t1, p)
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Similarly, ẋ?(t0) = ẋ?(t1). Then,

(∇x?)· (t) = −Ḟ (t0 + t1 − t)

and so

−
∫ t1

t0

Ŝ(F ) : Ḟ dt =
∫ t1

t0

Ŝ(∇x?) : (∇x?)·(t0 + t1 − t) dt

Change variables by letting t? = t0 + t1− t, so dt? = −dt. Then the RHS above
is ∫ t?=t0

t?=t1

Ŝ(∇x?) : (∇x?)·(t?)(−dt?) =
∫ t1

t0

· · · dt? ≥ 0

This proves the claim from Step 1.
Step 2: Let F : [t0, t1]→ Lin+ be continuous and piecewise smooth and satisfy
F (t0) = F (t1) ≡ A. Then, ∫ t1

t0

Ŝ(F ) : Ḟ = 0

Proof sketch: Extend the domain of F to R by F (t) = A for t /∈ [t0, t1], so
F : R→ Lin+ is continuous. Mollify F to obtain a smooth function Fε = F ?ϕε.
Note Fε(t) = A on R \ [t0 − ε, t1 + ε], so Ḟε = 0 off [t0 − ε, t1 + ε]. We know
Fε → F uniformly on R and Ḟε → Ḟ in L1(R). Since we assume Ŝ is continuous,
then ∫ t1

t0

Ŝ(F ) : Ḟ = lim
ε→0

∫
R
Ŝ(Fε) : Ḟε = lim

ε→0

∫ t1+ε

t0−ε
Ŝ(Fε) : Ḟε

but Fε(t0 − ε) = A = Fε(t1 + ε) and Ḟε(t0 − ε) = 0 = Ḟε(t1 + ε) and Fε is
smooth, so Step 1 is applicable, and taking a limit in ε tells us what we want.
Step 3: Construct σ : Lin+ → R. Given F ∈ Lin+, let F̃ : [0, 1] → Lin+ be a
smooth curve satisfying F̃ (0) = I and F̃ (1) = F , and define

σ(F ) :=
∫ 1

0

Ŝ(F̃ ) : (F̃ )· dt

First, σ(F ) is “well-defined” since if ˜̃F is another path for which ˜̃F (1) = F and
˜̃F (0) = I then∫ 1

0

Ŝ(F̃ ) : (F̃ )· dt−
∫ 1

0

Ŝ( ˜̃F ) : ( ˜̃F )· dt =
∫ 2

0

Ŝ(P ) : Ṗ dt

where P : [0, 2] → Lin+ is the map F̃ followed by ˜̃F reversed. Then P (0) =
P (2) = I so

∫
Ŝ(P ) : Ṗ = 0 and thus∫ 1

0

Ŝ(F̃ ) : (F̃ )· dt =
∫ 1

0

Ŝ( ˜̃F ) : ( ˜̃F )· dt

To compute ∂σ̂
∂Fiα

, let

Jjβ =

{
0 if (j, β) 6= (i, α)
1 if (j, β) = (i, α)
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Then
∂σ̂

∂Fiα
= lim
ε→0

σ(F + εJ)− σ(F )
ε

Let P be any smooth path from I to F in Lin+. Then,

σ(F + εJ) =
∫ 1

0

Ŝ(P ) : Ṗ +
∫ ε

0

Ŝ(F + tJ) : J dt = σ(F ) +
∫ ε

0

Ŝiα(F + tJ) dt

Then
∂σ̂

∂Fiα
= lim
ε→0

1
ε

∫ ε

0

Siα(F + tJ) dt = Ŝiα(F )

since Ŝ(·) is continuous and the quantity inside the limit is just the average
value of Ŝiα on [F, F + εJ ].

Recall

d

dt

∫
Pr
ρr
|ẋ|2

2
+
∫
Pr
Ŝ(F ) : Ḟ =

∫
Pr
f · ẋ+

∫
∂Pr

Snr · ẋ

which we write as

d

dt

∫
Pr

(
ρr
|ẋ|2

2︸ ︷︷ ︸
kinetic energy

+ σ(F )︸ ︷︷ ︸
stored elastic energy

)
=
∫
Pr
f · ẋ+

∫
∂Pr

Snr · ẋ

In particular, if f = 0 and either ẋ = 0 on ∂Pr or Snr = 0 on ∂Pr, then∫
Pr
ρr
|ẋ|2

2
+ σ(∇px) = const.

3.3 Independence of Observer

Recall Ŝ(QF ) = QŜ(F ) for Q ∈ Orth+. Then

∂

∂Fiα
σ(QF ) =

∂σ

∂Fjβ

∂(QF )jβ
∂Fiα

= Dσ(QF )jβQjiδαβ = QTDσ(QF )

so DFσ(QF ) = QT (Dσ)(QF ) ⇐⇒ QDFσ(QF ) = (Dσ)(QF ). Given Q = eW ,
let Q(T ) = etW , so Q̇ = WQ. Then

σ(QF )− σ(I) =
∫ 1

0

d

dt
σ(Q(t)F ) =

∫ 1

0

(Dσ)(Q(t)F ) : (Q(t)F )·

=
∫ 1

0

(Dσ)(QF ) : WQF =
∫ 1

0

(Dσ)(QF )(QF )T : W

=
∫ 1

0

Ŝ(Q(t)F )(Q(t)F )T︸ ︷︷ ︸
if BAM holds

: W

Now, ŜFT = (ŜFT )T and W = −WT is skew, so Ŝ(QF )(QF )T : W = sym :
skew = 0, and thus σ(QF ) = σ(F ).
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Lemma 3.13. The response function of a hyperelastic material is independent
of observer ⇐⇒ σ(QF ) = σ(F ) for every Q ∈ Orth+.

Writing C = FTF , then

σ̃(QTCQ) = σ̃((FQT )(FQ)) = σ̂(FQ)

and material symmetry under Q (i.e. Q is in the symmetric group of the mate-
rial) implies that

σ̃(QTCQ) = σ̂(FQ) = σ̂(F ) = σ̃(C)

Thus, if the material is isotropic, i.e. σ̂(FQ) = σ̂(F ) for all Q ∈ Orth+ or
σ̃(QTCQ) = σ̃(C) for all such Q, then σ̃(C) = ˜̃σ(JC).

Write

S = 2F ˜̃σ(FTF ) = 2F (σ1Dι1(C) + σ2Dι2(C) + σ3Dι3(C))

where
σp(ι1, ι2, ι3) =

∂

∂ιp
˜̃σ(ι1, ι2, ι3) for p = 1, 2, 3

Now, we calculate these derivatives:

1. ι1(C) = tr(C), so Dι1(C) = I.

2. ι2(C) = 1
2 (tr(C)2 − tr(C2)) = tr(C)2 − |C|2 since C = CT , so Dι2(C) =

tr(C)I − C.

3. ι3(C) = det(C), so Dι3(C) = cof(C) = det(C)C−1.

Thus,
S = 2F

(
σ1I + σ2(tr(C)I − C) + σ3 det(C)C−1

)
and

Ŝ(F ) = 2
(
(σ1 + σ2|F |2)F − σ2FF

TF + σ3 det(F )2F−T
)

Let T = 1
det(F )SF

T . Then, using FFT = B, we have

T =
1√

det(B)

(
(σ1 + σ2tr(B))B − σ2B

2 + σ3 det(B)I
)

Note: JC ≡ JB . Thus, we think of σp = σp(JB) when computing T and
σp = σp(JC) when computing S. Or, notice

ι1(C) = tr(C) = |F |2

ι2(C) =
1
2
(
tr(C)2 − tr(C2)

)
=

1
2
(
|F |4 − |FTF |2

)
ι3(C) = det(F )2
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Example 3.14. Let

σ̂(F ) =
1
2
(
α(|F |2 − |I|2)− β ln[det(F )2]

)
Then Ŝ(F ) = Dσ̂(F ) = αF − βF−T . So then

T =
1

det(F )
SFT =

1
det(F )

(αFFT − βI)

=
1√

det(B)
(αB − βI)

Frequently in applications, α = β, so that T vanishes when B = I, otherwise
there is a “residual” stress. Also,

σ̃(C) =
1
2

(α(tr(C)− tr(I))− β ln(det(C)))

=
1
2

(α(π1 − 1) + α(π2 − 1) + α(π3 − 1)− β ln(π1)− β ln(π2)− β ln(π3))

=
∑
λ

α(π − 1)− β ln(λ)

which is a convex function of the λs, and where λi = λi(C).

3.4 Linear Elasticity

If Ŝ(F ) = Ŝ(p, F ), then

Ŝ(F ) = Ŝ(I) +DŜ(I)(F − I) +O(|F − I|2)

where

DŜ(I)(F − I)|iα =
∑
jβ

∂Ŝiα(I)
∂Fjβ

(F − I)jβ =
∑
jβ

Ciαjβ(F − I)jβ

Define C : Lin → Lin by C(H) = DŜ(I)(H). Note C(H)iα = CiαjβHjβ (sum
on jβ, using Einstein notation).

Remark 3.15. • C is called the elasticity tensor (at p).

• Ŝ(I) is called the “residual” stress.

Lemma 3.16. For an elastic material, T = T̂ (F ). Then

DT̂ (I)(H) = Ŝ(I)
(
−tr(H)I +HT

)
+ C(H)

43



Proof. Recall T̂ (F ) = 1
det(F ) Ŝ(F ), and D det(F )(H) = det(F )(F−T : H), so

then

DT̂ (F )(H) = − 1
det(F )2

D(det(F ))(H)Ŝ(F )FT

+
1

det(F )
DŜ(F )(H)FT +

1
det(F )

Ŝ(F )

= − 1
det(F )

(F−T : H)Ŝ(F )FT +
1

det(F )
DŜ(F )(H)FT

+
1

det(F )
Ŝ(F )HT

= Ŝ(I)
(
−tr(H)I +HT

)
+ C(H)

Remark 3.17. 1. Ŝ(QF ) = QŜ(F ), frame indifference, Ciαjβ = Ciαβj .

2. Ŝ(F ) = Dσ̂(F ), 2nd law for hyperelastic materials, Ciαjβ = Cjβiα.

3. (1) and (2) ⇒ Ciαjβ = Cαijβ .
To prove (2), notice that

Ŝ(F )iα =
∂σ̂(F )
∂Fiα

⇒ Ciαjβ =
∂2σ̂

∂Fiα∂Fjβ
(I) = Cjβiα

To prove (1), note that Ŝ(QF ) = Ŝ(F )⇒ Ŝ(Q) = Ŝ(I) for any Q ∈ Orth+. Set
Q(t) = exp(tW ). Then

Ŝ(I) = Ŝ(Q(t))⇒ 0 =
d

dt
Ŝ(Q(t)) = DŜ(Q(t))(Q̇(t))

= DŜ(Q(t))(WQ(t))

and evaluating at t = 0 tells us 0 = DŜ(I)(W ), so C(W ) = 0 for all W ∈ Skw.
Thus, 0 = CiαjβWjβ for all W ∈ Skw. If Ciαjβ 6= Ciαjβ for some jβ, then select
W such that Wjβ = −1 = −Wβj to get 0 = 0iα = Ciαjβ − Ciαβj . Thus,

C(H) = C(Hsym +Hskw) = C(Hsym) + C(Hskw)︸ ︷︷ ︸
=0

⇒ C(H) = C(Hsym)

Recall: The function C : Lin → Lin is invariant under Q ∈ Orth if
C(QTHQ) = QTC(H)Q.

Lemma 3.18. If a material is (hyper)elastic at p ∈ Br, then the elasticity
tensor is invariant under the symmetry group at p, i.e.

C(QTHQ) = QTC(H)Q for Q ∈ Gp < Orth+

where Gp denotes the symmetry group of the material, which is a subgroup (<)
of Orth+.
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Proof. Note Ŝ(FQ) = Ŝ(F )Q for Q ∈ Gp. Set F 7→ QTF to get

Ŝ(QTFQ) = Ŝ(QTF )Q = QT Ŝ(F )Q

by frame indifference. Then

DŜ(QTFQ)(QTHQ) = QTDŜ(F )(H)Q

Evaluating at F = I tells us C(QTHQ) = QTC(H)Q.

Corollary 3.19. If an elastic material is isotropic at p, then C(E) = λtr(E)I+
2µE for all E ∈ Sym, for some scalars λ = λ(p) and µ = µ(p).

Define (·, ·)C : Lin× Lin→ R by

(G,H)C = C(G) : H ≡ G : C(H)

where the equivalence follows because C(G) : H = CiαjβGiαHjβ , and we know
we can swap the indices. Thus, (G,H)C = (H,G)C and

(αG1 + βG2, H) = α(G1, H) + β(G2, H)

and (G,W )C = 0 for all W ∈ Skw.
Recall: T = 1

det(F ) Ŝ(F )FT and T = TT , so Ŝ(I) = T̂ (I), so Ŝ(I) is sym-
metric. Then

T̂ (I +H) = Ŝ(I)(HT − tr(H)I) + C(H) + o(H)

Symmetries: Siα =
∂σ

∂Fiα
(always), and then

Ciαjβ =
∂Siα
∂Fjβ

�F=I=
∂2σ

∂Fiα∂Fjβ
(I)

so Ciαjβ = Cjβiα. If Ŝ(I) = 0, then DT̂ (I) = C(H) and T ∈ Sym gives
Ciαjβ + Cαijβ , and hence

Ciαjβ = Ciαβj

↓ ↑
Cjβiα = Cβjiα

For isotropic materials with Ŝ(I) = 0, then

C(E) = λtr(E)I + 2µE

where H = F − I and E = 1
2 (H +HT ). Assume Ŝ(I) = 0. Define

(·, ·)C : Lin× Lin→ R

by (G,H)C = C(G) : H = G : C(H) = C(H) : G = (H,G)C . Also, notice that

(αG1 + βG2, H)C = α(G1, H)C + β(G2, H)C

Thus, if C(H) : H ≥ 0 for all H, then (·, ·)C is a semi-inner product.
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Lemma 3.20. Let C(E) = λtr(E) + 2µE. Then C(E) : E > 0 for all non-zero
symmetric matrices ⇐⇒ µ > 0 and 2µ+ 3λ > 0.

Proof. Consider the more general case on Rd×d. Given E ∈ Lin, write E =
1
d tr(E)I + E0, so that tr(E0) = 0. Then,

|E|2 = E : E =
∣∣∣∣1d tr(E)I

∣∣∣∣2 + |E0|2

=
1
d2

tr(E)2|I|2 + |E0|2 (since I : E0 = 0)

=
1
d2

tr(E)2 + |E0|2

Then,

C(E) : E = (λtr(E)I + E) : E = λtr(E)2 + 2µ|E|2

=
(
λ+

2µ
d

)
tr(E)2 + 2µ|E0|2 > 0

for all E 6= 0 ⇐⇒ µ > 0 and λ+ 2
dµ > 0.

Example 3.21. Let σ̂(F ) = α
2 (|F |2 − |I|2)− β

2 ln(det(F )2). Then

Ŝiα =
∂σ

∂Fiα
= αFiα − β

1
det(F )

det(F )(F−T )iα

and so
Ŝ(F ) = αF − β(F−T )

and then
T̂ (F ) =

1
det(F )

Ŝ(F )FT =
1

det(F )
(αFFT − βI)

Note Ŝ(I) = 0 ⇐⇒ α = β. We need to compute

Ciαjβ =
∂Siα(I)
∂Fjβ

=
∂2σ(I)
∂Fiα∂Fjβ

First,
∂

∂Fjβ
(Fiα) = δijδαβ

and second,

F−TFT = I ⇒ (δF−TFT + F−T δFT = 0⇒ δF−T = −F−T δFTF−T

so
(δF−T )iα = −(F−T )iβδFjβ(F−T )jα = −(F−T )iβ(F−T )jαδFjβ

i.e.
∂(F−T )iα
∂Fjβ
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and
∂(F−T )iα
∂Fjβ

�F=I= −δiβδjα

Then,
Ciαjβ = αδijδαβ + βδiβδjα

or
C(H)iα = CiαjβHjβ = αHiα + βHαi

so C(H) = αH + βHT . Thus, if α = β then C(H) = 2αHsym.

Cauchy Stress:

T (F ) =
1

det(F )
Ŝ(F )FT

=
1

det(I +H)
Ŝ(I +H)(I +HT )

=
1

det(I +H)
(Ŝ(I) + C(H) + o(|H|))(I +H)T

Now, det(I +H) = 1 + tr(H) + o(|H|) so 1
det(I+H) = 1− tr(H) + o(|H|). Then,

T ≈ (1− tr(H))
(
(α− β)I + αH + βHT

)
(I +HT )

≈ (1− tr(H))
[
(α− β)I + (α− β)HT + αH + βHT

]
≈ (1− tr(H))

[
(α− β)I + α(H +HT )

]
≈ (1− tr(H))(α− β)I + α(H +HT ) + o(|H|)

Notation: Given a motion, write x = X (t, p) and

• the displacement is u(t, p) = x(t, p)− p

• ∇u = ∇x− I = F − I = H

• the “infinitesimal” strain is E = 1
2 (H +HT ).

Note:

• FTF = (I + H)T (I + H) = I + (H + HT ) + O(H2) and so FTF − I =
2E +O(∇u2)

• If Ŝ(I) = 0 then

Ŝ(F ) = C(F − I) + o(|F − I|2) = C(E) + o(|∇u|2)

where E = (∇u)sym and C(E) = C(∇u).
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Recall: for an elastic material

ρrẍ− div(Ŝ(F )) = b

u = X (t, p)− p , ü = ẍ

F = ∇x = ∇u− I
ρrü− div(C(∇u)) = b+O(|Du|2)

The last line above is the equation of linear elasticity. Note: if

C(∇u) = λtr(∇u) + µ(∇u+∇uT )

then

div(C(∇u))i = C(∇u)ij,j
= (λuk,kδij + µui,j + µuj,i)ij
= λuk,kjδij + µui,jj + µuj,ji

= ((λ+ µ)∇div(u) + µ∆u)i

One often sees the equations of isotropic, linear elasticity (with zero residual
stress) written as

ü− (λ+ µ)∇ div(u)− µ∆u = b

3.4.1 Stability

ρrü− div(C(∇u)) = b

Take the dot product with v and integrate by parts to get∫
Br
ρrü · v + C(∇u) : ∇v =

∫
Br
b · v +

∫
∂Br

C(∇u)n · v

Typically, we have ∂Br = Γ0∪Γ1 with u �Γ0= u0 is specified (like a displacement)
and C(∇u)n �Γ1= ŝ (the “traction” boundary condition).

Example 3.22. Consider the unit square in R2. Let Γ0 be the x-axis and Γ1 be
the remaining 3 sides. Specify u �Γ0= 0 and ŝ = T~e1 on the top side and ŝ = 0
on the other two sides. Then∫

Br
ρrü+ C(∇u) : ∇v =

∫
Br
b · v +

∫
Γ1

ŝ · v

for all v with v �Γ0= 0.

3.4.2 Uniqueness

Theorem 3.23. Suppose u1 and u2 satisfy the same elasticity equation with
the same boundary conditions and the initial conditions u1(0, p) = u2(0, p) and
u̇1(0, p) = u̇2(0, p). Then u1(t, x) = u2(t, x) for all (t, x) ∈ (0, T )× Br.
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Proof. Note u = u2 − u1 satisfies ρrü − div(C(∇u)) = 0 with u �Γ0= 0 and
C(∇u) �Γ1= 0. Thus,∫

Br
ρrü · v + C(∇u) : ∇v = 0 ∀v s.t. v �Γ0= 0

Set v = u̇. Then

ü · u̇ =
(

1
2
u̇ · u̇

)·
=
(

1
2
|u̇|2
)·

and

C(∇u) : ∇u̇ =
(

1
2
|∇u|2C

)·
since

d

dt

1
2

(∇u,∇u)C =
1
2

(∇u̇,∇u)C +
1
2

(∇u,∇u̇)C = (∇u,∇u̇)C = C(∇u) : ∇u̇

Also, ρr = ρr(p) is independent of t, as is Br. Then

1
2
d

dt

∫
Br

ρr|u̇|2︸ ︷︷ ︸
kinetic energy

+ |∇u|2C︸ ︷︷ ︸
elastic energy

= 0

and so (∫
Br
ρr|u̇|2 + |∇u|2C

)
�t=0=

∫
Br
ρr|u̇|2 + |∇u|2C �t=0= 0

since u1 = u − 2 and u̇1 = u̇2 when t = 0. Since ρr > 0 on Br then u̇ = 0 so
u(t, p) = u(0, p) = 0.

3.5 Elastostatics

Consider − div(C(∇u)) = b with u �Γ0= u0 and C(∇u)n �Γ1= ŝ. Then∫
Br
C(∇u) : ∇v =

∫
Br
b · v +

∫
Γ1

ŝ · v ∀v s.t. v �Γ0= 0

Suppose u1, u2 are solutions with the same b and boundary conditions. Then
u2 − u1 satisfies −div(C(∇u)) = 0 and u �Γ0= 0. Thus,∫

Br
C(∇u) : ∇v = 0 ∀v s.t. v �Γ0= 0

so select v = u to get∫
Br
|∇u|2C = 0 ⇒ |∇u|2C = 0 on Br ⇒ (∇u)sym = 0

Recall ∇u = 0 ⇐⇒ u(x) = u0 ∈ Rd is constant.
Exercise 1: If Ω ⊆ Rd is a connected domain and u : Ω→ Rd is smooth, then

(∇u)sym = 0 ⇐⇒ u(p) = u0 +Wp for some u0 ∈ Rd,W ∈ Skw
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Exercise 2: If ∂Ω is Lipschitz and Γ ⊆ ∂Ω has nonzero measure and u �Γ= 0,
then u = 0.

**********∫
Br
C(∇u) : ∇v =

∫
Br
b · v +

∫
Γ1

ŝ · v ∀v �Γ0= 0

Given two solutions u1, u2 of the same elastostatic problem, the difference u =
u2 − u1 satisfies ∫

Br
C(∇u) : ∇v = 0 ∀v �Γ0= 0

and setting v = u gives ∫
Br
|∇u|2C = 0

Recall (G,H)C = C(G) : H = G : H(C). Note that this integral condition does
not necessarily imply ∇u = 0.

If we assume (G,H)C is an inner product on Sym (e.g. µ > 0 and 2λ+3µ > 0
in isotropic case), then (∇u)Sym = 0.

We’re thinking of u = [u, v]T , so

∇u =
[
ux uy
vx vy

]
⇒ (∇u)Sym =

[
ux

uy+vx
2

0 vy

]
By Exercise 1 above, it follows that u(t, p) = u2 − u1 = u0 + Wp. Thus, if
u �Γ0= u2 − u1 �Γ0= 0 is “sufficient” to eliminate rigid body motions, then
u(p) = 0.

Pure Traction Problem: (Γ0 = 0) We want C(∇u)n = ŝ on Br.∫
Br

(∇u,∇v)C =
∫
Br
b · v =

∫
∂Br

ŝ · v ∀v smooth

Set v = v0 ∈ Rd constant, so then

0 =
(∫
Br
b+

∫
∂Br

ŝ

)
· v0 ⇒

∫
Br
b+

∫
∂Br

ŝ = 0

Next, set v = Wp, so that (∇u,∇v)C = ∇u : C(W ) = 0, and then

0 =
∫
Br
b ·Wp+

∫
∂Br

ŝ ·Wp

If W = W (ω) has axial vector ω ∈ Rd, then

b ·W (ω)p = b · (ω × p) = ω · (p× b)

and so

0 = ω ·
(∫
Br
p× b+

∫
∂Br

p× ŝ
)
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for all ω, and thus ∫
Br
p× b+

∫
∂Br

p× ŝ = 0

These are necessary and sufficient conditions for existence of a solution to the
pure traction elastostatics problem. Solutions may be found by minimizing

I(u) =
∫
Br

1
2
|∇u|2C − b · u−

∫
∂Br

ŝ · u

over the set
u ∈ U :=

{
u ∈ H1(Br)d : u �Γ0= u0

}
3.6 Wave Propagation

Consider isotropic elasticity C(H) = λtr(H)I + µ(H +HT ),

ρ0ü− (λ+ µ)∇div u− µ∆u = 0

We seek a solution of the form

u(t, x) = ~a exp(i(ωt− ~k · x))

so we do some calculus! Notice ü = −ω2u and

∇u = −i(a⊗ k) exp(i(ωt− k · x)) = −iu⊗ k

and
div u = tr(∇u) = −ia · k exp(i(ωt− k · x))

Then
∆u = −|k|2u = −|k|2a exp(i(ωt− k · x))

and
∇div u = −(a · k)k exp(i(ωt− k · x))

so (
−ρ0ω

2I + (λ+ µ)k ⊗ k + µ|k|2I
)
a exp(i(ωt− k · x)) = 0

Divide by |k|2 and write c2 = ω2

|k|2 and k̂ = 1
|k| to get

(λ+ µ)(k̂ ⊗ k̂)a = (ρ0c
2 − µ)a

Thus, a must be an eigenvector of (λ + µ)k̂ ⊗ k̂ with eigenvalue ρc2 − µ. The
eigenpairs are

a = k̂ with c2 =
λ+ 2µ
ρ0

and a ∈ {k̂⊥} with c2 =
µ

ρ0

where {k̂⊥} is a 2-D null space.
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The solution
u(x, t) = C exp(ic(t− k̂ · x))k̂

is a longitudinal wave with speed
√

λ+2µ
ρ0

and

u(t, x) = C exp(ic(t− k̂ · x))` for ` ∈ k̂⊥

is a transverse wave with speed
√

µ
ρ0

.

4 Thermomechanics

1. Statistical mechanics: for an ideal gas,

density : ρ =
# molecules

volume

temperature : θ = average of
(
v2

2

)
≥ 0

pressure : p =
force

unit wall area
≈ change in momentum of molecules bouncing off walls

and p
ρ = Rθ for some constant R.

2. Theory of heat engines: important concepts are heat in Q and work
out W

Example 4.1. Ideal gas in a cylinder. W = “force × distance”, but really

W =
∫ x2

x1

p Adx︸︷︷︸
dVolume

=
∫ V2

V1

p dV

and Q ∝ Tθ (T = temperature).

First Law. For a cyclic process, Q = 0 ⇒ W =).
Reversibility: using an ideal gas, we can construct a reversible machine,

with W in and JQ out.

Lemma 4.2 (Joule’s relation). Let J be the constant for the ideal gas. Then
Q = JW for all cyclic processes.

Proof. Suppose otherwise, so W = (1 + α)JQ for some process. Contradicts
First Law. ***** insert picture *****

Second law. **********
“Zeroth law”. If two bodies are in contact, heat flows from one to another

⇐⇒ the one is hotter than the other.
So in our concept of “temperature”, we just need an “order” of hotness.
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Reversible machine. Using an ideal gas, one can construct a reversible
machine for which heat is added at a constant temperature θin and heat is
removed at a constant temperature θout and θin > θout when W > 0.

***** diagram *****
With this cycle (J = 1),

W = Qin −Qout︸ ︷︷ ︸
1st Law

=
(
θin − θout

θin

)
︸ ︷︷ ︸

efficiency

Qin

Lemma 4.3. No cyclic process operating between temperatures θ1 and θ2 can
be “more efficient” than the Carnot cycle constructed with an ideal gas.

Proof. Suppose W = Qin −Qout = ηQin for some device with η > θin−θout
θin

.
******** diagram ******

If we assume work W and heat Q are “basic” or “fundamental” then the 1st
law gives

∮
dW − dQ = 0. We can then define

e(W,Q) = e0 +
∫ (W,Q)

(W0,Q0)

dW − dQ

and this is well-defined. The 2nd law gives an inequality; if we knew
∮
v(x)·dx ≤

0 for closed loops, then ∃ “lower potential” η(x) such that∫ x

x0

v · dx ∗ ∗ ∗ ∗≤
≥
∗ ∗ ∗ ∗ ∗ η(x)− η(x0)

Coleman-Noll procedure (≈ 1960s)

• Kinematics: x = X (t, p), v = ẋ, F = ∇x etc.

• Balance of mass: ρt + div(ρv) = 0 or ρ = ρr
detF

• Balance of momentum: ρv̇−div T = b, T = TT where b is known/specified
and T is constitutive

• Balance of energy: ρė + div q = r + T : ∇v where r = heat source is
known/specified and e, q are constitutive (and θ = temperature, in the
background)

• Clausius Duhem inequality:

d

dt

∫
P(t)

ρη ≥
∫
P(t)

r

θ
+
∫
∂P(t)

q · n
θ

for all parts P(t) = X (t,Pr) with Pr ⊆ Br, and where θ = temperature is
fundamental and η = specific entropy is constitutive.
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Using the Reynolds transport theorem 1 and the divergence theorem gives∫
P(t)

ρη̇ ≥
∫
P(t)

r

θ
− div

(
1
θ
q

)
and localizing gives

ρη̇ + div
(

1
θ
q

)
≥ r

θ
⇐⇒ ρη̇θ + div q ≥ r +

1
θ
q · ∇θ

Ingredients: (T, e, q, η,X , θ, b, r)
Given (T, e, q, η) functions of (X , θ) then given any motion X and θ > 0 we can
construct a process with motion X and temperature θ by selecting b, r to be the
RHS of the momentum and energy equations, respectively.

That is, T, e, q, η are constitutive (functions of X , θ), we assume X , θ can be
specified arbitrarily, and these specifications give us b, r.

Second Law: A constitutive law (T, e, q, n) = F(X , θ) satisfies the Clausius
Duhem inequality for all admissible motions X and θ > 0.

Helmholz Free Energy: First, recall ρė = r − div q + T : ∇v so the
Clausius Duhem inequality becomes

ρη̇ ≥ 1
θ
ρė− 1

θ
T : ∇v +

1
θ2
q · ∇θ

and so
ρ(ė− θη̇)− T : ∇v +

1
θ
q · ∇θ ≤ 0

Note: this eliminates r. Define ψ = e− θη, so ψ̇ = ė− θ̇η − θη̇. Thus,

ρ(ψ̇ + ηθ̇)− T : ∇v +
1
θ
q · ∇θ ≤ 0

Elastic Material with Linear Viscosity

T = T̂e(F, θ) + T̂v(F, θ)(∇v)

where T̂v(F, θ) : Lin+ → Sym is linear, and e = elastic and v = viscous. We
assume e = ê(F, θ,∇θ) and q = q̂(F, θ,∇θ) and η = η̂(F, θ,∇θ). We often write
g = ∇θ. Then ψ̂ = ê− θη̂ is a derived quantity.

ψ̇ = DF ψ̂ : Ḟ + ψ̂θ θ̇ +∇gψ̂ · ∇θ̇ (Ḟ = ∇vF )

so then

ρ(ψ̂θ + η̂)θ̇ + ρ(DF ψ̂F
T − T̂e) : ∇v − T̂v(∇v) : ∇v+

1
θ
q · ∇θ + ρ∇gψ̂ · ∇θ̇ ≤ 0
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Entropy Relation. x = X (t, p) = F0(p−~0), for F0 ∈ Lin+ and v = 0 etc.;
θ(t, x) = θ0 + αt for θ0 > 0 and t small, ∇θ = 0 etc.

ρ(ψ̂θ (F0, θ0, g0) + η̂(F0, θ0, g0))α ≤ 0 evaluate at t = 0

Since α may take arbitrary sign, then η̂ = −∂ψ̂∂θ . This equation is the entropy
relation. This removes the first term in the inequality above, so we have

(DF ψ̂F
T − T̂e) : ∇v − T̂v(∇v) : ∇v +

1
θ
q · ∇θ +∇gψ̂ · ∇θ̇ ≤ 0

for this class of materials.
Next, set x = X (t, p) = F0(p−~0), so

θ(t, x) = θ0 + g0 · x+ tg1 · x for |x|+ t small

where θ(0, 0) = θ0 and ∇θ(0, 0) = g0 and θθ̇(0, 0) = g1. Then

1
θ
q̂(F0, θ0, g0) · g0 +∇gψ̂(F0, θ0, g0) · g1 ≤ 0

Selecting g1 arbitrarily gives

∇gψ̂(F0, θ0, g0) = 0

Thus, ψ = ψ̂(F, θ). Now, the last term in the inequality above vanishes, as well,
and all that remains is

(DF ψ̂F
T − T̂e) : ∇v − T̂v(∇v) : ∇v +

1
θ
q · ∇θ ≤ 0

Now, since ψ = e− θη, then e = ê(F, θ), as well.
Stress Relation and Dissipation Principle. x = X (t, p) = (F0 +

αtL0)(p−~0) for F0 ∈ Lin+ and L0 ∈ Lin; θ(t, x) = θ0 ∈ R+. Then F (0, 0) = F0

and Ḟ (0, 0) = αL0, so

α(DF ψ̂F
T − T̂e) : L0 − α2T̂v(L0) : L0 ≤ 0 ∀α

Since we can have α small with arbitrary sign, then

T̂e(F, θ) = ρDF ψ̂(F, θ)FT︸ ︷︷ ︸
Piola stress

is called the stress relation, and

T̂v(F, θ)(∇v) : ∇v ≥ 0

is called the dissipation relation.

55



Summary of information on elastic materials with linear viscosity: (T, e, q, η)
are constitutive, x = X (t, p) and θ(t, x) are specified; balance of mass, momen-
tum (linear & angular) can be satisfied by setting

ρ =
ρr

detF
b = ρv̇ − div T

T = TT

r = ρė+ div q − T : ∇v
T = T̂e(F, θ) + T̂v(F, θ)(∇v)

e, q, η ∼ (F, θ,∇θ)

It’s convenient to introduce ψ = e− θη, so then

ρ(ψ̂θ + η̂)θ̇ + ρ∇gψ̂ · ∇θ̇ + ρ(DF ψ̂F
T − T̂e) : ∇v − T̂v(∇v) : ∇v ≤ 0

For the entropy relation, write

θ(t, x) = θ0 + αt+ g0 · x

for |t|+ |x| << 1, with θ̇ = α and ∇θ = g0. Then for any α ∈ R,

ρ(ψ̂θ + η̂) �(F0,θ0,g0) α+
1
θ0
q̂(F0, θ0, g0) · g0 ≤ 0

and so ρ(ψ̂θ + η̂) = 0; thus η̂ = −ψ̂θ is the entropy relation.
Also, set ∇θ(0, 0) = g0 and ∇θ̇ = g1, so then

ρ∇gψ̂(F0, θ0, g0) · g1 +
1
θ0
q̂(F0, θ0, g0) · g0 ≤ 0

for all g1, and so by the same argument ∇gψ̂ = 0. We also get that q̂ · ∇θ ≤ 0.
Thus,

ψ = ψ̂(F, θ) independent of ∇θ

η = ψ̂θ independent of ∇θ
ψ = e− θη with e independent of ∇θ

ψ, η, e ∼ (F, θ)
q = q̂(F, θ,∇θ)

Evaluating the dissipation inequality at t = 0 gives

α
[
ρDF ψ̂F

T − T̂e) �(F0,θ0) −αT̂v(F0, θ0)(L) : L
]
≤ 0 ∀α

and thus T̂e = ρDF ψ̂(F, θ)FT and T̂v(F, θ)(L) : L ≥ 0.
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Heat conductivity: since 1
θ q(F, θ,∇θ)·∇θ ≤ 0, we define f(q) = q(F, θ, g)·

g. Then f(0) = 0 is a max and ∇f(0) = 0 implies Dq(F, θ, 0) ·0+ q̂(F, θ, 0) = 0.
Thus, q̂(F, θ, 0) = 0; i.e. no temperature gradient ⇒ no heat flow.

Fourier heat conductor

q̂(F, θ,∇θ) = ~0−K(F, θ)∇θ + o(|∇θ|2)

Then
q̂ · ∇θ = −∇θTK(F, θ)∇θ ≤ 0

so the conductivity matrix is positive-definite (but not necessarily symmetric)!
***** missed class Wed Apr 21
Recall

rot(T )i = εijkTkj

so, e.g. rot(T )1 = T32 − T23.
We write

ρ(Jω)· − div(C) = m+ rot(T )

and
ρė+ div(q) = r + T : ∇v + C : ∇ω − rot(T ) · ω

Rod-like molecules (Ericksen). J = r̄2(I−d⊗d) with |d| = 1 and d = Qe
and Q̇ = W (ω)Q. Then

ḋ = Q̇e = W (ω)Qe = W (ω)d = ω × d

and
d× ḋ = ω − (d · ω)d = (I − d⊗ d)ω

so
Jω = r̄2(I − d⊗ d)ω = r̄2d× ḋ

and
(Jω)· = r̄2d× d̈

To guarantee that c = Cn ⊥ d we assume Cn = Ĉn for any n, so

Cijnj = εipqdpĈqjnj ∀n ⇐⇒ Cij = εipqdpĈqj

Now,
div(C)i = Cij,j =

(
εipqdpĈqj

)
,j

= εipq dp,jĈq,j︸ ︷︷ ︸
(Ĉ∇dT )qp

+dp Ĉqj,j︸ ︷︷ ︸
div(Ĉ)q

so
divC = rot(Ĉ∇dT ) + d× div(Ĉ)

Then we have

d×
(
ρr̄2d̈− div(Ĉ)

)
= d× m̂+ rot

(
T + Ĉ∇dT

)
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This equation can only be satisfied if rot(T + Ĉ∇d) ⊥ d, i.e. rot(T + Ĉ∇dT ) =
−d× g for some g. Then we must have

ρr̄2d̈− div(Ĉ) + g + θd = m̂ |d| = 1

Observe

C : ∇w = Cijωi,j = εipqdpĈqjωi,j

= εipq[( dpωi︸︷︷︸
(ω×d)q

),j − dp.jωi]Ĉqj

= (ω × d)q,jĈqj + εipqωi(Ĉ∇dT )qp

= ∇(ω × d) : Ĉ + ω · rot(Ĉ∇dT )

= ∇(ḋ) : Ĉ + ω · rot(Ĉ∇dT )

Thus,
ρė+ div(q) = r + T : ∇v + Ĉ : ∇ḋ+ ω · rot(Ĉ∇dT + T )

Recall d× g = − rot(T + Ĉ∇dT ), so

−ω · rot(T + Ĉ∇dT ) = ω · (d× g) = (ω × d) · g = ḋ · g

and then
ρė+ div(q) = r + T : ∇v + Ĉ : ∇ḋ− g · ḋ

4.1 Invariance Principles

Definition 4.4. Given a reference body Br, a thermodynamic process is a tuple

π(t, p) =
{
ρr,X , θr, ~sr, er, q̂r, ηr,~br, rr

}
(t, p)

where

ρr, θr, er, ηr, rr : (0, T )× Br → R

X ,~b : (0, T )× Br → Rd

~sr : (0, T )× Br × S2 → Rd

q̂r : (0, T )× Br × S2 → R heat flux

for which

1. Balance of Energy

d

dt

∫
P(t)

ρ

(
e+

1
2
|v|2
)

=
∫
P(t)

(r + b · v) +
∫
∂P(t)

q̂(n) + ~s(n) · v

2. and Clausius-Duhem inequality

d

dt

∫
P(t)

ρη ≥
∫
P(t)

r

θ
+
∫
∂P(t)

q̂(n)
θ
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hold for all parts P(t) = X (t,Pr), Pr ⊆ Br.

Note: in this case, e(t, x(t, p)) = er(t, p) etc. and ρ(t, x(t, p)) = ρr(p)
det(F (t,p))

where F (t, p) =
[
∂X
∂p

]
is the Jacobian. For example,

d

dt

∫
P(t)

ρη =
d

dt

∫
Pr
ρr(p)ηr(t, p) dp

etc.
Given a thermodynamics process π(t, p) consider

πλ(t, p) =
{
ρr,X λ, θ, s, e, η, bλ, rλ

}
r

(t, p)

where
X λ(t, p) = X (t, p) + t · λ for λ ∈ R3

Write xλ = x + λt, vλ = v + λ, pλ(t) = X λ(t, pr) = p(t) + λt etc. Then we
compute, using det(Fλ) = detF ,∫

Pλ(t)

pλ
(
eλ +

1
2
|vλ|2

)
=
∫
Pr
ρr

(
er +

1
2
|ẋ+ λ|2 1

det(Fλ)

)
dp

=
∫
P(t)

ρ

(
e+

1
2
|v + λ|2

)
dx

=
∫
P(t)

ρ

(
e+

1
2
|v|2 + λ · v + |λ|2

)
Also, ∫

Pλ(t)

rλ + bλ · vλ =
∫
P(t)

rλ + bλ · (v + λ)

and ∫
∂Pλ(t)

q̂λ(nλ) + sλ(nλ) · vλ =
∫
∂P(t)

q̂(n) + s(n) · (v + λ)

Then,

d

dt

∫
Pλ(t)

pλ
(
eλ +

1
2
|vλ|2

)
−
∫
Pλ(t)

rλ + bλ · vλ −
∫
∂P(t)

q̂λ(nλ) + sλ(nλ) · vλ

=
d

dt

∫
P(t)

ρ

(
e+

1
2
|v|2 + v · λ+ |λ|2

)
−
∫
P(t)

(r + b · v + λ · b)

−
∫
∂P(t)

q̂(n) + s(n) · v + λ · s(n) +
∫
P(t)

(r − rλ) + (b− bλ) · vλ

Lemma 4.5. If π(t, p) is a thermodynamic process and πλ(t, p) is also a ther-
modynamic process for all λ ∈ Rd when bλ = b and rλ = r, then

d

dt

∫
P(t)

ρv =
∫
P(t)

b+
∫
∂P(t)

s(n)

for all parts P(t) = X (t, pr) with Pr ⊆ Br.
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Proof. Since we have a thermodynamic process, the balance of energy is satisfied

���
���

���
���d

dt

∫
Pλ(t)

pλ
(
eλ +

1
2
|vλ|2

)
−
���

���
��

∫
Pλ(t)

rλ + bλ · vλ −
���

���
���

���∫
∂P(t)

q̂λ(nλ) + sλ(nλ) · vλ

=
d

dt

∫
P(t)

ρ(
��

��
�

e+
1
2
|v|2 + v · λ+ |λ|2)−

∫
P(t)

((((((r + b · v+λ · b)

−
∫
∂P(t)

q̂(n) + s(n) · v + λ · s(n) +
∫
P(t)

(r − rλ) + (b− bλ) · vλ

************** which implies(
d

dt

∫
P(t)

ρv −
∫
P(t)

b−
∫
∂P(t)

s

)
· λ+ |λ|2 d

dt

∫
P(t)

ρ = 0 ∀λ,P(t)

Note:
d

dt

∫
P(t)

ρ =
d

dt

∫
Pr
ρr(p) dp = 0

implies
d

dt

∫
P(t)

ρv =
∫
P(t)

b+
∫
∂P(t)

s

******************

Consider a process π?(t, p) where

X ?(t, p) = X (t, p+Q(t)(x−~0)

b?(t, p) = Qb(t, p) + 2Q̇v + Q̈(x−~0)

and θ? = θ, all others the same. We know the balance of linear momentum
would hold.

Also, (i)

d

dt

∫
P?(t)

ρ?
(
e? +

1
2
|v?|2

)
=

d

dt

∫
P(t)

ρ

(
e+

1
2
|Q̇(x−~0) +Qv|2

)
=

d

dt

∫
P(t)

ρ

(
e+

1
2
|v|2 + 2Qv · Q̇(x−~0) + |Q̇(x−~0)|2

)
=

d

dt

∫
P(t)

ρ

(
e+

1
2
|v|2 + 2v · (ω × (x−~0)) + |ω × (x−~0)|2

)
where we’ve used QT Q̇ = W (ω) and v? = Q̇(x−~0) +Qv̇.
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Also, (ii)∫
P?(t)

ρ?(r? + b? · v?)

=
∫
P(t)

ρ
(
r +QT (Qb+ 2Q̇v + Q̈(x−~0))

)
=
∫
P(t)

ρ
[
r +

(
b+ 2QT Q̇v +QT Q̈(x−~0)

)
·
(
v +QT Q̇(x−~0)

)]
=
∫
P(t)

ρ
[
r + b · v + b · (ω × (x−~0)) +QtQ̈(x−~0) · v

+2(ω × v) · (ω × (x−~0)) + Q̈(x−~0) · Q̇(x−~0)
]

Also, (iii)∫
∂P?(t)

q̂?(n?) + s?(n?) · v?

=
∫
∂P(t)

q̂(n) +Qs(n) · (Q̇(x−~0) +Qv)

=
∫
∂P(t)

q̂(n) + s(n) · v + s(n) · (ω × (x−~0))

Combining these 3 equations, we have

(i)− (ii)− (iii) = (Energy Equation)? = (Energy Equation)+

+
d

dt

∫
P(t)

ρω · (x−~0)× v−
∫
P(t)

ω · (x−~0)×ρb−
∫
∂P(t)

ω · (x−~0)× s(n)
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