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0 Introduction

Any claim marked with (***) is meant to be proven as an exercise.

1 Measure Theory

1.1 σ-Fields

Let Ω 6= ∅ be some set (of all possible outcomes).

Definition 1.1. A collection F of subsets of Ω is called a σ-field provided

1. Ω ∈ F

2. A ∈ F ⇒ Ac ∈ F

3. A1, A2, · · · ∈ F ⇒
⋃∞
i=1Ai ∈ F

The pair (Ω,F) is called a measurable space and the sets A ∈ F are called
(F-observable) events.

Remark 1.2. If (3) is required for only finite unions, then F is merely called an
algebra (field). Using DeMorgan’s Laws, one can conclude that countable (resp.
finite) intersections stay within a σ-field (resp. algebra).

Example 1.3. 1. F = P(Ω) is a (maximal) σ-field. F = {∅,Ω} is a (trivial)
σ-field.

2. Let B be an arbitrary collection of subsets B ⊆ P(Ω). Then

σ(B) :=
⋂

F̂ :σ-field
B⊆F̂

F̂
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is the σ-field generated by B. (The intersection is nonempty since F̂ =
P(Ω) is always valid.) It is, indeed, a σ-field since an arbitrary intersection
of σ-fields is also a σ-field (***), and by construction it is the smallest σ-
field containing B.

3. Let Ω be a topological space where τ is the collection of open sets. Then
σ(τ) is called the Borel σ-field.

4. Let Z = (Ai)i∈I be a countable partition of Ω; i.e. I is countable and
Ω =

⋃
i∈I
Ai (disjoint union). Then σ(Z) is an atomic σ-field with atoms

A1, A2, . . . , and it can be written as (***)

σ(Z) =

⋃
j∈J

Aj : J ⊆ I


Note: if Ω is countable then every σ-field is of this form.

5. Time evolution of a random system with state space (S,S) which is, itself,
a measurable space. Set

Ω = SN = {ω = (ω0, ω1, . . . ) : ωi ∈ S}

to be the set of all trajectories in S. The map Xn : Ω → S defined by
ω 7→ ωn indicates the state of the system at time n. For A ∈ S, write

{Xn ∈ A} = {ω ∈ Ω : Xn(ω) ∈ A} = X−1
n (A)

as the event that at time n, the system was in A. Then

Bn := {{Xn ∈ A} : A ∈ S}

is the collection of “at time n observable events”. In fact, Bn is automat-
ically a σ-field. To see why, we show:

(a) Ω = {Xn ∈ S} ∈ Bn
(b) If B ∈ Ω then ∃A ∈ S such that B = {Xn ∈ A}, but then Bc =
{Xn ∈ Ac} ∈ Bn, too.

(c) Similarly, if B1, · · · ∈ Bn then ∃A1, · · · ∈ S such that Bn = {Xn ∈
Ak} then

⋃
i≥1 = {Xn ∈

⋃
iAi} ∈ Bn.

We set

Fn := σ

⋃
k≤n

Bk


to be the “up to time n observable events”. Similarly, we set

F := σ

⋃
n≥0

Bn
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to be the σ-field of all observable events. Note that, a priori, the expres-
sions in the parentheses σ (·) above are not necessarily σ-fields themselves.

One can show that (***)

Fn = σ{
n⋂
i=0

{Xi ∈ Ai} : Ai ∈ S}

and

F = σ

⋂
i≥0

{Xi ∈ Ai} : Ai ∈ S


We also set

F?n := σ

⋃
k≥n

Bk


to be the σ-algebra of “after time n observable events” and

F? :=
⋂
n≥0

F?n

to be the “tail field” or asymptotic field. Is F? trivial? NO!

Example 1.4.
{Xn ∈ A i.o.} =

⋂
n≥0

⋃
k≥n

{Xk ∈ A} ∈ F?

where “i.o.” means “infinitely often”. To see why, set

Cn =
⋃
k≥n

{Xk ∈ A} ∈ F?n

WWTS
⋂
n≥0 Cn ∈ F?k for each fixed k (and the claim above follows directly).

Notice that Cn+1 ⊆ Cn so ⋂
n≥0

=
⋂
n≥k

Cn ∈ F?k

and we’re done.

1.2 Dynkin Systems

Definition 1.5. A collection D ⊆ P(Ω) is called a Dynkin system provided

1. Ω ∈ D

2. A ∈ D ⇒ Ac ∈ D

3. A1, A2, . . . disjoint and Ai ∈ D ⇒
⋃
i
Ai ∈ D
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Note that these conditions are less restrictive than a σ-field.

Remark 1.6. If A ⊆ B with A,B ∈ D then B \A = (Bc∪A)c ∈ D, as well. If D
is ∩-closed then D is a σ-field. To see why, observe that:

1. If A,B ∈ D then

A ∪B = (A \ (A ∩B))︸ ︷︷ ︸
∈D

∪ (A ∩B)︸ ︷︷ ︸
∈D

∪ (B \ (A ∩B))︸ ︷︷ ︸
∈D

∈ D

2. If A1, · · · ∈ D, set Bk =
⋃
i≤k Ai. Then

∞⋃
i=1

Ai =
⋃

n≥1
(Bn \Bn−1)︸ ︷︷ ︸

∈D

∈ D

Also, note that if B ⊆ P(Ω) then

D(B) :=
⋂
D̂:D.S.
B⊆D̂

D̂

is a Dynkin System (the smallest DS containing B, by construction).

Theorem 1.7 (Dynkin’s π-λ Theorem). Let B ⊆ P(Ω) and assume B is ∩-
closed. Then D(B) is also ∩-closed and therefore a σ-field; furthermore, D(B) =
σ(B).

Note: D(B) ⊆ σ(B) always, but if D(B) is itself a σ-field then it cannot
be strictly smaller than σ(B), by definition. Thus, it suffices to show D(B) is
∩-closed.

Proof. First, let B ∈ B and set

DB := {A ∈ D(B) : A ∩B ∈ D(B)}

Observe that DB is, in fact, a DS (***) containing B and thus DB ⊇ D(B). The
reverse containment is trivial, so we have DB = D(B).

Second, let A ∈ D(B) and set

DA := {C ∈ D(B) : A ∩ C ∈ D(B)}

Observe that DA is, in fact, a DS (***) containing B (by the first part of this
proof), and so DA ⊇ D(B). Again, the reverse is trivial, so DA = D(B).
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1.3 Probability Measures

Let (Ω,F) be a measurable space.

Definition 1.8. A probability distribution (prob. measure) P is a positive
measure on Ω with total mass 1; that is, P : F → [0, 1] with A 7→ P [A] (prob.
of event A) and with the following properties (the Axioms of Kolmogorov):

1. P [Ω] = 1

2. A1, · · · ∈ F with Ai ∩Aj = ∅ for i 6= j then

P

[ ∞⋃
i=1

Ai

]
=
∞∑
i=1

P [Ai]

This is called being ”σ-additive”.

Some properties of probability distributions:

1. P [Ac] = 1− P [A]

2. A ⊆ B ⇒ P [A] ≤ P [B] (monotonicity)

3. P [A ∪B] = P [A] + P [B]− P [A ∩B] ≤ P [A] + P [B] (subadditivity)

4. If A1 ⊆ A2 ⊆ · · · then

lim
n→∞

P [An] = P

[ ∞⋃
i=1

Ai

]
This is known as monotone continuity. Taking complements, one can show
that if B1 ⊇ B2 ⊇ · · · then i

lim
n→∞

P [Bn] = P

[ ∞⋂
i=1

Ai

]

To prove the first property, take an ascending collection Ak. Set A0 = ∅
and Dk = Ak \Ak−1. Then

An =
⋃

1≤k≤n
Dk ⇒ P [An] =

n∑
k=1

P [Dk]

by σ-additivity. Since ⋃
n≥1

An =
⋃

k≥1
Dk

then we have

P

⋃
n≥1

An

 =
∞∑
k=1

P [Dk] = lim
n→∞

n∑
k=1

P [Dk] = lim
n→∞

P [An]
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5. For any countable collection (Ak)k≥1,

P

⋃
k≥1

Ak

 ≤ ∞∑
k=1

P [Ak]

This property is known as σ-subadditivity. To prove it, notice that the
collection

⋃
k≤nAk is ascending in n, so

P

⋃
k≥1

Ak

 = lim
n→∞

P

⋃
k≤n

Ak


≤ lim inf

n→∞

n∑
k=1

P [Ak] =
∞∑
k=1

P [Ak]

Lemma 1.9 (Borel-Cantelli I). Assume (Ak)k≥1 ⊆ F with
∑
i≥1 P [Ai] < ∞.

Then

P

 ∞⋂
n=1

⋃
k≥n

Ak

 = 0

Remark 1.10. Notice that

P

 ∞⋂
n=1

⋃
k≥n

Ak

 = P
[
{ω : ki(ω)→∞ s.t. ω ∈ Aki(ω), i ≥ 1

]
= P [∞ many of Ak occur] = P [An i.o.]

Proof. Notice that
⋃
k≥nAk is a descending collection in n, so

P

 ∞⋂
n=1

⋃
k≥n

Ak

 = lim
n→∞

P

⋃
k≥n

Ak

 ≤ lim inf
n→∞

∑
k≥n

P [Ak] = 0

by assumption.

Theorem 1.11 (Uniqueness). Let P1, P2 be two probability measures on (Ω,F),
and suppose B ⊆ F is ∩-closed. If P1 �B≡ P2 �B, then P1 �σ(B)≡ P2 �σ(B).

Proof. Observe that D := {A ∈ F : P1[A] = P2[A]} is, indeed, a Dynkin system
containing B (which is ∩-closed). Thus, D ⊇ D(B) = σ(B), by the π-λ Theorem
1.7.

Example 1.12. 1. Discrete models. Let F = σ(Z) where Z = (Ai)i∈N is a
countable partition of Ω. Then every probability measure is determined
by its “weights” on the atoms Ai, since

σ(Z) =

{⋃
i∈J

Ai : J ⊆ N

}
⇒ P

[⋃
i∈J

Ai

]
=
∑
i∈J

P [Ai]
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Special case: if Ω is countable and F ′ = P(Ω) then P is determined
by P [{ω}] = p(ω) the weights on the singletons, since p(ω) ≥ 0 and∑
ω∈Ω p(ω) = 1.

2. Dirac measure. Take (Ω,F) with ω0 ∈ Ω. Then

P [A] =

{
1 if ω0 ∈ A
0 if ω0 /∈ A

is a measure, callewd the “Dirac mass concentrated at ω0”.

3. Uniform distribution on [0, 1] = Ω. Take F to be the Borel σ-field.
The Lebsgue measure λ yields a probability distribution on [0, 1] with
λ((a, b]) = b − a for b > a. Note that λ is uniquely determined by the
above line since the collection of intervals {(a, b] : a ≤ b ∈ [0, 1]} is ∩-closed
and generates the Borel σ-field.

4. (Discrete) Stochastic process. Let S be countable and S = P(S) and
Ω = SN = {(ω1, ω2, . . . ) : ωi ∈ S} and

F = σ ({{Xk ∈ A} : k ≥ 0, A ∈ S})

A stochastic process is any measure P on Ω. It is determined by the values

P [{X0 = s0, X1 = s1, . . . , Xk = sk}] , k ≥ 0, si ∈ S

since they generate F and are ∩-closed. The following are special cases of
stochastic processes.

(a) Independent experiments with values in S with distribution µ,
and

P [{X0 = s0, . . . , Xn = sn}] = µ(s0) · µ(s1) · · ·µ(sn)

(b) Markov chain with initial distribution µ on S and translation kernel
K(S, S′), and

P [{X0 = s0, X1 = s1, . . . , Xn = sn}]
= µ(s0)K(s0, s1)K(s1, s2) · · ·K(sn−1, sn)

The existence of P follows from the Theorem below.

Theorem 1.13 (Carathéodory). Let B be an algebra on Ω and P a normalized
σ-additive set function on B. Then ∃! extension of P on σ(B) = F .

Remark 1.14. For a proof, see any standard text on measure theory. The unique-
ness follows from the fact that B is ∩-closed.
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1.4 Independence

Let (Ω,F , P ) be given.

Definition 1.15. A collection (Ai)i∈I of events in F is called independent
provided

∀J ⊆ I, |J | <∞⇒ P

[⋂
i∈J

Ai

]
=
∏
i∈I

P [Ai]

Definition 1.16. A collection of set systems (Bi)i∈I with Bi ⊆ F is called
independent provided for every choice of Ai ∈ Bi, the chosen events (Ai)i∈I are
independent.

Theorem 1.17. Let (Bi)i∈I be an independent collection of ∩-closed set systems
in F . Then

1. (σ(Bi))i∈I is also independent, and

2. if (Jk)k∈K is a partition of I, then

(
σ

( ⋃
i∈Jk

Bi

))
k∈K

is also independent.

Note that (1) is a special case of (2), obtained by setting K = I and Jk = {k}
for k ∈ I.

Proof. 1. Pick {i1, . . . , in} =: J ⊆ I and Aj ∈ σ(Bj) for j ∈ J . WWTS

P

⋂
j∈J

Aj

 =
∏
j

P [Aj ] (1)

Define

D = {A ∈ σ(Bi1) : P [A ∩Ai2 ∩ · · · ∩Ain ] = P [A]P [Ai2 ] · · ·P [Ain ]}

By assumption, Bi1 ⊆ D; also, D is a Dynkin system because

(a) Ω ∈ D
(b) If A ∈ D then

P [Ac ∩Ai2 ∩ · · · ∩Ain ] = P [Ai2 ∩ · · · ∩Ain ]− P [A ∩Ai2 ∩ · · · ∩Ain ]

=
n∏
k=2

P [Aik ]− P [A]
n∏
k=2

P [Aik ]

= (1− P [A])
n∏
k=2

P [Aik ] = P [Ac]
n∏
k=2

P [Aik ]

so Ac ∈ D, as well.
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(c) Observe that

P

[(⋃
k≥1

Ak

)
∩Ai2 ∩ · · · ∩Ain

]
=
∑
k≥1

P [Ak ∩Ai2 ∩ · · · ∩Ain ]

=
∑
k≥1

P [Ak] ·
n∏
j=2

P [Aij ]

= P

[⋃
k≥1

]
P [Ai2 ] · · ·P [Ain ]

Now, since Bi1 is ∩-closed, D ⊇ σ(Bi1) and so Equation 1 holds for the
collection σ(Bi1),Bi2 , . . . ,Bin . Iterating the above arguments, we conclude
that σ(Bi1), · · · , σ(Bin) are also independent, as desired.

2. The set systems

Ck :=

{⋂
i∈J

Ai : J ⊆ Jk, |J | <∞, Ai ∈ Bi

}

for k ∈ K are ∩-closed and independent. Thus, for any choices Ck` ∈ C`,
we have

P [Ck1 ∩ · · · ∩ Ckn ] = P

[( ⋂
i∈J1

Ai

)
∩ · · · ∩

( ⋂
i∈Jn

Ai

)]

=

(∏
i∈J1

P [Ai]

)
· · ·

(∏
i∈Jn

P [Ai]

)
= P [Ck1 ] · · ·P [Ckn ]

since J` ⊆ Jk` . Now, by part (1), we know that (σ(Ck))k∈K are indepen-
dent. Finally, note that σ(Ck) = σ

(⋃
i∈Jk Bi

)
.

Lemma 1.18 (Borel-Cantelli II). Let (Ai)i∈N be independent with
∑
i P [Ai] =

∞. Then

P

⋂
n≥0

⋃
k≥n

Ak

 = 1

Proof. First, notice that the equation above is equivalent to

P

⋃
k≥n

Ak

 = 1 ∀n ⇐⇒ P

⋂
k≥n

Ack

 = 0 ∀n
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But then,

P

⋂
k≥n

Ack

 = lim
m→∞

P

 ⋂
n≤k≤m

Ack


= lim
m→∞

∏
n≤k≤m

(1− P [Ak])

≤ lim inf
m→∞

exp

(
−

m∑
k=n

P [Ak]

)
= 0

since
∑
P [Ak] =∞.

Example 1.19. An “application” of this lemma is Shakespeare and the monkey.

Theorem 1.20 (0-1 Law of Kolmogorov). Let (Fi)i≥1 be a countable collection
of independent σ-fields. Set

F? :=
⋂
n≥1

σ

⋃
k≥n

Fk


to be the tail field. Then F? is trivial in the sense that P [A] = 0 or P [A] = 1
for every A ∈ F?.

Proof. Set

F∞ = σ

⋃
k≥1

Fk

 ⊇ F?
WWTS F∞ and F? are independent. Notice that this completes the proof
because ∀A ∈ F?, A ∈ F∞ also, so independence implies

P [A] = P [A ∩A] = (P [A])2 ⇒ P [A] = 0 or P [A] = 1

Now, to prove independence, observe that F1,F2, . . . ,F? are independent since

F1,F2, . . . ,Fn, σ

(⋃
k>n

Fk

)
are independent ∀n

and we know F? ⊆ σ
(⋃

k>n Fk
)
. Next, F?,F1,F2, . . . being independent im-

plies that F? and σ
(⋃

k≥1 Fk
)

= F∞ are independent, as well, and we’re done.
Note we have used Theorem 1.17 twice.

Example 1.21. Independent Bernoulli variables with parameter p. Take Ω =
{0, 1}N+

and Xk(ω) = ωk with the σ-fields

Fk = σ ({Xk = 1}) and F = σ

(⋃
k

Fk

)
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The probability P is determined by

P = Pp
[
Xk1 = 1, . . . , Xkj = 1, Xi1 = 0, . . . , Xi` = 0

]
= pj(1− p)`

Let c ∈ [0, 1] and set

Ac :=

{
ω : lim sup

n→∞

1
n

n∑
k=1

Xk(ω) = c

}
Then Ac ∈ F?, so by Kolmogorov’s Law 1.20, P [Ac] = 0 or P [Ac] = 1. Let j
be fixed; then

Ac =

lim sup
n→∞

1
n− j + 1

n∑
k=j

Xk = c

 ∈ σ
⋃
k≥j

Fk

 = F?j

and so Ac ∈ F?j ∀j.

Example 1.22. Percolation with parameter p. Take Ω = {0, 1}Zd and Xz(ω) =
ωz for z ∈ Zd, with

Fk := σ ({Xz = 1} : ‖z‖ = k)

for k ≥ 0, where ‖z‖ = max1≤i≤d |zi|. If Xz = 1 then z is open, and closed
otherwise. Set

Pp [Xz1 = · · · = Xzk = 1, Xy1 = · · ·Xy` = 0] = pk(1− p)`

so it uniquely determines a probability. We claim (Fk)k≥0 is an independent
family; in fact, this follows from Theorem 1.17 part (2).

A set C of sites in Zd is called connected if between any two sites in C ∃ a
sequence of nearest neighbors ⊆ C. An (open) cluster is a connected component
of open sites. Set A = {∃∞ cluster}. We claim

A ∈ F? =
⋂
n≥0

σ

⋃
k≥n

Fk


To see why, let n be fixed and set B(k) = {z : ‖z‖ < k}. The basic observation
is that ∀n, ω ∈ A ⇐⇒ ω ∈ Ân where

Ân := {ω : ∃∞ cluster in Bc(n)}

which implies that A = Ân ∀n. But notice that

Ân ∈ σ

(⋃
k<n

Fk

)
⇒ A ∈

⋂
n

σ

(⋃
k>n

Fk

)
= F?

By Kolmogorov’s Law 1.20, either Pp[A] = 0 or Pp[A] = 1. In fact, if we set
pc := inf{p ≥ 0 : Pp[A] > 0}, then

p > pc ⇒ Pp[A] > 0⇒ Pp[A] = 1

A further fact is that 0 < pc < 1 for d ≥ 2.
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1.5 Measurable Maps and Induced Measures

Let (Ω,F) and (Ω′,F ′) be measurable spaces, and let T : Ω→ Ω′ be any map.
For A′ ∈ F ′, we write

{T ∈ A′} = {ω : T (ω) ∈ A′} = T−1(A′)

Definition 1.23. The collection

σ(T ) = {{T ∈ A′} : A′ ∈ F ′}

is, indeed, a σ-field on Ω, and it is called the σ-field generated by T .

Definition 1.24. The map T is called measurable with respect to (F ,F ′) if

{T ∈ A′} ∈ F ∀A′ ∈ F ′ (2)

Remark 1.25. 1. It is sufficient to check the condition in Equation (2) for a
generator B′ with σ(B′) = F ′, since the collection

{A′ ⊆ Ω′ : {T ∈ A′} ∈ F}

is, indeed, a σ-field (*** proven on homework) and it contains B′ so it
must also contain σ(B′).

2. The composition of measurable maps is also measurable. That is, if we’re
given the measurable spaces (Ω,F), (Ω′,F ′), (Ω′′,F ′′) and the measurable
maps T : Ω → Ω′ and S : Ω′ → Ω′′, then S ◦ T : Ω → Ω′′ is measurable,
as well.

3. If (Ω, τ) and (Ω′, τ ′) are topological spaces and T : Ω→ Ω′ is continuous,
then T is measurable with respect to the Borel σ-fields σ(τ) and σ(τ ′).

Remark 1.26. We use (R,BR) where BR is the σ-field generated by all open
subsets of R, which is equivalent to the σ-field generated by (open) intervals
(*** proven on homework).

Also, we use the topological space of the extended reals R = {−∞}∪{∞}∪R
with open sets generated by the neighborhood bases{

N
(
r,

1
n

)
: r ∈ R, n ≥ 1

}
where

N
(
∞, 1

k

)
=
{
x ∈ R : x > k

}
= (k,∞]

and

N
(
−∞, 1

k

)
=
{
x ∈ R : x < −k

}
= [−∞,−k)

Open sets are unions of neighborhood basis elements. We can discuss conver-
gence of sequences by saying xn → x as n → ∞ provided ∀k ∃n such that
xm ∈ N (x, 1

k ) ∀m ≥ n. Note: we will use (R,B) to indicated (R,B), sometimes!
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Definition 1.27. Let (Ω,F) be a measurable space. The map T : Ω → R or
T : Ω → R is called a random variable if it is (F ,B) measurable. General
measurable maps are called abstract valued random variables.

Example 1.28. 1. Let (Ω,F) be a measurable space with F = σ(Z) where Z
is a countable partition of Ω with atoms Ai. Let T : Ω→ R. Then T is a
random variable ⇐⇒ T is constant on every atom.

2. Tossing a coin. We begin by tossing a (fair) coin. Let Ω = {0, 1}N+
and

Xn(ω) = ωn with

Fn = σ(Xn) and F = σ

⋃
k≥1

Fk


Set

T (ω) :=
∑
k≥1

Xk(ω)2−k

Note that T : Ω→ [0, 1] where [0, 1] is equipped with the Borel-field

B := σ ({[0, c) : 0 < c ≤ 1})

We claim T is (F ,B) measurable. To see why, we first recall some facts
about the dyadic representations of numbers. Let

Ω0 = {ω : Xn(ω) = 1 i.o.}

Then ∀c ∈ (0, 1] ∃!c = (c1, c2, c3, . . . ) ∈ Ω0 such that

c =
∑
k≥1

ck2−k = T (c)

That is, we always choose the dyadic representation that uses infinitely
many 1s. Notice that if d < c then ∃n0 ≥ 1 such that d1 = c1, . . . , dn = cn
but dn+1 = 0 whereas cn+1 = 1. Therefore, for c ∈ (0, 1],

{T < c} =
⋃

n:cn=1

{⋂
k<n

{Xk = ck} ∩ {Xn = 0}

}
∈ σ

(⋃
n

Fn

)
= F

where n in the first intersection above is the first index such that the digits
of T (ω) and c differ. This implies that T−1[0, c) ∈ F for every c > 0 and
since the sets [0, c) generate B, we may conclude T is (F ,B) measurable.

Lemma 1.29. Let (Ω,F), (Ω′,F ′) be measurable spaces. If X is σ(φ) measur-
able, then ∃ϕ such that X = ϕ ◦ φ. This is known as “lifting”.

***** insert picture *****
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Definition 1.30. Let T : (Ω,F) → (Ω′,F ′) be measurable, and let P be a
probability measure on (Ω,F). Then

P ′[A′] := P [T−1A′] = P ◦ T−1(A′)

is, indeed, a probability measure and it is called the induced measure a.k.a. the
image measure of P under T a.k.a. the distribution of T under P .

Example 1.31. Bernoulli variable X with parameter p. Let (Ω,F , P ) be a
probability space and X : Ω→ {0, 1} such that P [X = 1] = p and P [X = 0] =
1− p. Then P ′ = P ◦ T−1 is determined by

P ′[{0}] = 1− p , P ′[{1}] = p , P ′[∅] = 0 , P ′[Ω] = 1

Example 1.32. Tossing a coin. Let Ω = {0, 1}N+
. Put a measure on (Ω,F) by

setting

P [X1 = x1, X2 = x2, . . . , Xn = xn] = 2−n ∀n, ∀x1, . . . , xn ∈ {0, 1}

Then P is uniquely determined. (We will see later how to construct such a P .)
What is the image measure on (0, 1] under T? Observe that

P ′ [[0, c)] = P ◦ T−1[0, c) = P [T < c]

= P

[⋃
n:c̄n=1

{X1 = c̄1, . . . , Xn−1 = c̄n−1, Xn = 0}
]

=
∑

n:c̄n=1

P [{X1 = c̄1, . . . , Xn−1 = c̄n−1, Xn = 0}]

=
∑
n

c̄n2−n = T (c̄) = c

which implies that P ′ is equivalent to the Lebsgue measure on (0, 1]! This is
equivalent to saying T is uniformly distributed with respect to P .

Remark 1.33. The existence of 0-1 variables ⇒ the existence of the Lebesgue
measure, and vice versa.

Example 1.34. Contraction and Simulation of Probability Distributions
on R (or R̄). Let λ be a uniform distribution (i.e. probability measure) with
respect to the Borel σ-field F on [0, 1]. If µ is a probability measure on R, then
Fµ(x) = µ(−∞, x] is called the (cumulative) distribution function of µ. Note:
µ is uniquely determined by Fµ! Also, Fµ has the following properties

1. Fµ : R→ [0, 1] with

lim
x→−∞

Fµ = 0 , lim
x→∞

Fµ = 1

2. Fµ ↗

3. Fµ is right continuous

15



These properties follow from basic properties of probability measures.
Suppose we have F that satisfies properties 1,2,3. We now show F ≡ Fµ for

some µ ∈M1(R); specifically, given F we will try to construct µ with F ≡ Fµ.
Set

G(y) := inf{c : F (c) > y}

to be the unique right continuous inverse of F . (Proof: ***) It is true that

{G ≤ c} =

{
[0, F (c)) if F is “constant after c”
[0, F (c)] otherwise

so G is measurable from [0, 1]→ R̄. Define µ = λ ◦G−1 (the distribution of G
with respect to λ). Then

µ ([−∞, c]) = λ ({G ≤ c}) = F (c)⇒ F = Fµ

since
µ ({−∞}) = lim

n→∞
λ(G ≤ n) = lim

n→∞
F (−n) = 0 = µ ({+∞})

and thus µ ((−∞,∞)) = 1 which implies µ �R is a probability measure on R
with Fµ = F .

Lemma 1.35. Let : (Ω,F)→ R̄ be some measurable map. Let P be a probability
measure on (Ω,F) such that P is 0-1 on F . Then T is P -a.s. constant; i.e. ∃a
such that P [T = a] = 1.

Proof. (*** homework exercise ***)

1.6 Random Variables and Expectation

Consider a measurable space (Ω,F), and R̄ = [−∞,∞] with Borel σ-algebra
B ≡ σ ([−∞, c) : c ∈ R).

Definition 1.36. We say X : Ω → R̄ is a random variable if it is (F ,B)
measurable.

Remark 1.37. It suffices to check that

{X < c} ∈ F ∀c ∈ R

since the intervals [−∞, c) generate B.
If X,Y are RVs, then

{X < Y } =
⋃
r∈R
{X < r} ∩ {Y > r} ∈ F

and
{X = Y } = ({X = Y }c)c = {{X > Y } ∪ {X < Y }}c ∈ F

and so forth.

16



If X1, . . . , XN are RVs and f : R̄n → R̄ is measurable, then

Y = f(X1, . . . , Xn)

is also a RV. Thus,
n∑
i=1

Xi ,

n∏
i=1

Xi , max
1≤i≤n

Xi , X
+
1

are all RVs, as well.
The class of RVs is closed under “countable operations”. That is,

X1 ≤ X2 ≤ · · · ≤ Xn ≤ · · · ⇒ Y = lim
n→∞

Xn is a RV

To see why, notice that{
lim
n→∞

Xn ≤ c
}

=
⋂
n≥1

{Xn ≤ c} ∈ F

Also, Y = supnXn is a RV because

sup
n
Xn = lim

n
↗ Yn where Yn = max

1≤i≤n
Xi

Similarly, Y = lim infnXn is a RV (and lim sup) because

lim inf
n→∞

Xn = lim
n→∞

↗ Yn where Yn = inf
k≥n

Xk

which implies {
lim
k→∞

Xk exists
}

=
{

lim inf
n→∞

Xn = lim sup
n→∞

Xn

}
Example 1.38. • If A ∈ F , then 1A is a RV.

• If A1, . . . , An ∈ F and ci ∈ R (not R̄), then

X :=
n∑
i=1

ci1Ai ∈ F

is called a step function. Note that WOLOG the Ais can be taken to be
disjoint (since the sum is over a finite index set).

Lemma 1.39. If X ≥ 0 is a RV, then ∃Xn a monotone increasing sequence of
step functions such that Xn ↗ X as n→∞.

Proof. Define Xn by

Xn :=

n2−1∑
k=0

k

n
1{ kn≤X< k+1

n }

+

+ n1{X≥n}

The idea is that as n→∞, we generate a finer mesh on the interval [0, n].
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Note: this lemma is crucial to be able to define integration!

Theorem 1.40 (Lifting). Let T : Ω→ Ω′ be (F ,F ′) measurable. If X is σ(T )
measurable (i.e. “X ∈ σ(T )”), then ∃ϕ measurable such that X = ϕ ◦ T .

***** insert diagram *****

Proof. This proof technique is (sometimes) known as “measure theoretic induc-
tion” or just MTI, for short.

1. Let X = 1A for
A ∈ σ(T ) =

{
T−1(B) : B ∈ F ′

}
so ∃B ∈ F ′ such that A = T−1(B). Thus,

X = 1A = 1B ◦ T ⇒ ϕ = 1B

since

1B =

{
1 if T ∈ B
0 if T /∈ B

2. Let

X =
n∑
i=1

ci1Ai where Ai = T−1(Bi) , i = 1, . . . , n

where Bi ∈ F ′ are disjoint, so the Ai are, as well. Then

X =

(
n∑
i=1

ci1Ai

)
◦ T =

{
ci on T ∈ Bi
0 otherwise

and T ∈ Bi ≡ Ai. Thus, we can say

ϕ :=
n∑
i=1

ci1Ai

3. If X ≥ 0 then ∃Xn ↗ X with Xn step functions. But Xn = ϕn ◦ T by
(2), so

X = lim
n
↗ (ϕn ◦ T ) =

(
lim
n→∞

↗ ϕn

)
◦ T

and we can set ϕ := limn→∞ ϕn.

4. If X = X+ −X−, then X+, X− ≥ 0 are σ(T ) measurable, so then

X = ϕ+ ◦ T − ϕ− ◦ T =
(
ϕ+ − ϕ−

)
◦ T

so we can set ϕ := ϕ+ − ϕ−. This completes the proof!

Remark 1.41. Special case: Suppose X,Y are RVs and X is σ(Y ) measurable.
Then ∃ϕ : R → R (or ϕ : R̄ → R̄) measurable such that X = ϕ(Y )! (i.e. X
depends deterministically on Y )
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1.6.1 Integral (expected value)

Definition 1.42. Let X be a RV on (Ω,F , P ). We write

E[X] :=
∫

Ω

X dP ≡
∫

Ω

X(ω)P (dω)

(whenever the integral exists) and

E[X;A] :=
∫
A

X dP =
∫

Ω

X · 1A dP

Sketch of the construction:

1. If X = 1A then E[X] := P [A].

2. If X =
∑n
i=1 ci1Ai with Ais disjoint then E[X] :=

∑
i ciP [Ai].

3. If X ≥ 0 then find Xn ↗ X step functions and set

E[X] := lim
n→∞

↗ E[Xn]

(note: this is ≤ ∞!)

4. If X = X+ − X− then E[X] := E[X+] − E[X−]. Note: the RHS exists
except when E[X+] = E[X−] =∞.

Definition 1.43. If E[X] ∈ [−∞,∞] exists, we say X is semi-integrable. If
E[X] is finite, we say X is integrable. We let S(Ω,F , P ) denote the class of
semi-integrable functions, and L1(Ω,F , P ) denote the class of integrable func-
tions.

In measure theory, one verifies the following properties of the integral (i.e.
of E[·]):

1. Linearity: E[X + cY ] = E[X] + cE[Y ]

2. Monotonicity: X ≤ Y a.s. ⇒ E[X] ≤ E[Y ]

3. Monotone convergence: If X0 ∈ L1 and X0 ≤ X1 ≤ · · · a.s., then

E
[

lim
n→∞

↗ Xn

]
= lim
n→∞

↗ E[Xn]

This is a Theorem due to Beppo-Levi.

These 3 properties are the basic ones; all others follow from these!

Remark 1.44. Let P [A] = 0 and X ∈ R̄ measurable. Then E[1A ·X] = 0. To
see why, assume X ≥ 0 and observe that

X · 1A = lim
n→∞

↗ (X ∧ n) · 1A
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and so
E[X · 1A] ≤ E[n · 1A] = n · 0 = 0

Then, by Beppo-Levi, E[X · 1A] = lim 0 = 0. For general X, notice that

E[X+ · 1A]− E[X− · 1A] = 0− 0 = 0

Also, note that in monotone convergence, the assumption that X0 ∈ L1 is
necessary. As a counterexample, consider Ω](0, 1] and X0 = f(x) = − 1

x . Set

Xn = X0 · 1(0, 1n ]

Notice that Xn ↗ 0, but

−∞ = E[Xn] 6→ E
[

lim
n→∞

Xn

]
= 0

Theorem 1.45 (Fatou’s Lemma). Suppose (Xn)n≥1 ≥ Y a.s. and Y ∈ L1.
Then

−∞ < E
[
lim inf
n→∞

Xn

]
≤ lim inf

n→∞
E[Xn] ≤ +∞

Proof. Observe that
Xn ≥ inf

k≥n
Xn ≥ Y a.s.

so we can apply monotone convergence (since Y ∈ L1) to write

E

[
lim
n→∞

↗
(

inf
k≥n

Xn

)]
= lim
n→∞

↗ E

[
inf
k≥n

Xk

]
≤ lim inf

n→∞
E[Xn]

By taking minus signs in the proof above, we can show that (Xn) ≤ Y ∈ L1

a.s. implies

E

[
lim sup
n→∞

Xn

]
≥ lim sup

n→∞
E[Xn]

A (silly but useful) mnemonic to remember the direction of the inequality in
the statement of Fatou’s Lemma above is ILLLI (“the Integral of the Limit is
Less than the Limit of the Integrals”).

Theorem 1.46 (Dominated Convergence). Assume Xn → X a.s. and ∃Y ∈ L1

such that |Xn| ≤ Y a.s. ∀n. Then

1. E
[

lim
n→∞

Xn

]
= lim
n→∞

E[Xn], and

2. Xn → X in L1; i.e.

E [|X −Xn|] =: ‖X −Xn‖1 −−−−→
n→∞

0
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Proof. First, notice that

|Xn| → |X| a.s. ⇒ |X| ≤ Y a.s. ⇒ E[|X|] ≤ E[Y ] <∞ ⇒ X ∈ L1

Now, to prove (1), we apply Fatou’s Lemma 1.45 twice to write

E[X] = E
[
lim inf
n→∞

Xn

]
≤ lim inf

n→∞
E[Xn]

=≤ lim sup
n→∞

E[Xn] ≤ E
[
lim sup
n→∞

Xn

]
= E[X]

so everything is equal in the line above.
To prove (2), define Dn := X −Xn, so that

|Dn| ≤ |X|+ |Xn| ≤ 2Y ∈ L1

so that |Dn| ≤ 2Y and |Dn| → 0 a.s. Thus, we can apply the conclusion of part
(1) to write

0 = E
[

lim
n→∞

|Dn|
]

= lim
n→∞

E[Dn] = lim
n→∞

E[|X −Xn|]

Theorem 1.47 (Chebyshev-Markov Inequality). Let ϕ : R̄ → R̄ with ϕ ≥ 0
and let A be a Borel set. Define cA := infA ϕ. Then for any RV X,

cAP [X ∈ A] ≤ E [ϕ(X);X ∈ A] ≤ E [ϕ(X)]

Proof. Note that cA1A ≤ ϕ1A and so

cA1{X∈A} = cA1A ◦X ≤ ϕ1A ◦X = ϕ(X)1{X∈A}

Taking E[·] of both sides yields

cAP [X ∈ A] ≤ E [ϕ(X);X ∈ A] ≤ E [ϕ(X)]

since ϕ ≥ 0.

As an application of this inequality, we show that for X ≥ 0,

E[X] <∞ ⇒ X <∞ a.s.

and
E[X] = 0 ⇒ X = 0 a.s.

Observe that, for the first case,

P [X =∞] = P

[ ∞⋂
n=1

{X ≥ n}

]
= lim
n→∞

P [X ≥ n]

≤ lim inf
n→∞

1
n
E [ϕ(X)] = lim inf

n→∞

1
n
E[X] = 0
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where we have applied Chebyshev-Markov with A = [n,∞] and ϕ = 1[0,∞] · id.
For the second case, we use a similar technique to write

P [X > 0] = P

[ ∞⋃
n=1

{
X ≥ 1

n

}]
= lim
n→∞

↗ P

[
X ≥ 1

n

]
≤ lim inf

n→∞
nE[X] = lim 0 = 0

Theorem 1.48. Suppose X ∈ L1 and u is convex. Then

E[u(X)] ≥ u (E[X])

Furthermore, if u is strictly convex then the inequality above is strict and X is
not a.s. constant.

Note: this theorem only holds for probability measures!

Proof. **** insert diagram ***** If u is convex, then ∀x ∈ R there is “support
line” `(x) = ax + b such that u(y) ≥ ay + b for every y and `(x) = u(x) (note:
` is not unique). Pick x0 = E[X] <∞. Then

E[u(X)] ≥ E[`(X)] = `(E[X]) = u(E[X])

where the first equality holds because P is a probability measure, so

E[aX + b] = aE[X] + E[b] = aE[x] + b

The proof of (2) is left as an exercise (***).

As an application of Jensen’s Inequality, consider the space

Lp = {X : E [|X|p] <∞}

Then for 1 ≤ p ≤ q < ∞, we have ‖X‖p ≤ ‖X‖q; thus, in particular, Lq ⊆ Lp.
First, we show Lq ⊆ Lp directly:

E [|X|p] ≤ E [|X|p ∨ 1] ≤ E [|X|q ∨ 1] ≤ E [X|q] + 1 <∞

Next, define ϕ(x) := |X|q/p (which is, indeed, convex). Jensen’s Ineqaulity tells
us

E
[
(|X|p)q/p

]
≥ E [|X|p]q/p

where |X|p ∈ L1 since X ∈ Lp.s This implies

‖X‖q = E [|X|q]1/q ≥ E [|X|p]1/p = ‖X‖p

Theorem 1.49 (Transformation Formula). Let T : (Ω,F , P ) → (Ω′,F ′, P ′)
be measurable and take P ′ to be the induced measure; i.e. P ′ = P ◦ T−1. Let
X ′ ≥ 0 be a RV on Ω′. Then

EP ′ [X ′] = Ep[X ′ ◦ T ]
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Note that if X ′ ∈ L1(P ′) then the same is true, of course.

Proof. We use Measure Theoretic Induction:

1. If X ′ = 1A then

EP ′ [1A′ ] = P ′(A′) = P ◦ T−1(A) = P [T ∈ A] = EP [1A ◦ T ]

2. By linearity of E[·], step functions also work.

3. If X ′ = lim↗ X ′n for X ′n step functions, then

X ′ ◦ T = lim
n→∞

↗ (X ′n ◦ T )

which implies

EP [X ′ ◦ T ] = lim
n→∞

EP [X ′n ◦ T ] = lim
n→∞

EP ′ [X ′n] = EP ′ [X ′]

and this completes the proof!

Corollary 1.50. Let X be a RV with P [X ∈ R] = 1. Then the distribution
µ = P ◦X−1 is concentrated on R and for each measurable function ϕ ≥ 0, we
have

E [ϕ(X)] =
∫

R
ϕ(x)µ(dx)

Additionally, we note that if ϕ : R → R and either E[ϕ+(X)] or E[ϕ−(X)] is
<∞, then the same equality above holds.

We note a couple of special cases:

1. We have

E[X+] =
∫ ∞

0

xµ(dx) and E[X−] =
∫ 0

−∞
|x|µ(dx)

and so
E[X] =

∫ ∞
−∞

xµ(dx)

whenever E[X+] or E[X−] is <∞. Also, we consider the so-called “k-th
moment” defined by

E
[
|X|k

]
=
∫

R
|x|k µ(dx)

and the variance of X (assuming X ∈ L2) defined by

Var(X) = E
[
(X − E[X])2

]
= E[X2]− 2E[X]2 + E[X]2 = E[X2]− E[X]2

=
∫
x2 µ(dx)−

(∫
xµ(dx)

)2
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2. Let (X,Y ) : (Ω, T, P )→ R2 and µ(dx dy) be the induced measure on R2,
a.k.a. the product distribution of X,Y . Then we consider the covariance
of X and Y defined by

Cov(X,Y ) = E [(X − E[X])(Y − E[Y ])] = E[XY ]− E[X]E[Y ]

=
∫

R2
xy µxy(dx dy)−

∫
R
xµx(dx) ·

∫
R
y µy(dy)

Note: Cov(X,X) = Var(X).

1.6.2 Convergence of RVs

Assume (Ω,F , P ) is a probability space and (Xn)n≥1, X are all R-valued RVs.

Definition 1.51. We say

1. Xn → X a.s. provided
P [Xn 6→ X] = 0

2. Xn → X in probability (a.k.a. in measure) provided

lim
n→∞

P [|Xn −X| > ε] = 0 ∀ε > 0

3. Xn → X in L1 provided

lim
n→∞

E [|Xn −X|] = 0

The following theorem characterizes these 3 types of convergence.

Theorem 1.52. 1. Almost sure convergence ⇒ convergence in probability.

2. L1 convergence ⇒ convergence in probability.
In general, there are no other implications!

Proof. 1. Suppose Xn → X a.s. Then

{Xn 6→ X} =
⋃
`

⋂
n

⋃
m≥n

{
|Xm −X| ≥

1
`

}
is a measure zero set, and so

P

⋂
n

⋃
m≥n

{
|Xm −X| ≥

1
`

} = 0 ∀`

Thus,

0 = lim
n→∞

↘ P

 ⋃
m≥n

{
|Xm −X| ≥

1
`

} ∀`
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and since ⋃
m≥n

{
|Xm −X| ≥

1
`

}
⊇
{
|Xn −X| ≥

1
`

}
∀`

we can conclude that

lim
n→∞

P

[
|Xn −X| ≥

1
`

]
= 0 ∀`

which is precisely convergence in probability.

2. Assume convergence in L1. Then we can apply Chebyshev’s Inequality
1.47 to conclude

P [|Xn −X| ≥ ε] ≤
1
ε
E [|Xn −X|] −−−−→

n→∞
0 ∀ε > 0

Now, if we add extra assumptions, then the previous theorem becomes more
complicated and admits some implications between modes of convergence, as
summarized in the following diagram

***** insert diagram (unit 5+ page 3) ******
These implications will be stated and proven in the following series of lemmas

and theorems.

Lemma 1.53. Suppose
∑
n≥1

E[|Xn −X|] <∞. Then Xn → X a.s.

The sum condition above is known as “fast L1 convergence”.

Proof. Define

Sn :=
n∑
k=1

|Xk −X| and S := lim
n→∞

↗ Sn

By monotone integrability, we have

E[S] = lim
n→∞

↗ E[Sn] = lim
n→∞

n∑
k=1

E[|Xk −X|] <∞

by assumption, so S is finite a.s. Thus, for a.e. ω,

S(ω) =
∞∑
k=1

|Xk(ω)−X(ω)| <∞ ⇒ |Xk(ω)−X(ω)| → 0

which means Xk → X a.s.

Theorem 1.54. Xn → X in probability ⇐⇒ for each subsequence Xnk there
is a further subsequence Xnk`

which converges to X P -a.s.
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Proof. (⇐) See measure theory (***)
(⇒) Suppose

P [|Xn −X| > ε] −−−−→
n→∞

0 ∀ε > 0

Choose a subsequence K1 < k2 < · · · < kn < · · · such that

P

[
|Xkn −X| >

1
n

]
< 2−n

By Borel-Cantelli I 1.9, only finitely many of these events occur simultaneously.
That is, for a.e. ω and ∀n sufficiently large,

|Xkn(ω)−X(ω)| ≤ 1
n

But then, this implies Xkn(ω)→ X(ω). (Note that it is sufficient to work with
the original sequence as opposed to a subsequence of a subsequence.)

Before the next theorem and proof, we need to introduce the notion of uni-
form integrability.

Definition 1.55. A collection H ⊆ L1(Ω,F , P ) of functions is called uniformly
integrable (written u.i., or sometimes called equi-integrable in measure theory)
provided

lim
c→∞

↘ sup
X∈H

E[|X|; |X| > c] = 0

Remark 1.56. If X ∈ L1 then {X} is u.i. If X ∈ L1 and H u.i. then {X} ∪ H
is u.i. If H is L1-dominated, i.e.

sup
H
|Xn| ≤ Y ∈ L1

then H is u.i. If (Xn)n≥1 is u.i. then lim inf Xn, lim supXn ∈ L1.

Theorem 1.57. TFAE:

1. H is u.i.

2. H is L1-bounded (⇐⇒ supHE[|X|] <∞) and ∀ε > 0 ∃δ > 0 such that

sup
H
E[|X|;A] < ε ∀A with P (A) < δ

3. ∃g : R+ → R+ Borel measurable with g(x)
x →∞ as x→∞ such that

sup
H
E[g(|X|)] <∞

Example 1.58. An example of such a g(x) in (3) above is g(x) = |x|p for p > 1.
If H is Lp bounded then H is u.i. (but this is not true for p = 1). Also,
g(x) = x log x, etc.
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Proof. See textbook.

Theorem 1.59. Let Xn, X be RVs. Then

Xn → X in L1 ⇐⇒

{
Xn → X in probability, and
(Xn)n≥1 is u.i.

Remark 1.60. The first condition implies Xnk → X a.s., and by the previous
theorem this implies {(Xn), X} is u.i., which in turn implies that {|Xn − X|}
is u.i. Also, the theorem statement is about |Xn −X| and therefore, WOLOG
X ≡ 0 and Xn ≥ 0.

Proof. (⇒) Observe that

E[|Xn − 0|] = E[Xn] = E [Xn;Xn ≤ ε]︸ ︷︷ ︸
≤ε always

+E [Xn;Xn > ε]︸ ︷︷ ︸
:=(∗)

We claim (∗) < ε for n ≥ N . For a given ε > 0, ∃δ = δ(ε) such that if P [A] < δ,
we have

sup
n
E[Xn;A] < ε

by uniform integrability. Also, for δ = δ(ε), we can choose N = N(δ, ε) = N(ε)
such that

sup
n≥N

P [Xn > ε] < δ

by convergence in probability. This proves the claim.
(⇐) Assume Xn → 0 in L1. Then Xn → X in probability by Theorem 1.52.

To prove the second condition, take ε > 0 and write

sup
n
E[Xn;Xn ≥ c] ≤ sup

n≤N
E[Xn;Xn ≥ c] + sup

n>N
E[Xn;Xn ≥ c] =: E1 + E2

Choose N = N(ε) such that

E2 ≤ sup
n>N

E[|Xn − 0|] ≤ ε ∀c

since the supremum in E2 is over a quantity guaranteed to be ≤ E[Xn]. Then,
for the given N , choose c large enough such that E1 ≤ ε (noting that the
collection {X1, . . . , Xn} is u.i.). These two estimates hold simultaneously for
our choice of N(ε) and c = c(N) = c(ε). Thus ∃c = c(ε) such that

sup
n
E[Xn;Xn ≥ c] < 2ε

which implies (Xn)n∈N is u.i.

This concludes the analysis of modes of convergence.
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1.7 Product Spaces

Let (Si,Si) for i = 1, 2 be measurable spaces and set S := S1 × S2. Let
Xi : S → Si be the coordinate maps (i.e. projections).

Definition 1.61. A stochastic kernel K(x1, dx2) from S1 to S2 is a map

K :S1 ×S2 → [0, 1]
(x1, A2) 7→ K(x1, A2)

such that K(x, ·) is a probability measure on S2 for all x ∈ S1 and K(·, A2) is
S1-measurable for all A2 ∈ S2

Example 1.62. 1. Set K(x, ·) = µ(·) ∀x ∈ S1. Then there is no dependency
on x; i.e. “X2 is independent of X1” and so X2 ∼ µ.

2. Set K(x, ·) = δT (x)(·) for T : S1 → S2 measurable. That is, “X2 = T ◦X1”
i.e. X2 depends deterministically on X1.

3. Countable Markov chain: Let S1 = S2 =: S be countable and set
S = P(S). Let Kx,y be a matrix with Kx,y ≥ 0 and

∑
yKx,y = 1 (i.e. a

stochastic matrix). Set

K(x,A) :=
∑
y∈A

Kx,y

This is known as the transition kernel.

4. Set S1 = S2 = R and K(x, ·) = N (0, βx2). Question: Does ∃β > 0 such
that the Markov Chain converges to 0? What do we mean by “converges”
in this case?

Let P1 be a probability measure on (S1,S1) and let K be a stochastic kernel
from S1 to S2. We construct a probability measure P (= P1 ·K) on Ω := S1×S2

such that
P [X1 ∈ A1] = P1(A1) for A1 ∈ S1

and
“P [X2 ∈ A2|X1 = x1] = K(x1, A2)” for A2 ∈ S2

Definition 1.63. The product σ-algebra is given by

F := σ (A1 ×A2 : Ai ∈ Si)

The sets A1 ×A2 are “rectangles” in the product space.

Definition 1.64. For A ∈ F and x1 ∈ S1, the set

Ax1 := {x2 : (x1, x2) ∈ A} ⊆ S2

is called the x1-section of A.
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We will see that A ∈ F ⇒ Ax1 ∈ S2. Note that

1A(x1, x2) = 1Ax1 (x2)

Theorem 1.65. 1. The set function P defined by

P [A] :=
∫
S1

P1(dx1)K(x1, Ax1) =
∫
S1

∫
S2

K(x1, dx2)1A(x1, x2)P1(dx1)

is a probability measure on (Ω,F).

2. If f ∈ F and f is semi-integrable w.r.t. P , then∫
Ω

f dP = E[f ] =
∫
S1

P1(dx1)
∫
S2

K(x1, dx2)f(x1, x2)

Proof. We prove (1); claim (2) follows from (1) by MTI. To check that P is,
indeed, a probability measure, we verify

1. P [Ω] = 1 is true

2. If A =
⋃
i
Ai then, applying Monotone Integrability twice, we have

P

[⋃
i
Ai

]
=
∫
S1

P1(dx1)
∫
S2

K(x1, dx2)

(∑
i

1Ai(x1, x2)

)

=
∫
S1

P1(dx1)
∑
i

∫
S2

K(x1, dx2)1Ai(x1, x2)

=
∑
i

∫
S1

P1(dx1)
∫
S2

K(x1, dx2)1Ai(x1, x2)

=
∑
i

P (Ai)

which is what we want.

This proves the theorem.

Lemma 1.66. For all x1 ∈ S1 and f ∈ F+ (meaning f ≥ 0 and f is F-
measurable), we have fx1(·) := f(x1, ·) is ∈ S2. Furthermore, f ∈ F+ implies
that the function ϕ defined by

x1 7→
∫
K(x1, dx2)f(x1, x2) ∈ R̄+

is well-defined and ϕ is ∈ S+
1 .

Proof. (***) homework
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Note that the first statement implies Ax1 ∈ S2, and the second statement
implies ∫

ϕ(x1)P1(dx1) =
∫
S1

P1(dx1)
∫
S2

K(x1, dx2)f(x1, x2)

is well-defined. These conclusions are used in the proof of the theorem above.
A classical case of the theorem above is Fubini’s Theorem. Let K(x, ·) :=

P2(·) so there is no x1-dependence. Let P = P1 · P2 and

P [A] =
∫
S1

P1(dx1)
∫
S2

P2(dx2)1A(x1, x2)

Let’s define P̃ on Ω = S1 × S2 with σ-algebra F as follows:

P̃ [A] =
∫
S2

P2(dx2)
∫
S1

P1(dx1)1A(x1, x2)

This corresponds to a constant kernel K̃ from S2 to S1 given by K̃(x2, dx1) =
P1(dx1). Then, by MTI, for f ∈ F with f ≥ 0, we have∫

Ω

f dP̃ =
∫
S2

P2(dx2)
∫
S1

P1(dx1)f(x1, x2)

Note, however, that P̃ = P since they agree on rectangles,

P [A1 ×A2] = P1(A1) · P2(A2) = P̃ (A1 ×A2)

and rectangles are ∩-closed and generate F . Therefore, the equality holds ∀f ∈
F+, so∫

S1

P1(dx1)
∫
S2

P2(dx2)f(x1, x2) =
∫
S2

P2(dx2)
∫
S1

P1(dx1)f(x1, x2)

This equality is Fubini’s Theorem.
Remark 1.67. Fubini is valid for σ-finite measures only! Also, the integrand
must be semi-integrable w.r.t P .
Example 1.68. Consider the following application of Fubini’s Theorem. Let
X ≥ 0 be a RV. Then

E[X] =
∫ ∞

0

P [X > s]λ(ds)

Proof. Observe that∫ ∞
0

P [X > s] ds =
∫ ∞

0

(∫
Ω

P (dω)1(S,∞](X(ω))
)
ds

=
∫

Ω

P (dω) ·
∫ ∞

0

1(−∞,X(ω))(s) ds

=
∫

Ω

X(ω)P (dω) = E[X]

since P [X > s] = E
[
1(s,∞](X)

]
.
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Remark 1.69. Notice that when µ(Ω) <∞,∫
f dµ =

∫ ∞
0

µ(f > c) dc

assuming f ≥ 0. Also, ∫
|f | dµ ≥ sup

c
c · µ(|f | > c)

1.7.1 Infinite product spaces

This short section presents the powerful Ionescu-Tulcea Theorem. Consider a
(countable) sequence of measurable spaces (Si,Si)i≥0 and define

(Sn,Sn) :=

(
n∏
i=0

Si , σ ({A1 ×A2 × · · · ×An : Ai ∈ Si})

)

Let µ0 be a normed measure on S0, and for n ≥ 1 let Kn be a stochastic kernel
from Sn−1 to Sn; i.e. K(x0x1 . . . xn−1, dxn) with Kn(x0 . . . xn, Sn) = 1. Set
µ0 := µ0 and iteratively define

µn := µn−1 ·Kn

to be a measure on Sn. That is, for f ∈ (Sn)+,∫
Sn
f dµn =

∫
Sn−1

µn−1(dy)
∫
Sn

Kn(y, dxn)f(y, xn)

=
∫
Sn−1

µn−1 (d(x0 . . . xn−1))
∫
Sn

Kn(x0 . . . xn−1, dxn)f(x0 . . . xn)

=
∫
S0

µ0(dx0) ·
∫
S1

K1(x0, dx1) ·
∫
S2

K2(x0x1, dx2) · · ·

· · ·
∫
Sn

Kn(x0 . . . xn−1, dxn)f(x0 . . . xn)

Set

X =
∞∏
i=1

Si = {x = (x0, x1, . . . ) : xi ∈ Si}

and define the canonical projections πi : X → Si by πi(x) = xi. Also, set

An := σ (π0, π1, . . . , πn) = {An × Sn+1 × Sn+2 × · · · : An ∈ Sn}

and

A = σ (π0, . . . , πn, . . . ) = σ

⋃
n≥0

An
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Question: Does ∃µ a probability measure on (X,A) such that

µ ◦ π−1
{0,...,n} = µn ∀n ?

That is, we want to guarantee that µ satisfies

µ (An × Sn+1 × Sn+2 × · · · ) := µn(An) (3)

Answer: Yes, and this measure µ is unique! This is the conclusion of the
Ionescu-Tulcea Theorem, with the conditions being the discussion in this section
leading up to this sentence.

Proof. First, observe that
⋃
nAn is an algebra and µ is consistently defined on⋃

nAn by Equation (3); that is, for A ∈ An ∩ An−1, we can write

A = An × Sn+1 × · · · = (An−1 × Sn)︸ ︷︷ ︸
=An

×Sn+1 × · · ·

and have

µn(An) = µn
(
An−1 × Sn

)
=
∫
Sn−1

µn−1(d(x0 . . . xn−1))

·
∫
Sn

K(x0 . . . xn−1, dxn)1An−1(x0 . . . xn−1)1Sn(xn)

= µn−1(An−1) · 1

Also, observe that µ is additive on
⋃
nAn (which implies monotonicity). This

is easy and follows from the additivity of µn.
We now have to show that µ is σ-additive; given An ∈

⋃
nAn with An ↘ ∅,

we need limn µ(An) = 0. WOLOG we can take An ∈ An. To see why this is
okay, let

A1, A2, · · · ∈
⋃
n

An ⇒ ∀k,Ak ∈ Amk

Set n1 = m1, n2 = m2∨ (n1 +1), . . . , nk = mk∨ (nk−1 +1), . . . and so on. Then
n1 < n2 < n3 < · · · and Ak ∈ Ank since the collection An is increasing in n.
Now, define Bnk = Ak for k ≥ 1 and fill the “gaps” in the sequence as follows:

B1, . . . , Bn1−1 = Ω
Bn1 , . . . , Bn2−1 = A1

...
Bnk , . . . , Bnk+1−1 = Ak

...
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Then Bk ∈ Ak and Bk ↘ ∅ and limµ(Ak) = limµ(Bk). Now, using this
assumption, we can write

An = An × Sn−1 × Sn+2 × · · · and An+1 = An+1 × Sn+2 × · · ·

and so An+1 ⊆ An×Sn. Now, assume by way of contradiction that infn µ(An) >
0. Then

µ(An) = µ (An × Ssn+ 1× · · · ) = µn(An)

=
∫
S0

µ0(dx0) ·
∫
S1

K1(x0, dx1)·

· · ·
∫
Sn

Kn(x0 . . . xn−1, dxn)1An(x0 . . . xn)

=: intS0µ0(dx0)f0,n(x0)

and notice that f0,n(x0)↘ in n: by assumption,

inf
n≥1

µ(An) = inf
n≥1

∫
S0

µ0(dx0)f0,n(x0) > 0

and by monotone integration,

∃x̄0 such that inf
n
f0,n(x̄0) > 0

Thus,

f0,n(x0) =
∫
S1

K1(x0, dx1) · · ·
∫
Sn

Kn(x0 . . . xn−1, dxn)1An(x0 . . . xn)

≤
∫
S1

K1(x0, dx1)·

= f0,n−1(x0)

since
1An(x0 . . . xn) ≤ 1An−1×Sn(x0 . . . xn) = 1An−1(x0 . . . xn)

This shows that f0,n(x0)↘ in n. Similarly, ∀k ≥ and ∀x0 . . . xk, with n > k we
have

fk,n(x0 . . . xk) :=
∫
Sk+1

Kk+1(x0 . . . xk, dxk+1)·

· · ·
∫
Sn

Kn(x0 . . . xn−1, dxn)1An

≤ fk,n−1(x0 . . . xk)

since 1An ≤ 1An−1×Sn . This shows fk,n(x0 . . . xk)↘ in n, as well.
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Now, it follows from infn fn,0(x̄0) > 0 that ∃x̄1 ∈ S1 such that

inf
n≥2

∫
S2

K2(x̄0x̄1, dx2) ·
∫
S3

K3(x̄0x̄1x2, dx3)·

· · ·
∫
Sn

Kn(x̄0x̄1x2 . . . xn−1, dxn)1An(x̄0x̄1 . . . xn) > 0

That is, infn f1,n(x̄0, x̄1) > 0. Iterating this process shows us that ∀k ∃x̄k ∈ Sk
such that

inf
n≥k+1

∫
Sk+1

Kk+1(x̄0 . . . x̄k, dxk+1) · · ·
∫
Sn

Kn(x̄0 . . . x̄kxk+1 . . . xn−1, dxn)

· 1An(x̄0 . . . x̄kxk+1 . . . xn) =: inf
n≥k+1

fk,n(x̄0 . . . x̄k) > 0

In particular, for u = k + 1,∫
Kk+1

(x̄0 . . . x̄k, dxk+1) 1Ak+1 (x̄0 . . . x̄k, xk+1) > 0

since 1·(·) 6= 0 and since

Ak+1 ⊆ Ak × Sk+1 ⇒ (x̄0, x̄1, . . . ) ∈
⋂
k

Ak 6= ∅

This completes the proof.

2 Laws of Large Numbers

First applications to a classical limit theorem of probability.

Theorem 2.1 (Weak Law of Large Numbers). Let X1, X2, . . . be a sequence of
uncorrelated i.i.d. RVs with finite variance σ2 and mean µ. Set

X̄n =
1
n
Sn =

1
n

n∑
k=1

Sk

Then

1. X̄n → µ in L2, i.e. E[|X̄n − µ|2]→ 0, where we think of µ as a constant
RV.

2. X̄n → µ in probability, i.e.

lim
n→∞

P
[
|X̄n − µ| ≥ ε

]
= 0 ∀ε > 0
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Proof. To prove (1), observe that

E[X̄n] =
1
n

n∑
k=1

E[Xk] = µ

and so

E
[
|X̄n − µ|2

]
= Var

[
X̄n

]
=

1
n2

Var

[
n∑
k=1

XK

]

=
1
n2

n∑
k=1

Var [Xk] =
nσ2

n2
=
σ2

n
−−−−→
n→∞

0

To prove (2), we apply (1) to say that X̄n → µ in L2 and the appeal to
Lemma 2.2 below to conclude that X̄n → µ in probability, as well.

Lemma 2.2. Lp convergence ⇒ convergence in probability; i.e. if Xk → X in
Lp for p > 0, then for every ε > 0, limn P [|Xn −X| ≥ ε] = 0.

Proof. WOLOG X = 0 (just set X ′n = Xn−X, say). Then Lp convergence says
E[|Xn −X|p]→) as n→∞. Let ε > 0. Then we apply the Chebyshev-Markov
Inequality 1.47 with A = {X : |X| ≥ ε} and ϕ = |X|p and cA = εp to write

P [|Xn| ≥ ε] ≤ ε−pE [|Xn|p] −−−−→
n→∞

0

Lemma 2.3. Let X ≥ 0 be a RV on (Ω,F , P ). Let F : [0,∞)→ R be absolutely
continuous, i.e. F (x) =

∫ x
0
f(t) dt for some L1 3 f ≥ 0 measurable. Then

E[F (X)] =
∫ ∞

0

P [X > t]f(t) dt =
∫ ∞

0

P [X ≥ t]f(t) dt

Proof. Homework exercise (***)

Lemma 2.4. Let X ≥ 0 a.s. Then∑
k≥1

P [X ≥ k] ≤ E[X] ≤
∑
n≥0

P [X > n]

Proof. Define ϕ(t) and ψ(t) to be the upper and lower step functions, respec-
tively; that is,

ϕ(t) = n for t ∈ (n− 1, n] and ψ(t) = n− 1 for t ∈ (n− 1, n]
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so that ψ(t) ≤ t ≤ ϕ(t) for any t. We now work with the LHS and write

LHS =
∑
k≥1

∫
(k−1,k]

P [X ≥ ϕ(t)]

≤
∫

(0,∞]

P [X ≥ t] dt = E[X]

=
∫

(0,∞]

P [X > t] dt ≤
∫

(0,∞)

P [X > ψ(t)] dt

=
∑
k≥0

∫
(k,k+1]

P [X > ψ(t)] dt =
∑
k≥0

P [X > k]

Remark 2.5. If X ≥ 0 and X ∈ N then LHS=RHS= E[X].

Theorem 2.6 (Strong Law of Large Numbers, Etemardi). Assume X1, X2, . . .
are pair-wise independent, identically distributed RVs with E[Xi] =: µ <∞ for
all i. Let Sn :=

∑n
k=1Xk. Then Sn

n → µ, P -a.s.

Proof. We follow 5 steps.

1. WOLOG X1 ≥ 0. Write Xi = X+
i −X

−
i . Then the (X+

i )i are pair-wise
independent (***), identically distributed with E[X+

i ] <∞ and X+
1 ≥ 0.

The same holds for the X−i , as well. Moreover,

1
n

n∑
i=1

X±i
a.s.−−−−→
n→∞

E
[
X±
]
⇒ 1

n

n∑
i=1

(X+
i −X

−
i )→ E[X] a.s.

2. Truncation. Let Yk := Xk · 1[Xk≤k] ≥ 0. Then the (Yi)i are still inde-
pendent (***). Let Tn =

∑n
k=1 Yk. It will be easy to show that Tn

n → µ
a.s., since ∑

k≥1

P [Xk > k] =
∑
k≥1

P [X1 > k] ≤ E[X1] <∞

by Lemma 2.4, and so∑
k≥1

P [Xk > k] =
∫ ∞

0

P [X1 > ϕ(t)] dt ≤
∫ ∞

0

P [X1 > t] dt = µ <∞

where ϕ is the upper step function we used in the proof of Lemma 2.4.
Applying Borel-Cantelli 1.9, we can conclude that for a.e. ω, Xk(ω) =
Yk(ω) for all k ≥ k0(ω). But then,

lim
n→∞

1
n

n∑
k=1

Xk(ω) = lim
n→∞

 1
n

k0(ω)∑
k=1

(Xk(ω)− Yk(ω))

+
1
n

n∑
k=1

Yk(ω)

}
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and since the first term is a finite sum, we can conclude that

lim
n→∞

1
n

n∑
k=1

Xk(ω) = lim
n→∞

1
n

n∑
k=1

Yk(ω)

for a.e. ω.

3. Variance estimates. This part is quite technical. We claim

∞∑
k=1

Var[Yk]
k2

≤ 4E[X1] <∞

where, really, any constant will do instead of 4. We apply Lemma 2.3 to
write

Var[Yk] ≤ E[Y 2
k ] =

∫ ∞
0

2tP [Yk > t] dt ≤
∫ k

0

2tP [Xk > t] dt

and thus
∞∑
k=1

Var[Yk]
k2

≤
∑
k≥1

1
k2

∫ ∞
0

1[0,k)(t)2tP [X1 > t] dt

=
∫ ∞

0

2t

∑
k≥1

1
k2

1(t,∞)(k)

P [X1 > t] dt

≤ 4
∫ ∞

0

P [X1 > t] dt = 4E[X1]

since

2t

∑
k≥1

1
k2

1(t,∞)(k)

 = 2t
∑
k>t

1
k2
∼ 2t · 1

t
≤ 4

or some other constant, it doesn’t really matter . . .

4. Convergence along a subsequence. We claim
Tkn
kn
→ µ a.s. as n →

∞. By Chebyshev-Markov 1.47, for an arbitrary subsequence,

∞∑
n=1

P

[
1
kn
|Tkn − E [Tkn ]| > ε

]
≤ 1
ε2

∞∑
n=1

1
k2
n

Var [Tkn ]

=
1
ε2

∑
n≥1

1
k2
n

kn∑
m=1

Var [Ym]

=
1
ε2

∑
m≥1

Var [Ym]
∑

n:kn≥m

1
k2
n︸ ︷︷ ︸

:=Γ
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To verify the last equality, we choose α > 1 and set kn := bαnc. Then
observe that

Γ ≤
∑

n:bαnc≥m

1
bαnc2

≤ 4
∑

n:αn≥m

1
α2n

≤ 4
(

1
α2n0

+
1

α2(n0+1)
+ · · ·

)
≤ 4

1
m2

(
1 +

1
α2

+
1
α4

+ · · ·
)

=
4
m2
· 1

1− α−2

Now, we have for α > 1 fixed and kn = bαnc,∑
n≥1

P

[
1
kn
|Tkn − E [Tkn ]| > ε

]
≤ 4
ε2
· 1

1− α−2

∑
m≥1

Var [Ym]
m2

≤ 16
ε2
· 1

1− α−2
µ <∞

Then, by Borel-Cantelli 1.9, the set

Aε =
{

1
kn
|Tkn − E [Tkn ]| > ε only finitely many times

}
≡
{

1
kn
|Tkn − E [Tkn ]| ≤ ε for all suffic. large n

}
satisfies P [Aε] = 1. Let A :=

⋂
j≥1A1/j . Then P [A] = 1 and

1
kn
|Tkn − E [Tkn ]| −−−−→

n→∞
0 on A

But E[Yk]↗ E[X1] = µ as k →∞, so by monotone convergence, E[Tkn ]
kn

→
µ. Thus, on A,

dist
(
Tkn
kn

,
E[Tkn ]
kn

)
−−−−→
n→∞

0

since each sequence → µ.

5. Filling the gap between the subsequence and the full sequence.
For kn ≤ m ≤ kn+1, we have

kn
kn+1

· Tkn
kn

=
Tkn
kn+1

≤ Tkn
m
≤ Tm

m
≤
Tkn+1

m
≤
Tkn+1

kn
=
Tkn+1

kn+1
· kn+1

kn

Notice that
kn+1

kn
=
bαn+1c
bαnc

−−−−→
n→∞

α

and so the line above reads, in the limit,

1
α
µ ≤ lim inf

m→∞

Tm
m
≤ lim sup

m→∞

Tm
m
≤ αµ a.s.

Since α > 1 is arbitrary, lim Tm
m = µ a.s. (let α = 1 + 1

n , for instance).
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Theorem 2.7 (Strong LLN for semintegrable functions). Let (Xi)i be i.i.d.
with E[X+

1 ] = +∞ and E[X−i ] <∞. Then

Sn
n
−−−−→
n→∞

E[X1] = +∞ a.s.

Proof. Truncation: Let M ∈ N large be fixed, and let

XM
i := M ∧Xi and SMn =

n∑
k=1

XM
i

Then (XM
i )i are i.i.d. with finite mean µM . As M →∞, µM ↗∞ by monotone

integration. Define the sets

AM :=
{

lim inf
n→∞

SM

n
≥ µM − i

}
and note P [AM ] = 1, so

A :=
⋂
M≥1

Am ⇒ P [A] = 1

and on A,

lim inf
n

Sn
n
≥ lim inf

n

SMn
n
≥ µM − 1 ∀M ⇒ lim inf

n

Sn
n
≥ ∞

since µM →∞.

What if the Xi are not semi-integrable?

Theorem 2.8. Let (Xi)i be i.i.d. with E[|Xi|] = +∞. Then

lim sup
n→∞

∣∣∣∣Snn
∣∣∣∣ = +∞ a.s.

In particular,

P

[
lim sup
n→∞

∣∣∣∣Snn
∣∣∣∣ <∞] > 0 ⇒ X1 ∈ L1

never mind converging a.s. to some finite RV! Anyway, lim sup
∣∣Sn
n

∣∣ is constant
by Kolmogorov’s 0-1 law 1.20.

This (in some way) shows that the L1 condition is necessary for the Strong
LLN 2.6.
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Proof. Notice

|Xn| = |Sn − Sn−1| ≤ |Sn|+ |Sn−1| ⇒ lim sup
n→∞

∣∣∣∣Xn

n

∣∣∣∣ ≤ 2 lim sup
n→∞

∣∣∣∣Snn
∣∣∣∣

This tells us it suffices to show lim sup
∣∣Xn
n

∣∣ =∞. Fix C ≥ 1. Then

∞∑
n=0

P

[
|Xn|
n
≥ C

]
=
∞∑
n=0

P

[
|X1|
C
≥ n

]
≥ E

[
|X1|
C

]
=∞

by Lemma 2.4. Since the Xi are independent, then Borel-Cantelli II 1.18 says
that infinitely many of the events

{
|Xn|
n ≥ C

}
occur a.s. Thus,

lim sup
n→∞

|Xn|
n
≥ C a.s.

Since C is arbitrary, we can take intersections and conclude that

lim sup
n→∞

|Xn|
n

= +∞ a.s.

2.1 Examples and Applications of LLN

1. Renewals: Let (Xi)i be i.i.d. with 0 < Xi <∞ and set Tn =
∑n
k=1Xk.

We interpret the Xj as waiting times and Tn as the time of the nth oc-
currence. Set

Nt = sup{n : Tn ≤ t} = # of occurrences up to time t

Theorem 2.9. If E[X1] = µ ≤ ∞ then Nt
t →

1
µ a.s.

Proof. By Strong LLN 2.6, Tn
n → µ a.s. By the definition of Nt, TNt ≤

t < TNt+1, and dividing by Nt gives

TNt
Nt︸︷︷︸
→µ

≤ t

Nt
<

TNt+1

Nt + 1︸ ︷︷ ︸
→µ

· Nt+1

Nt︸ ︷︷ ︸
→1

and so t
Nt
→ µ. Note that we have used the fact that Nt →∞ as t∞ a.s.

and so Tn
n → µ a.s. implies TNt

Nt
→ µ.

2. Glivenko-Cantelli Theorem: Let (Xi)i be i.i.d. with arbitrary distri-
bution F . Consider the empirical distribution functions

Fn(x) = Fn(x, ω) :=
1
n

n∑
k=1

1(−∞,x](Xk(ω))
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Note that Fn(x, ω) is the observed frequency of values ≤ x.

Claim: for all x, Fn(x) −−−−→
n→∞

F (x) a.s.; i.e. Fn(x) is a “good estimator”
of F . To prove this claim, let

Yn(ω) = 1{Xn≤x}

so that (Yn) are i.i.d. and

E[Yn] = P [Xn ≤ x] = F (x)

and so by the Strong LLN 2.6

1
n

n∑
k=1

Yn = Fn(x, ω)→ E[Y1] = F (x)

Theorem 2.10.

sup
x∈R
|Fn(x, ω)→ F (x)| −−−−→

n→∞
0 a.s.

Proof. Let
F (x−) := lim

y↗x
F (y) = P [X1 < x]

By setting Zn(ω) = 1{Xn<x}, then Fn(x−) → F (x−) a.s. for all x. Fix
1 ≤ k ∈ N. For 1 ≤ j ≤ k − 1, let

xj := inf
{
y : F (y) ≥ j

k

}
so then F (x−j )− F (xj−1) ≤ 1

k . Also, for a.e. ω, ∃N = N(k, ω) such that
∀n ≥ N and ∀0 ≤ j ≤ k, we have

|Fn(xj)− F (xj)| <
1
k
>
∣∣Fn(x−j )− F (x−j )

∣∣
Applying these three inequalities and monotone convergence, we can write

Fn(x) ≤ Fn(x−j ) ≤ F (x−j ) +
1
k
≤ F (xj−1) +

2
k
≤ F (x) +

2
k

and

Fn(x) ≥ F )n(xj−1) ≥ F (xj−1)− 1
k
≥ F (x−j )− 2

k
≥ F (x)− 2

k

which implies that for a.e. ω and ∀n ≥ N(ω, k), we have

sup
x
|Fn(x, ω)− F (x)| ≤ 2

k

which proves the claim since k is arbitrary.
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3. Monte-Carlo Integration: How can we compute (i.e. approximate) an
integral of the form

I :=
∫
· · ·
∫

[0,1]n
ϕ (x1, x2, . . . , xn) dx1dx2 . . . dxn

for a potentially irregular, complicated ϕ? The main idea (due to Fermi)
is to use the Transformation Formula 1.49 and the Strong LLN 2.6!

Assume (Xi)i=1...n are i.i.d. with X1 uniform in [0, 1]. Thus, ~X has the
distribution λn and so

E
[
ϕ( ~X)

]
=
∫

[0,1]n
ϕ(x)λn(dx) = I

by the Transformation Formula. Accordingly, the integral in question boils
down to finding E

[
ϕ( ~X(ω))

]
. By the Strong LLN,

1
m

m∑
k=1

ϕ
(
~Xk(ω)

)
−−−−→
m→∞

E
[
ϕ( ~X)

]
a.s.

so, we can generate i.i.d. random vectors (with uniform distribution on
[0, 1]n) ~X1, . . . , ~Xk, . . . and use sums of the form 1

m

∑m
k=1 ϕ

(
~Xk(ω)

)
to

approximate the integral in question.

3 Weak Convergence of Probability Measures

Let (Ω, ρ) be a metric space and F = σ(τ) where τ is open sets.

Definition 3.1. Let (µn)n≥1, µ be probability (or finite) measures on (Ω,F).
Then µn

w−→ µ (read: “the µn converge weakly to µ”) if and only if for all ϕ ∈ Cb
(bounded continuous RVs) ∫

ϕdµn −−−−→
n→∞

∫
ϕdµ

Note that

1Ω ∈ Cb(Ω)⇒ µn → µ⇒ µn(Ω)→ µ(Ω) ∈ R⇒ sup
n
µn(Ω) = M <∞.

Definition 3.2. If Xn, X : Ω → R on some probability space (Ω,F , P ), then
Xn

w−→ X if and only if µXn
w−→ µX

Example 3.3. Why is this not stronger? i.e. µn(A) → µ(A) for example? Let
X ∼ F and let Xn := X + 1

n . Then Xn ↘ X a.s., so that Xn
w−→ X. BUT,

Fn(x) = P

[
X +

1
n
≤ x

]
= F

(
x− 1

n

)
.
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Hence limn Fn(x) = F (x−), so that Fn(x)→ F (x) ⇐⇒ x is a continuity point
of F . Hence, we shouldn’t expect that µn(A)→ µ(A) ∀A ∈ F .

Note that if µ ∼ F and CF = {x | F is cts. at x}, then CF is dense (CcF is
countable). Hence, µ(F ) is uniquely determined by its values at CF (since it is
right continuous).
Example 3.4. Let (Xi) be i.i.d N (0, 1). Let Sn =

∑n
i=1Xi. Then Sn ∼ N (0, n).

Let

µn :=
1
n
Sn ∼ N

(
0,

1
n

)
Then “obviously” µn −−−−→

n→∞
δ0 =: µ in some sense. BUT,

0 = µn ({0}) 6→ µ({0}) = 1.

Theorem 3.5 (Portmanteau). Let (µn)n, µ ∈Mfinite be such that limµn(Ω) =
µ(Ω). Then TFAE:

1. µn
w−→ µ

2. ∀ϕ ∈ Cb,L(Ω) (bounded Lipschitz cts),
∫
ϕdµn →

∫
ϕdµ

3. ∀G open, lim infn µn(G) ≥ µ(G)

4. ∀D closed: lim supn µn(D) ≤ µ(D)

5. ∀A ∈ F such that µ(∂A) = 0, limn µn(A) = µ(A)

6. ∀ϕ ∈ Fb such that µ(Dϕ) = 0, limn

∫
ϕdµn =

∫
ϕdµ where Dϕ is any set

containing all of the discontinuities of ϕ.

Proof. • (1⇒ 2) Trivial.

• (2⇒ 3) Define dist(y,D) := inf{ρ(x, y) : x ∈ D}. Then for r ≥ 0, let

fk(r) := (1− kr)+

and
ϕk(x) := fk (dist(x,D))

for some closed set D. Observe that ϕk is clearly Lipschitz with ϕk ≥ 1D
and, in fact, ϕk ↘ 1D as k →∞. Thus,

lim sup
n→∞

µn(0) ≤ lim inf
k→∞

lim sup
n→∞

∫
ϕk dµn︸ ︷︷ ︸

=
R
ϕk dµ

=
∫
ϕdµ = µ(D)

• (3⇒ 4) Let G = Dc open. Then

lim inf
n→∞

µn(G) = lim inf
n→∞

(µn(Ω)− µn(D)) =

=µ(Ω)︷ ︸︸ ︷
lim
n→∞

µn(Ω)− lim sup
n→∞

µn(D)

≥ µ(Ω)− µ(D) = µ(Dc) = µ(G)
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• (4⇒ 3) Analogous to (3⇒ 4).

• (3⇒ 5) or (4⇒ 5) Observe that

µ(A) = µ(A◦) ≤ lim inf
n→∞

µn(A◦) ≤ lim inf
m→∞

µn(A)

≤ lim sup
n→∞

µn(A) ≤ lim sup
n→∞

µn(Ā) ≤ µ(Ā) = µ(A)

and so everything in the line above is equal.

• (5 ⇒ 6) We apply MTI, but with a careful approximation. First, note
that the distribution of ϕ ∈ Fb (bounded measurable functions) on R can
have (at most) countably many atoms, i.e. the set

A = {a ∈ R : µ(ϕ = a) > 0}

is (at most) countable. This means Ac is dense and, therefore, ∀n ≥ 1 we
can find points

α1 < α2 < · · · < α` such that |αi − αi+1| <
1
k

and α1 ≤ −k ≤ k < α` where k = sup |ϕ| <∞. Set

ϕk =
∑̀
i=1

αi1{αi−1<ϕ≤αi} =:
∑̀
i=1

αi1Ai

Notice that
∂Ai ⊆ {ϕ ∈ {αi−1, αi}} ∪Dϕ

where Dϕ is any set ∈ F containing all the discontinuity points of ϕ. By
the assumptions on Dϕ and the choice of αi, we have

µ(∂Ai) = 0 ∀i ⇒ lim
n→∞

µn(Ai) = µ(Ai)

Finally, since ϕk ↘ ϕ we can apply dominated convergence, and so∣∣∣∣∫ ϕdµn −
∫
ϕdµ

∣∣∣∣ ≤ ∣∣∣∣∫ ϕdµn −
∫
ϕk dµn

∣∣∣∣+
∣∣∣∣∫ ϕk dµn −

∫
ϕk dµ

∣∣∣∣
+
∣∣∣∣∫ ϕk dµ−

∫
ϕdµ

∣∣∣∣
≤ 1
k

sup
n
µn(Ω) + (→ 0 by (5) ) +

1
k
M

Specifically, given any ε > 0, choose k such that M
k < ε

2 and, given k,
choose N big enough such that the middle term is ≤ ε

2 . Then, ∀ε > 0,∃n
st ∀n ≥ N , |

∫
ϕdµn −

∫
ϕdµ| < ε.

44



Special case: Ω = R or = Rd. Let µn, µ ∈M1(R) such that Fn(x)→ F (x)
as n→∞.

Theorem 3.6. For all x, if F is continuous at x then ∃(Xn)n, X RVs on
((0, 1),B, λ) such that Xn → X a.s. and Xn ∼ µn, X ∼ µ.

Remark 3.7. This is a special case of the following: Let (Ω, ρ) be a separable,
complete metric space and let (µn)n, µ ∈M1(R). If µn

w−→ µ then ∃(Xn), X on
some probability space with Xn ∼ µn such that Xn → X a.s.

Proof. If F is a distribution function (i.e. increasing, right-continous, F (−∞) =
0 and F (∞) = 1), then ∀x ∈ (0, 1) we set

ax := sup {y : F (y) < x} =: F−1(x)

bx :=
∫
{y : F (y) > x}

to be the left-continuous inverse and right-continuous inverse, respectively. No-
tice that ∀x, ax ≤ bx with strict inequality ⇐⇒ F is locally constant in (ax, bx).
Also, x < x′ ⇒ bx ≤ ax′ , and ∃ (at most) countably many points x such that
ax < bx.

Given (Fn), F we set Yn(x) := F−1
n (x) and Y (x) = F−1(x) on Ω = (0, 1)

with B and dx. We claim: Yn ∼ dFn and Y ∼ dF . To see why, we check

{Y ≤ x} = {y : Y (y) ≤ x} = {y : ay ≤ x} = {y : y ≤ F (x)}

and so λ (Y ≤ x) = λ ((0, F (x)]) = F (x).
Assume now that Fn(y) → F (y) whenever F is continuous at y. We will

show that if x is such that ax = bx then F−1
n (x) → F−1(x) which proves the

theorem (since there are at most countable many such points). We make the
following two claims

lim inf
n→∞

F−1
n (x) ≥ F−1(x)

lim sup
n→∞

F−1
n (x) ≤ F−1(x)

To prove the first inequality, let y < F−1(x) and assume F is continuous at y.
Notice F (y) < x necessarily and so ∀n large enough, Fn(y) < x, which implies

sup {z : Fn(z) < x} = F−1
n (x) ≥ y

Then,since the continuity points of F are dense we have

lim inf
n→∞

F−1
n (x) ≥ sup

{
y : y < F−1(x), F cts at y

}
= F−1(x)

Proving the other claim is similar (see Durrett p. 84).

Theorem 3.8. On R (or Rd),

µn
w−→ µ ⇐⇒ Fn(x) −−−−→

n→∞
F (x) ∀x : F is cts at x
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Proof. (⇒) If F is continuous at x, then

µ (∂(−∞, x]) = µ({x}) = 0
⇒ lim

n→∞
Fn(x) = lim

n→∞
µn ((−∞, x]) = µ ((−∞, x]) = F (x)

The same argument works in Rd: if F is continuous at ~x, then

µ (∂ ((−∞, x1]× · · · × (−∞, xd])) = 0

and so on.
(⇐) If Fn(x)→ F (x) whenever F is continuous at x then we can apply (2)

from Theorem 3.5 to say ∃Xn ∼ dFn = µn such that Xn → X ∼ dF = µ a.s.
For ϕ ∈ Cn(R), we have, by dominated convergence,∫

ϕdµn = E [ϕ(Xn)] −−−−→
n→∞

E [ϕ(X)] =
∫
ϕdµ

Note: a direct proof for Rd is given in Durrett p. 165.

Remark 3.9. If Xn
w−→ X and g ∈ C+

b then lim inf E[g(Xn)] ≥ E[g(X)], etc.
(∃Yn → Y a.s. with Yn ∼ Xn and Y ∼ X, apply Fatou)

This is related to other notions of convergence, as the next theorem demon-
strates.

Theorem 3.10. Xn → X in probability ⇒ Xn
w−→ X.

Notice that Xn → X a.s. ⇒ Xn
w−→ X immediately, by the definition.

Proof. Define the sets

Aε,n := {|Xn −X| ≤ ε} ⇒ lim
n→∞

P
[
Acε,n

]
= 0 ∀ε

WWTS Fn(x)→ F (x) if x is a continuity point of F . First, we see that

Fn(x) = P [Xn ≤ x] ≤ P [{Xn ≤ x} ∩Aε,n] + P
[
Acε,n

]
≤ P

[
Acε,n

]
+ P [X ≤ x+ ε]

and so

∀ε : lim sup
n→∞

Fn(x) ≤ 0 + F (x+ ε) ⇒ lim sup
n→∞

Fn(x) ≤ F (x+) = F (x)

Similarly,

Fn(x) = P [Xn ≤ x] ≥ P [{Xn ≤ x} ∩Aε,n] ≥ P [X ≤ x− ε]− P
[
Acε,n

]
and so

∀ε : lim inf
n→∞

Fn(x) ≥ F (x− ε) ⇒ lim inf
n→∞

Fn(x) ≥ F (x−) = F (x)

Combining these, we have lim inf Fn(x) ≥ F (x) ≥ lim supFn(x) so it must be
that limFn(x) = F (x).
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Theorem 3.11. In Rd,

µn
w−→ µ ⇐⇒

∫
ϕdµn →

∫
ϕdµ ∀ϕ ∈ Cc(R)

where Cc(R) denotes functions that are continuous with compact support.

Proof. (⇒) Exercise (***).
(⇐) Let G be open and set Gk = G∩ (−k, k)d which is open and bounded. Set

ϕk(x) = 1 ∧ k dist(x,Gck)︸ ︷︷ ︸
∈C(Rd)

∈ C(Rd)

Note ϕ(k) = 0 on Gck and > 0 on Gk and ϕk ↗ 1G as k →∞, so ϕk ∈ Cc(Rd).
Let L1 3 ϕ ≥ ϕk ≥ 0 with ϕk ∈ Cc and ϕk → ϕ as k →∞. Then

lim inf
n→∞

∫
ϕdµn ≥ lim sup

k→∞
lim inf
n→∞

∫
ϕk dµn︸ ︷︷ ︸

=
R
ϕk dµ ∀k

=
∫
ϕdµ

by assumption and by dominated convergence. So for G open set ϕ = 1G and
define ϕk as before. Then

lim inf
n→∞

µn(G) ≥ µ(G)

and by the Portmanteau Theorem 3.5, this shows µn
w−→ µ.

3.1 Fourier Transforms of Probability Measures

Let µ ∈ Mf (R). For instance, X ∼ µ for some RV on (Ω,F , P ). For t ∈ R,
define

µ̂(t) : =
∫

R
exp(itx)µ(dx) = E [exp(itX(ω))]

=
∫

R
cos(tx)µ(dx) + i

∫
R

sin(tx)µ(dx)
(4)

This is called the Fourier Transform of µ (or of X).

Lemma 3.12. For µ ∈Mf (R), the function µ̂(t) exists; in fact, |µ̂(t)| ≤ µ(R).
Furthermore,

1. µ̂ is uniformly continuous

2. sup
t
|µ̂(t)| = µ̂(0) = µ(R) and µ̂(−t) = µ̂(t).

3. µ̂ is a positive-definite function, i.e.∑
i,j

µ̂(ti − tj)zizj ≥ 0 ∀~t ∈ Rn, ~z ∈ Cn
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Proof. To show existence of µ̂, notice that

|E [exp(itX)]| ≤ E [|exp(itX)|] ≤ 1

for finite measures. For uniform continuity, we use the identity

|exp(ia)− exp(ib)| = |1− exp(i(b− a))| |exp(ia)| ≤ || ∧ 2

which implies

sup
|s−t|≤δ

|µ̂(t)− µ̂(s)| ≤ sup
|s−t|≤δ

E [exp(itX)− exp(isX)] ≤ E [δX ∧ 2] −−−→
δ→0

0

Proving the sup and complex conjugate conditions are trivial and left as exercises
(***). To prove positive-definiteness, we use the fact that |z|2 = zz̄ and observe
that

E

∣∣ n∑
j=1

exp(itjX) · zj
∣∣2 =

∑
j,k

E [exp(itjX) · zj exp(−itkX) · z̄k]

=
∑
j,k

E [exp(i(tj − tk)Xzj z̄k]

=
∑
j,k

µ̂(ti − tj)ziz̄k ≥ 0

since E[·2] ≥ 0.

Definition 3.13. For f ∈ L1(dx) we define

f̂(t) =
∫

exp(itx)f(x) dx = ν̂(t)

where dν = f dx is a finite signed measure.

Notice that |f̂(t)| ≤
∫
| exp(itx)||f | dx = ‖f‖1 <∞.

Definition 3.14. Let f, g ∈ L1. Then

f ? g(x) :=
∫

R
f(x− y)g(y) dy

is called the convolution of f and g, whenever the integral exists and is finite
∀x.

Remark 3.15. Notice f ? g = g ? f since∫
f(x− y)︸ ︷︷ ︸

:=f̃x(y)

g(y) dy =
∫
f̃x(y)g(y) dy =

∫
f̃x(−y)g(−y) dy

=
∫
f̃x(x− y)g(x− y) dy =

∫
f(y)g(x− y) dy

where shifting by x in the second line does not alter the integral.
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In the future, we will use the Gaussian function

ϕε(x) :=
1

ε
√

2π
exp

(
− x2

2ε2

)
(5)

which is ∼ N (0, ε2).

Theorem 3.16 (Fejer). Let f ∈ Cc(R) and ϕε as in (5). Then

lim
ε→0

sup
x∈R
|(f ? ϕε)(x)− f(x)| = 0

Proof. Let Z ∼ N (0, 1) so εZ ∼ N (0, ε2) and then

E [f(x− εZ)] =
∫

R
f(x− y)ϕε(y) dy = f ? ϕε(x)

Note that |f | ≤M <∞ and for a.e. ω,

f (x− εZ(ω)) −−−→
ε→0

f(x)

Moreover, since f is uniformly continuous, in particular,

sup
x
|f(x− εZ(ω)− f(x)| =:

≤2M︷ ︸︸ ︷
W (ω, ε) −−−→

ε→0
0 for a.e.ω

and therefore

sup
x
|

E[f(x−εZ]︷ ︸︸ ︷
f ? ϕε(x)−

E[f(x−0Z)]︷︸︸︷
f(x) | ≤ sup

x
E
[
|

≤Wε(ω) ∀x︷ ︸︸ ︷
f(x− εZ(ω)− f(x) |

]
≤ E [Wε(ω)]→ 0

by dominated convergence.

Theorem 3.17 (Planchard). 1. Let f ∈ L1(dx) and ε > 0. Then∫
R
(f ? ϕε)(x)µ(dx) =

1
2π

∫
R

exp
(
−ε

2t2

2

)
f̂(t)µ̂(t) dt

2. Let f ∈ Cc(R) and f̂ ∈ L1(dx). Then∫
R
f dµ =

1
2π

∫
R
f̂(t)µ̂(t) dt
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Proof. 1. Notice that

1
2π

∫
exp

(
−ε

2t2

2

)
f̂(t)µ̂(t) dt

=
1

2π

∫
exp

(
−ε

2t2

2

)
·
(∫

exp(itx)f(x) dx
)
· (exp(−ity)µ(dy)) dt

=
1

2π

∫ (
f(x)

∫
exp(it(x− y)) exp

(
−ε

2t2

2

)
dt︸ ︷︷ ︸

=
√

2π
ε exp

“
− (x−y)2

2ε2

”
=2πϕε(y−x)

dx
)
µ(dy)

=
∫

R
(f ? ϕε)(y)µ(dy)

2. For all ε > 0, we have∫
fε(x)µ(dx) =

1
2π

∫
exp

(
−ε

2t2

2

)
f̂(t)µ̂(t) dt

Since fε(x) → f(x) uniformly, the LHS →
∫
f(x)µ(dx) as ε → 0. Like-

wise, on the RHS, the exp(·) term→ 1, so by dominated convergence, the
whole RHS → 1

2π

∫
1 · f̂(t)µ̂(t) dt.

Theorem 3.18 (Uniqueness). If µ, ν ∈ M1(R) such that µ̂ = ν̂ (λ-a.e.) then
µ = ν.

Proof. Let f ∈ Cc(R) and set fε = f ? ϕε. Apply Planchard’s Theorem 3.17
part (1) to write ∫

fε dµ =
∫
fε dν ∀ε > 0

Since fε → f uniformly as ε → 0, then letting ε → 0 shows
∫
f dµ =

∫
f dν.

Since this holds for arbitrary such f , it must be that µ = ν. Specifically, for any
−∞ < a < b <∞, notice that fε ↘ 1[a,b] and so

∫
fε dµ↘ µ[a, b] and similarly

for ν[a, b], as well.

Theorem 3.19 (Pleny & Glivenko). Let µ, (µn)n ∈M1(R). Suppose µ̂n(t) →
µ̂(t) for λ-a.e. t. Then µn

w−→ µ.

Remark 3.20. Notice that the converse is trivial since exp(itx) ∈ Cb(R), so we
can apply the Transformation Formula 1.49 and say E[ϕ(Xn)] =

∫
ϕdµn →∫

ϕdµ = E[ϕ(X)]. Also, the same theorem holds on Rd (see Theorem 9.4 in
Durrett).

Proof. Let f ∈ Cc(R). WWTS
∫
f dµn →

∫
f dµ. Set

δ(ε) := ‖fε − f‖∞ = ‖f ? ϕε − f‖∞
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so that δ(ε)→ 0 as ε→ −0. We first apply the triangle inequality (thrice) and
then Planchard’s Theorem 3.17 part (1) to write, ∀ε > 0,∣∣∣∣∫ f dµn −

∫
f dµ

∣∣∣∣
≤
∫ ≤δ(ε) ∀n︷ ︸︸ ︷
|fε − f | dµn +

∫ ≤δ(ε)︷ ︸︸ ︷
|fε − f | dµ+

∣∣∣∣∫ fε dµn −
∫
fε dµ

∣∣∣∣
=
∫
·+
∫
·+ 1

2π

∣∣∣∣∫ exp
(
−ε

2t2

2

)
f̂(t)︸︷︷︸

|·|≤‖f‖1<+∞︸ ︷︷ ︸
a finite measure on R ∀ε>0

(
µ̂n(t)− µ̂(t)︸ ︷︷ ︸
→0 a.e. as n→∞

)
dt

∣∣∣∣

This means we can apply Dominated Convergence to say

lim sup
n→∞

∣∣∣∣∫ f dµn −
∫
f dµ

∣∣∣∣ ≤ 2δ(ε) + 0 −−−→
ε→0

0

Remark 3.21. Let µn, µ ∈M1(Rd). Then

µn → µ ⇐⇒ µ̂n(t)→ µ̂(t) ∀t ∈ R

Corollary 3.22 (Cramer-Wold Device). Let ( ~Xn)n≥1, ~X be RVs with values in
Rd. If (~t · ~Xn) w−→ (~t · ~X) for every t ∈ Rd, then ~Xn

w−→ ~X.

Proof. Since exp(ix) ∈ Cb(R), we know

E
[
exp(i(~t · ~Xn))

]
−−−−→
n→∞

E
[
exp(i(~t · ~X))

]
for every ~t ∈ Rd. But notice that this is just the pointwise convergence of the
Fourier Transforms of ~Xn → ~X!

4 Central Limit Theorems and Poisson Distri-
butions

Theorem 4.1 (CLT in R). Suppose (Xn)n are i.i.d. with finite second mo-
ments. Let µ = E[X1] and σ2 = Var[X1]. Then

Sn − nµ
σ
√
n

w−→ N (0, 1)

Proof. WOLOG µ = 0 and σ = 1, so WWTS Sn√
n
→ N (0, 1). That is, WWTS

lim
n→∞

E

[
exp

(
it
Sn√
n

)]
= exp

(
− t

2

2

)
∀t
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We look at the Taylor expansion for x ∈ R to write

exp(ix) = 1 + ix− x2

2
+R(x) , |R(x)| ≤ 1

6
|x3| ≤ |x|3

for x ∈ R where R(x) is the remainder term. For large x, we will use the
estimate

|R(x)| ≤ | exp(ix)|+ 1 + |x|+ x2

2
≤ 2 + |x|+ |x|

2

2
≤ x2

for x ≥ 4, and so
|R(x)| ≤ |x|3 ∧ 4|x|2 ∀x ∈ R

since |x|3 ≤ 4|x|2 for |x| ≤ 4. Now, we write

E

[
exp

(
it
Sn√
n

)]
=

n∏
k=1

E

[
exp

(
it
Xk√
n

)]
=
(

1 + itE

[
X1√
n

]
− t2

2n
E
[
X2

1

]
+ E

[
R

(
tX1√
n

)])n
=
(

1− 1
n

(
t2

2
− nE

[
R

(
tX1√
n

)]))n
=:
(

1− 1
n

(
t2

2
− εn

))n
and observe that

|εn| ≤ nE

[(
tX1√
n

)3

∧ 4
(
tX1√
n

)2
]

= E

[
t3X3

1√
n
∧ 4t2X2

1

]
= t2E

[
t√
n
X3

1 ∧ 4X2
1

]
−−−−→
n→∞

0

where convergence in the last line follows by dominated convergence, since | · | ≤
4X2

1 ∈ L1 (note: this shows why only finite second moment needed!) Thus,

lim
n→∞

E

[
exp

(
it
Sn√
n

)]
= lim
n→∞

(
1− 1

n

(
t2

2
− εn

))n
= exp

(
− t

2

2

)
which is implied by the following claim:

lim
n→∞

(
1− cn

n

)n
= exp(−c) if C 3 cn → c

To prove this, we use the complex logarithmic function and write

RHS = lim
n→∞

exp
(
n · log

(
1− cn

n

))
= −cn

n
+ o

(
1
n

)
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using the Taylor power series for log. Then

RHS = lim
n→∞

exp
(
n ·
(
−cn
n

+ o

(
1
n

)))
= lim
n→∞

exp(−cn) · exp
(
n · o

(
1
n

))
= exp(−c)

For completeness, we also present an alternative (direct) proof that

lim
zn→z

(
1− zn

n

)n
= ez

Set an =
(
1 + zn

n

)
and bn = exp(zn/n), and choose |γ| > |z|. For large n,

|zn| < γ, so |zn|n ≤ 1, which implies∣∣∣(1− zn
n

)n
− ezn

∣∣∣ ≤ (exp(zn/n))n−1 · n ·
∣∣∣zn
n

∣∣∣2 ≤ eγ · γ
2

n
−−−−→
n→∞

0

where the first inequality follows from Lemma AB on page 3 in Unit 11 ********
reference ****** Therefore,∣∣∣(1− zn

n

)n
− ez

∣∣∣ ≤ ∣∣∣(1− zn
n

)n
− ezn

∣∣∣+ |ezn − ez| → 0

Theorem 4.2 (Lindeberg-Feller). For any n, let Xn,1, Xn,2, . . . , Xn,kn be RVs
on the probability space (Ωn,Fn, Pn). Assume that

1. For each n, (Xn,k)k=1,...,kn are independent and have 0 mean, with respect
to Pn

2.
∑kn
k=1 Var(Xn,k)→ σ2 ∈ (0,∞) as n→∞

3. For every ε > 0,

lim
n→∞

kn∑
k=1

En
[
X2
n,k; |Xn,k| > ε

]
= 0

Then

Sn :=
kn∑
k=1

Xn,k
w−→ N (0, σ2)

i.e. µn := Pn ◦ S−1
n

w−→ N (0, σ2).

Proof. See Durrett. It is not much more complicated than the proof of the
classical CLT 4.1.
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Observe that Lindeberg-Feller 4.2 includes the classical CLT 4.1. Set kn = n
and Xn,k = Xk√

n
where Xk are i.i.d. with E[Xk] = 0 and E[X2

k ] = σ2. Then
assumption (1) is satisfied for all n by definition, assumption (2) holds because

n∑
k=1

E[X2
n,k] =

n∑
k=1

(
1√
n

)2

E[X2
k ] = σ2

and assumption (3) holds because

E
[
X2
n,k · 1{|Xn,k|>ε}

]
=

n∑
k=1

E

[
1
n
X2
k · 1{|Xk|>ε√n}

]
= E

[
X2

1 · 1{X2
1>ε

2n}

]
−−−−→
n→∞

0

by dominated convergence, since X2
1 · 1{X2

1>ε
2n} → 0 as n → ∞ a.s. dy domi-

nated convergence, since X2
1 ∈ L1.

Example 4.3 (Cycles in a random permutation). Let Ωn = {ω : {1, . . . , n} →
{1, . . . , n} bijective} be the space of permutations of {1, . . . , n}, where k 7→ ωk.
We write Π = Π(ω) = (Π1(ω), . . . ,Πn(ω)) = (ω1, . . . , ωn). Let Pn be the
uniform measure on Ωn, i.e. Pn[Π = σ] = 1

n! for any fixed permutation σ.
Notation: as an example, consider the permutation

(1, 2, 3, 4, 5, 6, 7, 8) 7→ (2, 5, 8, 4, 1, 7, 3, 6) = (σ1, σ2, . . . , σ8) = σ

We write σ = (125)(3867)(4) = C1C2C3 = c1c2 . . . c8 in its cycle decomposition
form, where the first term is the cycle containing 1, the second term is the cycle
containing the lowest number not in the first cycle, etc. Question: What is
the “typical” number of cycles in the decomposition of a random permutation?

An algorithmic way to “generate” uniformly distributed random permu-
tations is as follows: we generate the cycle decomposition directly beginning
with the cycle containing 1, i.e. C1 = (1, c2, ?). Let U1(ω) be uniformly dis-
tributed on {1, . . . , n}. If U1 = 1 then C1 = (1) (a fixed point) and set c2 = 2
and continue. If U1 6= 1 then c2 = U1(ω) and continue. Assuming we al-
ready have the first k entries in the form (c1c2 . . . )(· · · ) . . . (cm . . . ck), what is
the next one? Let Uk(ω) be independent of U1, . . . , Uk−1 and uniformly dis-
tributed on {1, n} \ {c1, . . . , cm−1, cm+1, . . . , ck}, so the total number of choices
is n − k + 1. If Uk = cm then close the current cycle and begin the next with
ck+1 = min{{1 . . . n} \ {c1 . . . ck}}. If Uk 6= cm set ck+1 = Uk(ω) and proceed.
Note:

P [Uk = cm | given U1, . . . , Uk−1] =
1

n− k + 1
is the probability that ck is the end of the cycle. We introduce the variables
Xn,k, for k = 1, . . . , n, that take the value 1 if ck is the last element of a
cycle, and 0 otherwise. For instance, with the length-8 permutation above,
X8,3 = X8,7 = X8,8 = 1 and all others are 0. Note: P [Xn,k = 1] = 1

n−k+1 . More
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precisely, given the sequence c1 . . . ck−1ck and the cycles (i.e. the appropriate
brackets), we have

P [Xn,k = 1 | Xn,1 = x1, . . . , Xn,k−1 = xk−1] =
1

n− k + 1

for each x1 . . . xk−1 ∈ {0, 1}. That is, the (Xn,k) are independent!
Now, the # of cycles N can be determined by setting

n∑
k=1

Xn,k =: Sn

and finding

E[Sn] =
n∑
k=1

1
n− k + 1

=
n∑
k=1

1
k

= log n+O(1)

and

Var[Sn] =
n∑
k=1

Var[Xn,k] =
n∑
k=1

(
1

n− k + 1
− 1

(n− k + 1)2

)

=
n∑
k=1

(
1
k
− 1
k2

)
∼ log n+O(1)

Define

Yn,k =
(
Xn,m −

1
n−m+ 1

)
/
√

log n

Then E[Yn,k] = 0 and

Var[Sn] =
1

log n

n∑
k=1

(
1
k
− 1
k2

)
=

1
log n

(log n+O(1))→ 1

To prove assumption (3) from Lindeberg-Feller 4.2 holds, observe that

n∑
k=1

E
[
Y 2
n,k; |Yn,k| > ε

]
=

1
log n

n∑
k=1

E
[(
Xn,k −

1
n− k + 1

)2

;
∣∣Xn,k −

1
n− k + 1

∣∣︸ ︷︷ ︸
<1

> ε
√

log n

︸ ︷︷ ︸
=∅ if logn>ε−2

]

−−−−→
n→∞

0

since eventually n > exp(ε−2). Therefore, by Lindeberg-Feller 4.2,

1√
log n

(
Sn −

n∑
k=1

1
k

)
w−→ N (0, 1)

55



We split this as a sum, to say

Sn − log n√
log n

+
log n−

∑n
k=1 1/k√

log n︸ ︷︷ ︸
→0

w−→ N (0, 1)

4.1 Poisson Convergence

The “Law of small numbers” could be more aptly titled as the “law of rare
events”.

Theorem 4.4. Let A be an array of 0-1 RVs, i.e. A = (Xn,m) for n ≥ 1 and
1 ≤ m ≤ kn. Let P [Xn,m = 1] = pn,m and set Sn = Xn,1 + · · ·+Xn,kn . Suppose

1. Xn,1, . . . Xn,kn are independent ∀n

2.

E[Sn] =
kn∑
k=1

pn,k −−−−→
n→∞

λ ∈ [0,∞)

and
max

1≤k≤kn
pn,k −−−−→

n→∞
0

Then Sn
w−→ Poi(λ).

Example 4.5. Roll two dice n = 36 times. Let Xn,k = 1 if we get two 6s at
time k and 0 otherwise. Then Sn is the count of the number of double 6s, and
E[Sn] = 36 · 1

62 = 1. This is a rare event with λ = 1 so Sn ≈ Poi(1). For
particular values of k, we can calculate

k : 0 1 2 3
exact : 0.3678 .3678 .1834 .0613

Poi(1) : 0.3627 .3730 .1865 .0604

so we see that the approximation is good even though n = 36 is rather small.

Proof. Let

ϕn,m(t) = E [exp (itXn,m)] = (1− pn,m) + pn,m exp(it)

Then

E [exp(itSn)] = E

[
exp

(
it

n∑
m=1

Xn,m

)]
=

n∏
m=1

E [exp(itXn,m)]

=
n∏

m=1

(1 + pn,m(exp(it)− 1))
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WWTS, ∀t ∈ R,

E [exp(itSn)] −−−−→
n→∞

exp (λ(exp(it)− 1)))

Note:

|exp (λ(exp(it)− 1)))− E [exp(itSn)]|

≤

∣∣∣∣∣exp (λ(exp(it)− 1))− exp

(
kn∑
m=1

pn,m(exp(it)− 1)

)∣∣∣∣∣
+

∣∣∣∣∣exp

(
kn∑
m=1

pn,m(exp(it)− 1)

)
− E [exp(itSn)]

∣∣∣∣∣ =: I1 + I2

Notice I1 −−−−→
n→∞

0 since
∑
pn,m → λ. Write

I2 =

∣∣∣∣∣
kn∏
m=1

exp (pn,m(exp(it)− 1))−
kn∏
m=1

(1 + pn,m(exp(it)− 1))

∣∣∣∣∣ =: |am − bm|

and note
|am| = exp (pn,m −<(exp(it)− 1)) ≤ exp(1 · 0) = 1

since | exp(z)| = exp(<(z)) and <(exp(it) − 1) ≤ 0. Also, |bm| ≤ 1 since
1 + pm(exp(it)− 1) satisfies ***** picture *****

Applying Lemma 4.6 below tells us

I2 ≤
kn∑
m=1

|exp (pn,m(exp(it)− 1)− (1 + pn,m(exp(it)− 1)))|

≤
kn∑
m=1

p2
n,m |exp(it)− 1|2

where the second inequality follows from Lemma 4.7 with z = pn,m(exp(it)−1),
and the fact that |z| ≤ 1 when maxm pn,m ≤ 1

2 . Continuing, we have

I2 ≤ 4 · max
1≤m≤kn

pn,m︸ ︷︷ ︸
→0

·
kn∑
m=1

pn,m︸ ︷︷ ︸
→λ

−−−−→
n→∞

0

and this completes the proof.

The following two lemmas are used in the proof above.

Lemma 4.6. Let a1, . . . , an, b1, . . . , bn ∈ C such that |ai|, |bi| ≤ θ. Then∣∣∣∣∣
n∏
i=1

ai −
n∏
i=1

bi

∣∣∣∣∣ ≤ θn−1
n∑
i=1

|ai − bi|
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Proof. We use induction. The n = 1 case is trivial. Now, assume this holds for
k = n− 1. Then,∣∣∣∣∣

n∏
i=1

ai −
n∏
i=1

bi

∣∣∣∣∣ ≤
∣∣∣∣∣an

n−1∏
i=1

ai − an
∏

i = 1n−1bi

∣∣∣∣∣
+

∣∣∣∣∣an
n−1∏
i=1

bi − bn
n−1∏
i=1

bi

∣∣∣∣∣
≤ |an| ·

∣∣∣∣∣
n−1∏
i=1

ai −
n−1∏
i=1

bi

∣∣∣∣∣+

∣∣∣∣∣
n−1∏
i=1

bi

∣∣∣∣∣ · |an − bn|
= θn−1

((
n−1∑
i=1

|ai − bi|

)
+ |an − bn|

)

where the last line follows by the inductive assumption.

Lemma 4.7. If b ∈ C and |b| ≤ 1, then

|exp(b)− (1 + b)| ≤ |b|2

Proof. For |b| ≤ 1, we can write

eb − (1 + b) =
b2

2!
+
b3

3!
+ · · ·

≤ |b|
2

2

(
1 +

1
3

+
1

3 · 4
+ · · ·

)
≤ |b|

2

2

(
1 +

1
2

+
1
4

+ · · ·
)

= |b|2

Theorem 4.8. Let (Xn,k) for 1 ≤ k ≤ Kn and N ≥ 1 be N-valued with
P [Xn,k] = pn,k and P [Xn,k ≥ 2] = εn,k. If

1. Xn,1, . . . , Xn,Kn are independent ∀n

2.
Kn∑
k=1

pn,k −−−−→
n→∞

λ ∈ [0,∞) and maxk pn,k −−−−→
n→∞

0

3.
Kn∑
k=1

εn,k → 0 i.e. the expected number of values ≥ 2→ 0

then

Sn =
Kn∑
k=1

Xn,k −−−−→
n→∞

Poi(λ)
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Proof. Let
X ′n,k = 1{Xn,k=1} = Xn · 1{Xn≤1}

and
S′n := X ′n,1 + · · ·+X ′n,Kn

By the previous Theorem 4.4, (p′n,k = pn,k) we have S′n
w−→ Poi(λ). Assumption

(3) then implies that

P [Sn 6= S′n] ≤
Kn∑
k=1

P
[
Xn,k 6= X ′n,k

]
=

Kn∑
k=1

εn,k → 0

since {Xn,k 6= X ′n,k} = {Xn,k ≥ 2}. Note: Yn := Sn − S′n ≥ 0. We now claim
Yn → 0 in probability. To prove this claim, observe that

P [Yn > ε] = P [Sn >6= S′n] = P [Sn 6= S′n] −−−−→
n→∞

0

Since S′n
w−→ Poi(λ) and Yn

w−→ 0, then Sn := S′n + Yn
w−→ Poi(λ) (as proven, in

general, on homework ***).

Theorem 4.9 (Characterization of the Poisson process). Intepretation: As-
sume that we have random arrival times (occurrences) τ(ω) in R+ (or R) and
let

Ns,t(ω) = # |τ(ω) ∩ (s, t]|

(For instance, this can represent the replacement times of light bulbs, arrival
times at a bank line, arrival times of α-particles at a Geiger-Muller counter,
etc.) Assume

1. The # of points in disjoint intervals is independent

2. The Ns,t distribution depends only on t− s

3. P [Ns,t − 1] = λt+ o(t) as t↘ 0

4. P [Ns,t ≥ 2] = o(t) as t↘ 0

Then N0,t −Nt ∼ Poi(λt).

Proof. Let
Xn,k = N(k−1) tn ,

kt
n

for k = 1, . . . , n

Then

pn,k = P [Xn = 1] = λ · t
n

+ o

(
t

n

)
and so

n∑
k=1

λ · t
n

= λt+ n · o(t/n)︸ ︷︷ ︸
→0 as n→∞
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Also
n∑
k=1

εn,k =
n∑
k=1

o

(
t

n

)
= n · o

(
t

n

)
=
o(t/n)
(t/n)

· t −−−−→
n→∞

0

Then by the previous theorem,

Nt =
n∑
k=1

Xn,k −−−−→
n→∞

Poi(λt)

Remark 4.10. Such processes do exist. One way to construct such a process
is to look at Nt as a renewal process with (i.i.d.) lifetime distribution exp(λ).
That is, let

N0,t = Nt := inf{k : T1 + · · ·Tk ≤ t}

with each Ti ∼ exp(λ), and let Ns,t := Nt −Ns. In this case,

τ(ω) = {T1(ω), T1 + T2(ω), . . . }

is the set of “replacement times” and

NA(ω) := |τ(ω) ∩A| = # of points in A

Theorem 4.11 (Law of Small Numbers). Assume we have a triangular ar-
ray of 0-1 RVs Xn,1, . . . , Xn,kn for n ≥ 1 where, for all n, Xn,1, . . . , Xn,n are
independent and such that pn,m := P [Xn,m = 1] satisfies

kn∑
m=1

pn,m −−−−→
n→∞

λ ∈ (0,∞)

and
max

1≤m≤kn
pn,m −−−−→

n→∞
0

Set

Skn :=
kn∑
m=1

Xn,m

so that E[Sn] =
∑
m pn,m. Then, Skn

w−→ Poi(λ) as n→∞.

Before we prove the theorem, recall that if z ∼ Poi(λ) then z ∈ N and

P [z = k] = exp(−λ)
λk

k!
=: πλ(k)

Also,

π̂λ(t) =
∫

R
exp(itx)πλ(dx) =

∑
k≥0

exp(itk) exp(−λ)
λk

k!
= exp(λ(exp(it)− 1))
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Proof. Set µ = Poi(λ) for λ > 0, so then µ̂(t) = exp(−λ) exp(λ(exp(it) − 1)).
(This also works for λ = 0.) Then,

E [exp(itSn)] =
kn∏
k=1

E [exp(itXn,k] =
kn∏
k=1

(1 + pn,k(exp(it)− 1))

=
kn∏
k=1

exp (log (1 + pn,k(exp(it)− 1))))

= exp
kn∑
k=1

pn,k(exp(it)− 1) +Rn

Thus,
lim
n→∞

E [exp(itSn)] = exp (λ(exp(it)− 1)))

and so by Theorem 3.19, we have Sn
w−→ Poi(λ).

5 Conditional Expectations

Let X ≥ 0 or X ∈ L1 on (Ω,F , P ). The expectation E[X] can be interpreted
as an a priori prognosis for the value of X. Say we have a subfield F0 ⊆ F
such that for every A ∈ F0, we know whether ω ∈ A or not. (For example, if
F0 = σ(Y ), then we know for each c whether ω ∈ {Y ≤ c} or not, so we know
exactly Y (ω)!) How does this partial information modify our a priori prognosis?
If X ∈ F0 then our prognosis is exact ⇒ X(ω) = X̂(ω). For X,Y , we observe
S = X + Y and attempt X̂(ω) = S(ω)−E[Y ] heuristically, but this is actually
wrong. Notationally, we write X̂(ω) = E[X|F0] for the conditional expectation.
What exactly should X̂(ω) be?

A partial observation is a collection of events (= observable events). When is
an event A “observable”? Iff we can tell whether A occurred or not, i.e. whether
ω ∈ A or ω /∈ A (note: we don’t know ω, only whether it is ∈ A).
Example 5.1. Ω = {people attending a film at the theatre} and A = {more
than 20 people} etc. Let O := {A|Ais observable}. Note O is closed under
arbitrary unions and intersections, so it is a σ-algebra. This implies that partial
information is associated with a σ-algebra.
Example 5.2. Information is often obtained by observing a RV Y (or several
RVs) . Then O = σ(Y ) since knowing the value of Y (ω) (but not ω) allows
us to decide whether {Y ∈ B} occurred or not for every Borel set B ∈ S.
Moreover,

σ(Y ) = {{Y ∈ B : B ∈ S}
Prediction after an observation.

Example 5.3. Observe two events A,B, with

O = σ(A,B) = {A,B, ∅,Ω, A ∩B︸ ︷︷ ︸
:=A1

, A \B︸ ︷︷ ︸
:=A2

, B \A︸ ︷︷ ︸
:=A3

, (A ∪B)c︸ ︷︷ ︸
:=A4

}
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Notice O is atomic with atoms A1, A2, A3, A4. Let X be a RV (on R or R̄). How
should we refine our prediction (expectation) for X considering the observation
O? i.e. E[X|O] =? Note

E[X|O] = E[X|Ai] if Ai occurred

and this motivates the definition

E[X|O](ω) =
4∑
i=1

1Ai(ω)E[X|Ai]

This specific formula works for atomic σ-algebra, but it represents the general
idea (i.e. a weighted average).

In general, we define

E[X|F0](ω) =
∑
i≥1

P [Ai] 6=0

1Ai(ω)E[X|Ai]

where F0 = σ(Z). Note 1Ai is a RV and E[X|Ai] is a constant, in the sum.

Example 5.4. For an atomic σ-algebra F0 = σ(Z) (where Z is countable), the
conditional expectations can be explicitly computed (see above)! We know
which atom happens, meaning ω ∈ Ai for a certain i, and this happens with
> 0 probability if P (Ai) > 0. Then

P [·|Ai] =
P [· ∩Ai]
P [Ai]

is the conditional measure and

E[X|Ai] :=
∫
X dP [·|Ai] =

1
P [Ai]

E[X1Ai ]

so we define
E[X|F0](ω) =

∑
i≥0

P [Ai] 6=0

1Ai(ω)E[X|Ai]

Theorem 5.5. Let X ≥ 0 or X ∈ L1 and let F0 = σ(Z). Then E[X|F0] has
the following properties:

1. E[X|F0] is ∈ F0.

2. ∀Y0 ≥ 0 with Y0 ∈ F0,

E[Y0 ·X] = E[Y0 · E[X|F0]]

In particular,
E[X] = E[E[X|F0]]

using Y0 = 1Ω.
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Proof. (1) is trivial (constant on atoms). For (2), first use Y0 = 1Ai , and so

E [1Ai · E[X|F0]] = E

1Ai(ω)
∑
j

1Aj (ω) · E[X|Aj ]


= E[X|Ai] · E[1Ai ] = E[1AiX]

For Y0 =
∑
i ci1Ai , this follows from linearity and monotone integration for

general X ≥ 0. If X ∈ L1, separate X+ and X−.

Proposition 5.6. Let X1, . . . , Xn be independent with p = P [Xi = 1] = 1 −
P [Xi = 0] and fix F0 = σ(Sn) where Sn =

∑n
i=1Xi. Then

E[X1|Sn](ω) =
1
n
Sn(ω)

Proof. Notice that

E[X1|σ(Sn)](ω) =
n∑
k=0

1{Sn=k}P [X1 = 1|Sn = k]

and

P [X1 = 1|Sn = k] =
p ·
(
n−1
k−1

)
pk−1(1− p)(n−1)−(k−1)(
n
k

)
pk(1− p)n−k

=
k

n

Thus,

E[X1|Sn](ω) =
n∑
k=0

1{Sn=k}
k

n
=
Sn
n

n∑
k=0

1{Sn=k} =
Sn
n

Example 5.7. Random sums. Let X1, X2, . . . be RVs with E[Xi] = m ∈ R for
all i. Let T : Ω→ N be independent from σ(X1, X2, . . . ). Let

ST (ω) := X1(ω) + · · ·+XT (ω)(ω)

be a random sum. Question: does it follow that

E[ST ] = E[X1] · E[T ]

Yes, and this is known as Wald’s Identity. Idea: E[ST ] = E[E[ST |σ(T )]]!
Notice that

E[ST |T ](ω) =
∑
k≥0

1{T=k}(ω)E[ST |T = k] =
∑
k≥0

1{T=k}(ω) · k ·m = m · T (ω)

since
E[ST1{T=k}] = E[Sk1{T=k}] = E[Sk]P [T = k] = kE[X1]

Thus,

E[E[ST |T ](ω)] = mE

∑
k≥0

1{T=k}(ω)T (ω)

 = mE[T ]
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General conditional expectation:

Definition 5.8. Let X ∈ F+ or X ∈ L1 on (Ω,F , P ) with F0 ⊆ F . Any RV
X0 with

• X0 ∈ F0 and

• ∀A0 ∈ F0, E[X1A0 ] = E[X01A0 ]

is called a (version of) the conditional expectation of X given F0.

Theorem 5.9. X0 exists and is unique up to zero-measure sets.

Proof. Uniqueness. Let X0, X
′
0 be RVs with the properties above. Set A0 :=

{X0 > X ′0} ∈ F0. Then

E[1A0X0] = E[1A0X] = E[1A0X
′
0]

so E[(X0 − X ′0)1A0 ] = 0 and thus P [A0] = 0. Similarly, P [X0 < X ′0] = 0, so
P [X0 = X ′0] = 1.

Existence. If X ∈ F+ already, define Q[A0] = E[X1A0 ]. This defines a (σ-
finite) measure on F0 which is absolutely continuous with respect to P �F0=: P0.
By the Radon-Nikodym Theorem, ∃X0 ∈ F+

0 such that

Q[A0] =
∫

1A0X0 dP0 = E[X01A0 ] = E[X1A0 ]

for every A0 ∈ F0. But then Q[A0] = E[1A0X] = E[X01A0 ], so X0 is the
conditional expectation.

For general X ∈ L1, write X = X+ −X− with X+, X− ∈ L1 ∩F+. By the
previous part, (X+)0, (X−)0 exist and are on L1. Set X0 := (X+)0 − (X−)0

and check that the second condition

E[1A0X] = E[1A0X
+]− E[1A0X

−] = E[1A0(X+)0]− E[1A0(X−)0]

= E[1A0((X+)0 − (X−)0)] = E[1A0X0]

is satisfied.
Finally, if X ≥ 0 but /∈ L1, then set Xn := X ∧ n so that Xn ↗ X. Set

E[X|F0] = lim
n→∞

E[Xn|F0]

which exists a.s. since it is ↗ (***). Then, for A0 ∈ F0,

E[1A0X] = lim↗ E[1A0X] = lim↗ E[1A0E[X0|F0]]
= E[1A0 lim↗ E[Xn|F0]︸ ︷︷ ︸

=E[X|F0]

]

and so we have the conditional expectation of X.
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5.1 Properties and computational tools

1. E[·|F0] is monotone; i.e. X ≥ 0 ⇒ E[X|F0] ≥ 0.

2. E[E[X|F0]] = E[X] (use 1A0 = Ω)

3. Let Y0 ∈ F0 and X0 = E[X|F0]. Then

X,Y0 ≥ 0 a.s. ⇒ E[XY0] = E[X0Y0]

and
XY0 ∈ L1 ⇒ X0Y0 ∈ L1 and E[XY0] = E[X0Y0]

To prove the first claim, write Y0 = lim ↗ Y0,n where Y0,n are simple
functions ∈ F0. Then,

E[XY0] = E [X(lim↗ Y0,n)] = lim
n→∞

↗ E[XY0,n]

= lim
n→∞

E[X0Y0,n] = E[X0 limY0,n] = E[X0Y0]

by monotone integration and linearity. To prove the second claim, assume
WOLOG Y0 ≥ 0 and let X = X+ −X− with 0 ≤ X−, X+ ∈ L1. Then,

E[XY0] = E[X+Y0]− E[X−Y0] = E[(X+)0Y0]− E[(X−)0Y0]

= E[Y0((X+)0 − (X−)0)] = E[Y0X0]

using the first claim.

4. Let Y0 ∈ F0 and assume X,Y0 ∈ F+ and X ∈ L1 and XY0 ∈ L1. Then

E[XY0|F0] = Y0E[X|F0] a.s.

To prove this, we have to check that the RHS is a version of the conditional
expectation of XY0|F0. First, RHS∈ F0. Second, we can apply (3) to say

E[1A0 · (Y0E[X|F0])] = E[

∈F0︷ ︸︸ ︷
1A0Y0E[X|F0]] = E[1A0Y0X]

There are two special cases of this property.

(a) If F0 = F (total information) and X ∈ F then E[X|F0] = X ·
E[1|F0] = X.

(b) If F0 is trivial (i.e. 0-1) or F0 is independent of X then X0 = E[X]
a.s.

5. If X,Y ∈ F+ or X,Y,XY0, Y X0 ∈ L1, then

E[XE[Y |F0]] = E[E[X|F0]Y ] = E[E[X|F0]E[Y |F0]]

To prove this, set Y0 = E[Y |F0] ∈ F0 and apply (4):

E[XY0] = E[X0Y0] = E[X0Y ]

where the second equality is by symmetry.
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6. Projectivity: Let F0 ⊆ F1 ⊆ F and X ∈ F+ or X ∈ L1. Then

E[E[X|F1]︸ ︷︷ ︸
:=X1

|F0] = E[X|F0]︸ ︷︷ ︸
:=X0

To prove this, we show that X0 is the conditional expectation of X1|F0.
For A0 ∈ F0, we apply the second property in the definition of conditional
expectation twice to write

E[1A0X1] = E[1A0X] = E[1A0X0]

which implies X0 is a conditional expectation of X1|F0.

Further properties of conditional expectation.

Theorem 5.10. Let Y,X ∈ F+ or L1 on (Ω,F , P ) with F0 ⊆ F . Then

1. Linearity: E[X + Y |F0] = E[X|F0] + E[Y |F0] a.s. and E[cX|F0] =
cE[X|F0].

2. Monotonicity: if X ≥ Y and X or Y ∈ F+ or L1 then E[X|F0] ≥
E[Y |F0].

3. “Monotone continuity” (Beppo-Levi) If L1 3 Y ≤ X1 ≤ X2 ≤ · · · a.s.
then

E
[

lim
n→∞

↗ Xn|F0

]
= lim
n→∞

E[Xn|F0] a.s.

***********************************

5.2 Conditional Expectation and Product Measures

Let (Ω,F , P ) be a probabiltiy space and let Xi : Ω → (Si,Si) for i = 0, 1.
Assume that the joint distribution of (Z0, Z1) (on S0 × S1 with the product
σ-algebra S0 × S1) is of the form P0 ⊗ K(·, ) for some stochastic kernel K,
where P0 is the distribution of Z0.

Question: Given f ∈ (S0 ×S1)+, what is

E [f(Z0, Z1)|Z0] (ω) =?

Example 5.11. Let T0, T1 be independent exp(α) distributed RVs and define
f(X,Y ) = min{X,Y }. Then

E[min{T0, T1}|T0] =? = ϕ(T0)

for some measurable function ϕ.

Theorem 5.12.

E [f(Z0, Z1)|Z0] (ω) =
∫
S1

f(Z0(ω), s)K(Z0(ω), ds) a.s.

66



Proof. Omitted for now. (***)

Corollary 5.13. If Z0, Z1 are independent (⇐⇒ K(Z0, ·) = P1(·) where P1 is
the distribution of Z1 on S1), then

E [f(Z0, Z1)|Z0] (ω) =
∫
S1

f(Z0(ω), s)P1(ds) = E [f(Z0(ω), Z1)]

Sometimes the following extension is useful.

Corollary 5.14. Let Z0 ∈ F0 ⊆ F and assume Z1 is independent from F0 (i.e.
σ(Z1),F0 are independent). Note: this is stronger than assuming Z0, Z1 are
independent. Then

E [f(Z0, Z1)|F0] (ω) = E [f(Z0(ω), Z1)]

is still valid.

Proof. Apply Corollary 5.13 to Z̃0 := id : (Ω, F )→ (Ω,F0). Then ∀g : (Ω,F)×
S1 → R+, Corollary 5.13 tells us

E
[
g(Z̃0, Z1)|F0

]
(ω) = E [g(ω,Z1)]

noting that F0 = σ(Z̃0). Set g to be the particular function given by g(ω, s) =
f(Z0(ω), s). Then

E[g(Z̃0, Z1)|F0](ω) = E[f(Z0(Z̃0), Z1)|F0]

and note that the LHS is

E[g(ω,Z1)] = E[f(Z0(ω), Z1)]

and the RHS is
E[f(Z0, Z1)|F0](ω)

Example 5.15. Let T0, T1 be independent exp(α) distributed with α > 0. Then

E[min{T0, T1}|T0](ω) = E[min{T0(ω), T1}]

=
∫

min{T0(ω), T1)P1(ds)

=
∫ ∞

0

(T0(ω) ∧ s) · α exp(−αs) ds

=
∫ T0(ω)

0

sα exp(−αs) ds+ T0(ω)
∫ ∞
T0(ω)

α exp(−αs) ds

= −T0(ω) exp(−αT0(ω)) + 0− 1
α

exp(−αT0)

+
1
α

+ (T0 exp(−αT0(ω)))

=
1
α

(1− exp(−αT0))
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5.2.1 Conditional Densities

Let Xi for i = 0, 1 be RVs on (Si,Si) with joint distribution on S0 × S1 given
by

(X0, X1) ∼P ϕ(x0, x1)µ0(dx0)µ1(dx1)

where µi are σ-finite measures; i.e. (X0, X1) has a joint density ϕ ≥ 0 with
respect to the product measure µ0⊗µ1 (which is also σ-finite). In this case, we
can write the joint distribution µ of (X0, X1) as P0 ⊗K, where

P0(dx) = ϕ0(x0)µ0(dx0)

is a measure on S0 and where

ϕ0(x0) :=
∫
S1

ϕ(x0, x1)µ1(dx1)

is the density of x0 with respect to µ0, and

K(x0, dx1) =

{
ϕx1|x0(x0, x1) if ϕ0(x0) > 0
any (fixed) prob. dist. if ϕ0(x0) = 0

where we recall that

ϕx1|x0(x0, x1) :=
ϕ(x0, x1)∫

S1
ϕ(x0, x1)µ1(dx1)

=
ϕ(x, y)
ϕ0(x)

Check K on rectangles! (***)
Now, we return to the question of what E[f(X0, X1)|X0](ω) should be. We

can write

E[f(X0, X1)|X0](ω) =
∫
S1

f(X0(ω), x1) ·K(X0(ω), dx1)

=
∫
S1

f(X0(ω), x1)ϕx1|x0(X0(ω), x1)µ1(dx1)

Remark 5.16. If f(X0, X1) = f(X1) then notice that

E[f(X1)|X0](ω) =
∫
S1

f(x1)ϕX1|X0(X0(ω), x1)µ1(dx1)

and compare this to

E[f(X1)] =
∫
S1

f(x1) · ϕ(x1)µ1(dx1)

The difference is in the ϕ1 versus ϕX1|X0 term, where the first one is the marginal
distribution of X1 and the second one is the conditional distribution of X1 given
X0(ω).
Remark 5.17. If X0, X1 are independent, then ϕX1|X0(X0, X1) = ϕ1(X1) and
then

E[f(X1)|X0](ω) =
∫
S1

f(x1)ϕ1(x1)µ1(dx1) = E[f(X1)]
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6 Martingales

Let (Ω,F , P ) be a probability space and let A0 ⊆ A1 ⊆ · · · ⊆ F be a sequence
of σ-algebras; we call such a sequence a filtration and refer to (Ω,F , (Ak), P ) as
a filtered probability space. Let (Xn)n≥0 be a stochastic process.

Definition 6.1. We say X is adapted on (Ak) if Xk ∈ Ak for all k ≥ 0. We
say (Yk)k≥1 is previsible (with respect to (Ak)) if Yk ∈ Ak−1 for all k ≥ 1.
We say (Zk) is innovative if Zk ∈ L1 and satisfies the martingale property (see
below).

Definition 6.2. We say X is a martingale with respect to A if

1. X is adapted and Xk ∈ L1 for all k, and

2. X satisfies the martingale property

E[∆n+1X|An] := E[(Xn+1 −Xn)|An] = 0 a.s. (6)

which is equivalent to

E[Xn+1|An] = Xn a.s.

Remark 6.3. For all n, k ≥ 0,

E[Xn+k −Xn|An] = E

[
n+k∑
`=n+1

∆`X|An

]

=
n+k∑
`=n+1

E[∆`X|An] = 0 a.s.

= E[E[∆`X|A`−1]︸ ︷︷ ︸
=0 a.s.

|An]

where the last line follows by projectivity. In particular, for n = 0 fixed, then
for every k ≥ 0,

E[Xk|A0] = X0 ⇒ E[Xk] = E[X0]

Example 6.4. Let Y1, Y2, . . . be independent L1 RVs. Set An := σ(Y1, . . . , Yn)
for n ≥ 1 and A0 = {∅,Ω}. Then

Xn :=
n∑
i=1

(Yi − E[Yi]) , X0 = 0

is a martingale with respect to A. In general, partial sums of independent,
centered L1 RVs form a martingale (with respect to their own filtration). Note,
as well, that An = σ(Y1, . . . , Yn) = σ(X1, . . . , Xn).
Example 6.5 (Successive prognosis). Let X ∈ L1(F) and A be given. Then

Xn := E[X|An]

is a martingale. To see why, notice that

E[Xn+1|An] = E[E[X|An+1]|An] = E[X|An] = Xn
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6.1 Gambling Systems and Stopping Times

Let (Xn) be a martingale with respect to A and let (Vn)n≥1 be previsible such
that Vn(∆nX) = Vn(Xn −Xn−1) ∈ L1. Set

(V·X)n = X0 +
n∑
k=1

Vk ·∆kX

This is called a “gambling system” (or a martingale transform or a discrete
stochastic integral).

Example 6.6. 1. Let Xn be SSRW (i.e. X0 = x0,∆nX are i.i.d. ±1, cen-
tered), let Vn = 1 and (An) = σ(X1, . . . , Xn). Since Vn is previsible (***
why?) then (V·X) is a gambling system.

Interpretation Since ∆nX = ±1 with probability 1
2 , you bet on 1 each

time with $1. You start with $x0 and continue betting. Then (V·X)n is
your balance after the nth bet.

Theorem 6.7. If (V·X) is a gambling system then V·X is a martingale
(with respect to An = σ(X1, . . . , Xn)).

Proof. To show (V·X) is adapted, observe that

V ·Xn = Vn︸︷︷︸
∈An−1

·(Xn −Xn−1︸ ︷︷ ︸
∈An

) ∈ An

and is ∈ L1 (by assumption). To show the martingale property, note that

E[(V·X)n − (V·X)n−1|An−1] = E[

∈An−1︷︸︸︷
Vn ·∆nX|An−1]

= Vn · E[∆nX|An−1]︸ ︷︷ ︸
=0 a.s.

= 0 a.s.

In particular,

E[(V·X)n] = E[(V·X)0] = E[X0] = x0

so there is nothing to gain (on average).

2. Let X0 = x0 and set ∆kX = ±1 with probability 1
2 (independent) and let

An = σ(X1, . . . , Xn). Let

Vk =

{
1 if (V·X)k−1 ≤ x0

0 if (V·X)k−1 > x0

Note
Vk ∈ σ((V·X)k−1) ⊆ σ(X1, . . . , Xk−1) = Ak−1
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since

(V·X)k−1 = x0 +
k−1∑
j=1

Vj︸︷︷︸
∈Aj−1

·(Xj −Xj−1︸ ︷︷ ︸
∈Aj⊆Ak−1

)

and therefore Vk is previsible, so (V ·X) is a gambling system. Note: since
RV oscillates between ±∞ (*** later) we a.s. win $1 but, unfortunately,
the expected time to win = +∞! (Also, expected loss before winning is
+∞. Yikes!)

3. (A version with shorter waiting time) Take the same SRW as X and set

Vk =

{
2k−1 if ∆1X = ∆2X = · · · = ∆k−1X = −1
0 otherwise

Clearly, Vk is σ(X1, . . . , Xk−1) measurable and thus predictable. In gen-
eral, (V·X)n = x0 +1 after we’ve won. If T (ω) is the time we win (the first
time), then T ∼ geom(1/2), and in practice E[T ] <∞. However, (V·X)n
is not uniformly integrable; there may be big losses before making even
$1!

Definition 6.8 (Stopping time). A RV T : Ω→ N̄ such that {T = n} ∈ An for
every n = 0, 1, . . . is called a stopping time.

Remark 6.9. The property in the definition above is equivalent to saying {T ≤
n} ∈ An for all n. Notice that

{T ≤ n} = {T = 0}︸ ︷︷ ︸
∈A0⊆An

∪{T = 1}︸ ︷︷ ︸
∈A1⊆An

∪ · · · ∪ {T = n}︸ ︷︷ ︸
∈An

∈ An

and
{T = n} = {T ≤ n}︸ ︷︷ ︸

∈An

\ {T > n− 1}︸ ︷︷ ︸
∈An−1

∈ An

So an interpretation of a stopping time is that at time n, we know whether
T (ω) ≤ n or T > n. (What we can’t tell, in general, is whether T > n+ 1, for
instance, and other similar things.)

Example 6.10. 1. Let A ∈ BR, and let (Xn) be adapted on An. The first
entrance (or hitting) time of A is given by

TA(ω) = inf{n ≥ 0|Xn(ω) ∈ A}(≤ +∞)

and it is a stopping time. To see why, observe that

{TA ≤ n} =
n⋃
k=0

{Xk ∈ A}︸ ︷︷ ︸
∈Ak⊆An

∈ An
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2. Let (Xn) be a SRW and set An := σ(X0, . . . , Xn). A run of length r is a
segment of the walk consisting of successive upwards steps. Let r ≥ 1 be
fixed. Then

T (ω) = Tr = inf{n|(n− r, n− r + 1, . . . , n) is a run}

represents the first time that a run of length r has been completed, and it
is a stopping time. To see why, let k ≥ r and set

Rk = {∆kX = ∆k−1X = · · · = ∆k−r+1X = +1}

Note that Rk ∈ Ak. Then

{T ≤ n} =
⋃

r≤k≤n

Rk ∈ An

Example 6.11. Here are two examples that are not stopping times:

1. LA = sup{n ≥ 0|Xn ∈ A}, i.e. the “last visit” in A

2. the beginning of the first run of length r

Definition 6.12. If X is a process and T is a random time, then

1. XT
· is a “stopped process”. For all n, let XT

n (ω) := Xn∧T (ω)(ω).

2. The “process at (time) T” is defined by XT (ω) := XT (ω)(ω) (a RV).

Note: after T (i.e. n ≥ T (ω)), XT
n (ω) = XT (ω).

Theorem 6.13. Let X be a martingale and T a stopping time with respect to
(A). Then (XT

· ) is a martingale with respect to (A).

Proof. Let Vn := 1{T≥n}, so V· is previsible. Then

Vn︸︷︷︸
bdd

·(Xn −Xn−1︸ ︷︷ ︸
∈L1

) ∈ L1 ⇒ (V·X) is a martingale

But (V·X) = XT . This proves the claim. To see why (V·X) = XT , observe that

(V·X)n = X0 +
n∑
k=1

1{T≥k} ·∆kX = X0 +
T∧n∑
k=1

∆kX = XT
n

Theorem 6.14 (Optional Stopping). Let X· be a A-martingale and T be a
stopping time. Then

1. XT
· is a martingale and E[XT∧n] = E[X0]
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2. If T is bounded (i.e. T ≤ N a.s.) then

E[XT ] = E[XT∧n] = E[XT
N ] = E[X0]

3. If T <∞ a.s. and (XT
n )n≥0 is uniformly integrable, then E[XT ] = E[X0].

Proof. We only prove (3). Apply uniform integrability and a.s. convergence to
write

E[XT ] = E
[

lim
n→∞

XT∧n

]
= lim
n→∞

E[XT∧n] = E[X0]

Example 6.15. Application: classical ruin problem (gambling fairly to
make (b − x0)$ with credit level a). Let Xn = x +

∑n
i=1 Yi where the (Yi)

are i.i.d. 1 with probability p and −1 with probability 1− p. Define

T (ω) = min{n ≥ 0|Xn(ω) /∈ (a, b)}

which is a stopping time. By Borel-Cantelli, T <∞ a.s. (***). Define

r(x) := P [XT = a]

to be the “ruin probability”.

1. p = 1
2 . Then X· is a martingale and (Xn∧T ) is bounded and therefore

uniformly integrable. Thus,

x = E[X0] = E[XT ] = b ·

=1−P [XT=a]︷ ︸︸ ︷
P [XT = b] +aP [XT = a]

and so
x = b(1− r(x)) + ar(x) ⇒ r(x) =

b− x
b− a

2. p 6= 1
2 . Let h(x) :=

(
1−p
p

)x
. Then h(Xn) is a martingale (*** HW), and

so

E[h(X0)] = h(x) = E[h(XT )] = [h(X)]T = h(b)(1− r(x)) + h(a)r(x)

Thus,

r(x) =
h(b)− h(x)
h(b)− h(a)

=
1−

(
p

1−p

)b−x
1−

(
p

1−p

)b−a
3. p < 1

2 . Then r(x) ≥ 1 −
(

p
1−p

)b−x
and this bound doesn’t depend on a!

For instance, if p = 18
37 then b− x = 128 is sufficient to have r(x) ≥ 0.999!

That is, before winning 128, you are ruined no matter how much reserves
you have (assuming finite reserves, of course).
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Example 6.16. Application: How long do you have to wait for the occurrence
of a fixed binary text [a1, . . . , aN ] in a random binary sequence (with p = 1/2)?

Let (Yk)k≥1 be i.i.d. ±1 with p = 1
2 and set Ak = σ(Y1, . . . , Yk). Let the

stopping time be

T (ω) = inf{n ≥ 1|Yn−N+1(ω) = a1, . . . , Yn(ω) = aN

By Borel-Cantelli, T <∞ a.s. What is E[T ]? We estimate

T

N
≤ T ′ := inf{k : [a1, . . . , aN ] occurs in the k-th block}

so T ′ is a geometric RV with parameter 2−N . Thus, E[T ′] = 1
2−N

= 2N and so
E[T ] ≤ N2N <∞.

At each (fixed) time k with 0 ≤ k ≤ T − 1, start a game (i.e. gambling
system) with the martingale Xn =

∑n
k=1 Yk as follows:

1. We bet 1 on seeing a1 next. If we lose, we lost 1 and the entire game is
over. If we win, we get back 2 and we continue.

2. We bet 2 on seeing a2 next. If we lose, we lost 2 and the game is finished.
If we win, we get 4 and continue.

3. We bet 4 on seeing a3 next, . . ..

N We bet 2N−1 on seeing aN next. If we lose, finish the game with overall
loss 1. If we win we get back 2N and finish, with a net win of 2N − 1.

Note: up to time k, there are k games. Each game consists of a random number
(at least one, at most N) of bets, and each game is self-financing after paying
the initial $1. The balance of each finished game is either 0 − 1 if we lost or
2N − 1 if we won. For an unfinished game with k winning bets, the balance is
2k − 1. What is our balance at time T? (i.e. the first time we win an entire
game) We have

(V·X)T = price of all T games + amount won
= −T + amount won in the last N games + 0

= −T +
N∑
k=1

2N−k+1 ·Wk(ω)

where

Wk(ω) =

{
1 if T −N + k-th game is won at time T (ω)
0 otherwise

Note: Wk(ω) is deterministic! This is because we know the end of the sequence
YT−N+1, · · · , YT ! In particular, k = 1 ⇒ Wk = 1. In general Wk = 1 ⇐⇒
********* insert picture *********
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Note again that if Wk = 1 then the final payoff is 2N−k+1 and so

(V·X)T = (T ) +
N∑
k=1

2N−k+1 ·Wk

since Wk depends only on [α1, . . . , αN ] (i.e. it is deterministic). We will that
(V·X)T∧n is uniformly integrable, specifically

−T︸︷︷︸
∈L1

≤ (V·X)T∧n ≤ 2N+1︸ ︷︷ ︸
∈L1

so then
E[(V·X)T ] = lim

n→∞
E[(V·X)T∧n︸ ︷︷ ︸

=0

] = 0

and finally

0 = −E[T ] +
N∑
k=1

2N−k+1Wk ⇒ E[T ] =
N∑
k=1

2N−k+1Wk

The RHS is larger the more “repetitive” the text [α1, . . . , αN ] is. For instance,

[a1, . . . , aN ] E[T ]
000000 126
001100 70
011111 64

Finally, we show the estimate works:

(V·X)T∧n ≥ −(T ∧ n) ≥ −T ∈ L1

and

(V·X)T∧n ≤
N∑
k=1

2k = 2N+1

since only in the last N games can we win.

6.2 Martingale Convergence

Let (Ω,F , P ) be a probability space, A· a filtration, and X· a martingale. For
a < b and N ∈ N fixed, we define

UNa,b(ω) = # of upcrossings of [a, b] during time [0, N ]

More precisely, set S0 = T0 = 0 and

Sk(ω) = inf{n ≥ Tk−1(ω) : Xn(ω) ≤ a} = beginning of k-th upcrossing
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and

Tk(ω) = inf{n ≥ Sk(ω) : Xn(ω) ≥ b} = end of k-th upcrossing

and then define

UNa,b(ω) = max{k ≥ 0 : Tk(ω) ≤ N} = # of upcrossings during [0, N ]

Lemma 6.17 (Upcrossing inequality).

E[UNa,b] ≤
E[(XN − a)−]

b− a

and this implies, in particular,

E[U∞a,b] ≤
1

b− a
sup
N
E[(XN − a)−]

Proof. Since Sk, Tk are stopping times (they are only defined in terms of in-
formation before them), then the Stopping Theorem 6.14 implies E[ZN ] = 0,
where

ZN =
N∑
k=1

(XTk∧N −XSk∧N )

On the other hand,

ZN =
UN∑
k=1

(XTk −XSk) + ( XN︸︷︷︸
=N∧TUN+1

−XN∧SUN+1
)

≥ UNa,b · (b− a) + (XN −XN∧SUN+1
)︸ ︷︷ ︸

:=?

and since

? =


0 if SUN+1 ≥ N
≥ XN − a︸ ︷︷ ︸

≤0

if SUN+1 < N ≥ −(XN − a)−

we can say
ZN ≥ UNa,b · (b− a) +−(XN − a)−

so
E[ZN ] = 0 ≥ E[UNa,b] · (b− a)− E[(XN − a)−]

Theorem 6.18 (Martingale convergence). Let X· be an L1-bounded martingale.
Then

X∞(ω) = lim
n→∞

Xn(ω) exists a.s., and X∞ ∈ L1

Remark 6.19. If X· is a martingale (X ∈M), then TFAE
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1. X is L1-bounded (supnE[|Xn|] <∞)

2. supnE[X+
n ] <∞

3. supnE[X−n ] <∞

To see why, note that

E[|Xn|] = E[X−n ] + E[X+
n ] = (E[X+

n ]− E[Xn]︸ ︷︷ ︸
=E[X0]

) + E[X+
n ] = 2E[X+

n ]− E[X0]

and take sups . . .

Proof. Observe that{
lim inf
n→∞

Xn < lim sup
n→∞

Xn

}
⊆
⋃
a,b∈Q
a<b

{Ua,b =∞}

where Ua,b =: limN→∞ UNa,b. This implies

P [Xn(·) doesn’t converge] ≤
∑
a,b∈Q
a<b

P [Ua,b =∞]

and we know P [Ua,b =∞] = 0 provided E[Ua,b] <∞. But this is the case since

E[Ua,b] ≤
1

b− a
sup
n
E[

≤|Xn−a|︷ ︸︸ ︷
(Xn − a)−] ≤ 1

b− a
sup
n
E[|Xn|+ |a|] <∞

which is finite since X· is L1-bounded. Therefore, X∞ exists a.s. Next,

E[|X∞|] ≤ lim inf
n→∞

E[|Xn|] ≤ sup
n
E[|Xn|] <∞

by Fatou’s Lemma 1.45. Note: this does not imply that Xn → X∞ in L1!

Example 6.20. Random walk. ********************

Example 6.21. Dirichlet problem / harmonic functions. **********

6.3 Uniformly Integrable Martingales

Theorem 6.22. Let X· be a stochastic process on (Ω,F ,An, P ) and set A∞ :=
σ(
⋃
n≥0An). Then

1. (Xn is an An-martingale and Xn is uniformly integrable) ⇐⇒ ∃X ∈
L1(F) such that Xn = E[X|An] a.s.

2. In the case that the above (equivalent) conditions hold, then Xn → X∞
a.s. (and in L1); moreover, X∞ = E[X|A∞] a.s.
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Proof. We prove (1 ⇒) first. Suppose (Xn)n≥0 is uniformly integrable ⇒ (Xn)
is L1-bounded, so by the Martingale Convergence Theorem 6.18 limXn =: X∞
exists a.s. and Xn → X∞ in L1. WWTS Xn = E[X∞|An] a.s.

Let An ∈ An (for n fixed). Then

E[1An ·X∞] = E

[
1An · lim

k→∞
Xk

]
= E

[
lim
k→∞

(1An ·Xk)
]

= lim
k→∞

E[1AnXk] = lim
k→∞

E[E[1AnXk|An]︸ ︷︷ ︸
=1AnXn

]

= E[1AnXn]

and so Xn = E[X∞|An].
Next, we prove (1 ⇐). Let X ∈ L1(F) and set Xn := E[X|An]. Then (Xn)

is a martingale; WWTS (Xn) is unif. int. Observe

|Xn| ≤ |E[X|An]| ≤ E[|X||An] a.s.

which implies

E[|Xn|; |Xn| ≥ c] ≤ E[E[|X||An]; |Xn| ≥ c︸ ︷︷ ︸
∈An

] = E[|X|; |Xn| ≥ c]

= E[|X|; |Xn| ≥ c, |X| ≥ a] + E[|X|; |Xn| ≥ c, |X| < a]
≤ E[|X|; |X| ≥ a] + aP [|Xn| ≥ c]︸ ︷︷ ︸

≤E[|Xn|]· 1c

≤ E[|X|; |X| ≥ a] +
a

c
E[|X|] < ε

2
+
ε

2

for a large enough and then for c large enough (given fixed a). This all implies
(|Xn|)n≥0 is unif. int.

Next, we prove (2). WWTS X∞ = E[X|A∞] a.s. This is true ⇐⇒
E[1AX] = E[1AX∞] for all A ∈ A∞. To show this, let Ak ∈ Ak. Then

E[X1Ak ] = E[E[X|An]1Ak ] = E[Xn1Ak ]

which implies
E[X1Ak ] = lim

n→∞
E[Xn1Ak ] = E[X∞1Ak ]

since (Xn1Ak)n≥0 is unif. int. Next, set

D = {A ∈ A∞ : E[X1A] = E[X∞1A]}

Notice D is a Dynkin system,
⋃
kAk ⊆ D and ∩-closed, so D = σ(

⋃
kAk) = A∞.

Thus, E[X|A∞] = X∞ a.s.

Corollary 6.23 (0-1 Law of Levy). Let A ∈ A∞. Then

lim
n→∞

P [A|An] = 1A a.s.
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Proof. Set X = 1A and Xn = E[X|An]. THen (Xn) is a uniformly integrable
martingale, so Xn → X∞ a.s. with X∞ ∈ A∞, and E[X|A∞] = X∞. Thus,
1A = X∞ a.s., since X ∈ A∞.

Remark 6.24. The 0-1 Law of Kolmogorov 1.20 follows! Let B1,B2, . . . be in-
dependent σ-fields and

A ∈
⋂
n≥0

σ

⋃
k≥n

Bk

 =: τ (tail field)

Then P [A] = 0 or P [A] = 1. To see why, set

An := σ

(
n⋃
k=1

Bk

)

Then A ∈ τ ⊆ A∞. Thus,

lim
n→∞

P [A|An]︸ ︷︷ ︸
=P [A]

= 1A a.s.

But since A ∈ σ
(⋃

k≥n+1 Bk
)

(which is independent of B1, . . . ,Bn) we have
P [A] = 1A(ω) with P [A] constant! This is only possible if P [A] = 0 or 1.

Theorem 6.25. 1. If (Xn) is Lp-bounded for p > 1 then (Xn) is unif. int
and X∞ exists a.s. and Xn → X in Lp.

2. Also, if X ∈ Lp(F) then Xn := E[X|An] is a Lp-bounded martingale.

Proof. (1) is in the text. (2) is proven by Jensen.

6.4 Further Applications of Martingale Convergence

6.4.1 Martingales with L1-dominated increments

Theorem 6.26. Let X be a martingale such that

sup
n
|∆nX| ≤ Y ∈ L1

Set

C := {ω : Xn(ω) converges to a real #}

O :=
{
ω : lim inf

n→∞
Xn(ω) = −∞, lim sup

n→∞
Xn(ω) = +∞

}
= {ω : inf Xn(ω) = −∞, supXn(ω) = +∞} (for discrete time)

Then P [C∪O] = 1.
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Proof. Let a ∈ Z and set Ta = inf{n ≥ 0 : Xn ≤ a}. Then

XTa∧n =


X0 on {X0 ≤ a}
Xn > a on {X0 > a, n < Ta}
XTn ≥ a− supk |∆kX| on {X0 > a, n ≥ Ta}

≥ X0 ∧ (a− sup
n
|∆nX|︸ ︷︷ ︸
∈L1

) ∈ L1

and so XTa∧n is an L1-bounded martingale; therefore, XTa
n → finite limit a.s.

Claim: {
inf
n
Xn > −∞

}
⊆ C a.s.

WWTS {
inf
n
Xn > a

}
⊆ C a.s. ∀a

which implies

C ⊇
⋃
k

{
inf
n
Xn > −k

}
=
{

inf
n
Xn > −∞

}
If infnX)n(ω) > a then Ta(ω) = +∞, so

XTa∧n(ω) = Xn(ω) −−−−→
n→∞

X∞(ω) ∈ R for a.e. ω

so ω ∈ C (for a.e. ω). Similarly,{
sup
n
Xn <∞

}
⊆ C a.s.

which implies

Cc ⊆
{

inf
n
Xn = −∞

}
∩
{

sup
n
Xn = +∞

}
6.4.2 Generalized Borel-Cantelli II

This is a more general statement than Lemma 1.18.

Lemma 6.27. Suppose A is a filtration with An ∈ An. Define

A∞ :=
⋂
n≥1

⋃
k≥n

Ak =

ω :
∑
k≥1

1Ak(ω) = +∞


to be the event that ∞-many of the Aks occur. Set

A′∞ :=
{
ω :
∑
k≥1

P [Ak|Ak−1]︸ ︷︷ ︸
=E[1Ak |Ak−1]

(ω) =∞
}

Then A∞ = A′∞ a.s.
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Note: no independence is required!

Remark 6.28. If Ak independent of Ak−1 for all k, then P [Ak|Ak−1] = 0 or 1
(constant), so then

A∞ = A′∞ = Ω or ∅ a.s.

By the original Borel-Cantelli Lemmas, P [A∞] = 1 if
∑
P [Ak] = ∞ and

P [A∞] = 0 if
∑
P [Ak] <∞. (Typically, Ak = σ(1A1 , . . . ,1Ak)).

Proof. Let X0 = 0 and A0 = (∅,Ω). Define

Xn :=
n∑
k=1

(1Ak − E[1Ak |Ak−1])

This is a martingale with respect to A·, since

E[∆nX|An−1] = E[1An − E[1An |An−1]︸ ︷︷ ︸
∈An−1

|An−1] ≡ 0

Since X has bounded increments (−1 ≤ ∆nX ≤ 1) then P [C ∪O] = 1. WWTS
that A∞ and A′∞ agree a.s. on C and on O.

• On C, we have ∑
k

1Ak =∞ ⇐⇒
∑
k

P [Ak|Ak−1] =∞

since otherwise Xn 6→ · ∈ R. Thus, C ∩A′∞ = C ∩A∞ a.s.

• On O, we have
∑
k 1Ak(ω) = ∞ (since otherwise supXk 6= ∞) and simi-

larly
∑
k P [Ak|Ak−1] =∞ (otherwise inf Xk 6= −∞). Thus, O ⊆ A∞ and

O ⊆ A′∞ so O ∩A∞ = O = O ∩A′∞.

Since C∪O = Ω a.s., then A∞ = A′∞ a.s.

Example 6.29. James’ example revisited. Set X0 = X1 = 1 and Xk = 0 or 1
and Sk =

∑k
i=0Xi, with

P [Xk+1 = 1|σ(X0, . . . , Xk)](ω) =
1

Sk(ω)
∀k ≥ 0

Recall: this is an example of a sequence such that Xk → 0 in probability but
not a.s. (Xk = 1 for ∞-many k a.s.) We showed this by explicit calculations
(by using a discrete process with geometric waiting times . . .).

Now, we let

Ak = {Xk = 1}; and A∞ = {Xk = 1 : for ∞-many k}

and

A′∞ =

ω :
∑
k≥0

P [Xk = 1|Ak−1](ω) =∞

 = A∞
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Observe that
P [Xk = 1|Ak−1](ω) =

1
Sk−1(ω)

and so
∞∑
k=0

P [Xk = 1|Ak−1](ω) = 1 +
∞∑
k=1

1
Sk−1(ω)︸ ︷︷ ︸
≥1/k

=∞

Thus, A′∞ = Ω = A∞ a.s. Thus, Xk = 1 for ∞-many k a.s.

6.4.3 Branching processes

Model: Let Yn,k ∈ N (k, n = 1, 2, . . . ) be independent RVs on (Ω,F , P ), all i.i.d.
with distribution µ (with µ 6= δk for k = 0, 1, 2, . . . ) Assume ∞ > m =

∑
k kµk

to be the finite mean. Set X0 = 1 and

Xn = Yn,1 + Yn,2 + · · ·+ Yn,Xn−1

We think of Xn as the number of individuals in the nth generation, where Yn,k
is the number of children that the kth individual in the previous generation
produced, and that all individuals die when the next generation is produced.
Set

An = σ (Y`,k : 1 ≤ ` ≤ n, k = 1, 2, . . . )

and note that this is bigger than just knowing the n children.

Lemma 6.30. Mn := Xn
mn is a martingale with Mn ≥ 0, so Mn →M∞ a finite

limit P -a.s.

Proof. Assuming Mn ∈ L1, then

E

[
Xn+1

mn+1
|An

]
(ω) =

1
mn+1

E

[
Xn∑
k=1

Yn+1,k|Ak

]
(ω)

=
1

mn+1
E

Xn(ω)∑
k=1

Yn+1,k

 a.s.

=
1

mn+1
·m ·Xn(ω) =

Xn(ω)
mn

= Mn(ω)

so M· is indeed a martingale.
Why is Mn ∈ L1? This happens ⇐⇒ Xn ∈ L1, and for n ≥ 1

E[Xn] = E

Xn−1∑
k=1

Yn,k

 = m · E[Xn−1]

by Wald’s Identity since the Y s are independent from Xn−1. Thus, E[Xn] =
mn.
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Definition 6.31. Let

T (ω) = min {n ≥ 0 : Xn(ω) = 0}

be the “time of extinction”.

Using this definition, we have

E[S2
T ] = E[E[S2

T |σ(T )]]
= E [E []]

6.5 Sub and supermartingales

Let (Xn) be an An-adapted L1 process. Set ∆kX = Xk −Xk−1 so then Xn =
X0 +

∑n
k=1 ∆kX.

Lemma 6.32. (Mn) given by

Mn := X0 +
n∑
k=1

(∆kX − E[∆kX|Ak−1]︸ ︷︷ ︸
∆kM

)

is a martingale.

Proof. Notice M0 = X0 ∈ L61 and E[∆kM |Ak−1] ≡ 0 a.s.

Theorem 6.33 (Doob decomposition). Let Xn be adapted and L1. Then ∃!
decomposition Xn = Mn + An where M· is a martingale and A· is previsible
with A0 ≡ 0.

Proof. First, existence. Using M from the previous lemma:

Mn = X0 +
n∑
k=1

∆kX︸ ︷︷ ︸
=Xn

−
n∑
k=1

E[∆kX|Ak−1]︸ ︷︷ ︸
=:An

and one can check that An is indeed previsible. Note: ∆nA = E[∆nX|An−1].
Second, uniqueness. Suppose Xn = M̄n + Ān. Then

E[∆kX|Ak−1] = E[∆kM̄ |Ak−1]︸ ︷︷ ︸
=0

+E[∆kĀ|Ak−1]︸ ︷︷ ︸
=∆kĀ

which implies ∆kĀ = E[∆kX|Ak−1]. Thus, we have no choice for Ā! Then
M̄ = X − Ā is also uniquely determined.

Definition 6.34. Let (Xn) be a stochastic process. It is called a sub (resp.
super) martingale if Xk ∈ L1 and adapted, and

Xn ≤ E[Xn+1|An] a.s. ⇐⇒ 0 ≤ E[∆n+1X|An] a.s.

(resp. ≥).
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Note: the inequality condition is equivalent to

0 ≤ A1 ≤ A2 ≤ · · · ≤ An in Doob decomposition

for submartingale (≥ for super).

Example 6.35. • (Xn) is both a sub and supermartingale ⇐⇒ it’s a mar-
tingale.

• (Xn) is a submartingale ⇐⇒ (−Xn) is a supermartingale.

• If Xn is a martingale and u is convex (resp. concave) then u(Xn) is a sub
(resp. super) martingale. To see why, observe that

E[u(Xn+1)|An] ≥ u(E[Xn+1|An]) = u(Xn) a.s

by Jenesen.

• Let (Xn) be an adapted process. If ∃λ ∈ R with exp(λX0) ∈ L1 and
E[exp(λ∆kX)|Ak−1] ≤ 1 for every k, then exp(λXn) is a supermartingale.
Additionally, if Xn is a martingale then exp(λXn) is a martingale. To
prove the first claim, observe that

E[exp(λXn+1|An] = exp(λXn)E[exp(λ∆n+1X)︸ ︷︷ ︸
≤1

|An] ≤ exp(λXn)

To prove the second claim, just notice that exp(λXn) would also be a
submartingale since exp(λt) is convex.

Theorem 6.36 (Supermartingale convergence). Let (Xn) be a supermartingale
with supE[X−n ] <∞. Then limXn =: X∞ exists a.s. and X∞ ∈ L1.

Proof. Let Xn = Mn − An (where 0 = A0 ≤ A1 ≤ A2 ≤ · · · ). Then Mn =
Xn + An implies Mn ≥ Xn so M−n ≤ X−n and thus supnE[M−n ] < ∞. This
implies Mn →M∞ ∈ L1 a.s.

Next, An = Mn −Xn ≤Mn +X−n , so

E[An] ≤ E[M0] + E[X−n ] ⇒ E[lim↗ An︸ ︷︷ ︸
=A∞

] ≤ E[X0] + lim inf E[X−n ]︸ ︷︷ ︸
<∞

∈ L1

by Fatou. Thus, X∞ := M∞ −A∞ ∈ L1.

More on stopping times: If S, T are stopping times, then S∧T, S∨T, T ∧
n, S + T are all stopping times (with respect to the same filtration).

Definition 6.37. Let T be a stopping time with respect to F·. Then

FT := {A ∈ F : A ∩ {T − k} ∈ Fk ∀k ≥ 0}

is the collection of “up to time T observable events”.
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Note: A ∈ FT ⇐⇒ ∀k, A ∩ {T ≤ k} ∈ Fk. Interpretation: A ∩ {T ≤ k} ∈
Fk ∀k if ∀k that part of the event A where the stopping time occurred before
time k is ∈ Fk (i.e.is observable at time k).

Lemma 6.38. FS∧T = FS ∩ FT . X· adapted ⇒ XT is FT -measurable.

Proof. (***) homework.

Theorem 6.39 (Stopping time for unif. int. martingales). Let S ≤ T be
stopping times and X· a martingale.

1. If X· is unif. int. then XT
· is unif. int. and E[X0] = E[XT ].

2. If X is unif. int. with E[X|Fn] = Xn a.s. ∀n, then E[X|FT ] = XT a.s.

3. If XT
· is unif. int. and S ≤ T then XS

· is unif. int.

Proof. 1. Assume (Xn) is unif. int. ⇒ ∃X ∈ F , X ∈ L1 such that Xn =
E[X|Fn] a.s. WWTS (XT )n = XT∧n = E[X|FT∧n] a.s. which implies
XT
· is also a unif. int. (by successive prognosis) martingale (with respect

to another filtration (FT∧n)n≥0) and that, in particular, it is unif. int. To
show this, it suffices to prove (2) and then apply it to the stopping time
T ∧ n (instead of T ).

2. Let A ∈ FT . WWTS E[X1A] = E[XT1A]. To see why, notice that

E[X1A] =
∞∑
k=0

E[ 1{T=k}1A︸ ︷︷ ︸
=1
A ∩ {T = k}︸ ︷︷ ︸

∈Fk

X]

=
∞∑
k=0

E[1A∩{T=k}E[X|Fk]︸ ︷︷ ︸
=Xk

]

=
∞∑
k=0

E[1{T=k}(1AXk)︸ ︷︷ ︸
=1{T=k}1AXT

]

=
∞∑
k=0

E[1{T=k}(1AXT )] = E[1AXT ]

3. Y := XT is unif. int. ⇒ Y S is unif. int. by (1), so

(Y S)n = YS∧n = XT∧(S∧n) = X(T∧S)∧n = XS∧n = (XS)n

Theorem 6.40 (Optional Stopping Theorem). Let (Xn) = Mn − An be a
supermartingale and T, S be stopping times with T ≤ S.
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1. If (T, S bounded) OR (S <∞a.s. and MS ,MT are unif. int.) then

E[X0] ≥ E[XT ] ≥ E[XS ]

2. If Xn ≥ Y ∈ L1 for all n and T is any stopping time then E[X0] ≥ E[XT ]
(where XT := X∞ on {T =∞}).

Proof. Write Xn = Mn − An (with An ≥ 0). Then E[MT ] = E[M0] = E[MS ]
implies

E[XT ] = E[MT ]− E[AT ] ≥ E[MS ] + E[AS ]

Next,
E[XT ] = E[limXT∧n] ≤ lim inf E[XT∧n]︸ ︷︷ ︸

=E[MT∧n−E[AT∧n]

≤ E[X0]

Example 6.41 (Applications to microeconomics). Following a game g(x) given.
A random walk starts at x̄ ∈ (a, b)∩Z and will be stopped at the boundary a, b.
Write Xn := x̄+ Y1 + · · ·+ Yn as the random walk and set

S = min {n ≥ 0 : Xn ∈ {a, b}}

Our process is XS
n := XS∧n which is a martingale. We are looking for a stopping

time T such that E[g(XS
T )] is maximal.

The solution is to let h be the concave envelope of g (i.e. the smallest concave
majorant of g). Then h(XS

n ) is a supermartingale which implies

h(x̄) = h(XS
0 ) ≥ E[h(XS

T )] ≥ E[g(XS
T )]

for each stopping time T , so h(x̄) is an upper bound on the expected gain with
any strategy T .

Claim: if we set

T ? = min {n ≥ 0 : Xn ∈ {g = h}}

then E[g(XS
T?)] = h(x̄). (The optimal solution!) To prove this, if h ≡ g then

we stop at t = 0 and we have h(x̄) deterministically. So let h(x̄) > g(x̄). Then
∃x̄ ∈ [c, d] ⊆ [a, b] such that h(y) > g(y) on y ∈ (c, d) and h(c) = g(c) and
h(d) = g(d). Thus, T ? is an exit time from (c, d). Now h is linear (convex and
concave) on [c, d] and

ΛST?∧n = XT?∧n

is a martingale, so h(XS
T?∧n) is a martingale so

h(x̄) = E[h(XT?∧n)] = E[h(XT?)] = E[g(XT?)]

************
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6.6 Maximal inequalities

Lemma 6.42. If Xk ≥ 0 is a supermartingale then

P

[
sup
n
≥ 0Xn ≥ c

]
≤ 1
c
E[X0]

If Xk ≥ 0 is a submartingale then

P

[
max
k≤N

Xk ≥ c
]
≤ 1
c
E

[
XN ; max

k≤N
Xk ≥ c

]
≤ 1
c
E[XN ]

Proof. Assume Xk is a supermartingale. We know Xn → X∞ a.s. and X∞ ≥ 0
and L1. Let

Tc := min{n ≥ 0 : Xn ≥ c}

Then
E[X0] ≥ E[XTc ] ≥ E[XTc ;Tc <∞] ≥ cP [Tc <∞]

and so

E[X0] ≥
(
c− 1

n

)
P
[
Tc− 1

n
<∞

]
(n→∞)

≥ cP [
⋂
n

{Tc− 1
n
<∞}︸ ︷︷ ︸

⊇{supnXn≥c}

]

≥ cP [sup
n
Xn ≥ c]

Next, assume Xk is a submartingale. Then

cP

[
max
k≤N

Xk ≥ c
]

= cP [Tc ≤ N ] = E[c;Tc ≤ N ]

≤ E[XTc ;Tc ≤ N ] =
n∑
k=0

E[ Xk︸︷︷︸
≤E[XN |Ak] a.s.

;Tc = k]

≤
n∑
k=0

E
[
E[XN |Ak] · 1{Tc=k}

]
=

n∑
k=0

E[XN ;Tc = k] = E[XN ;Tc ≤ N ]

= E[Xn; max
k≤N

Xk ≥ c]

Corollary 6.43. Let (Mn) be a martingale with Mn ∈ Lp for p ≥ 1. Then

P

[
max
k≤N
|Mk| ≥ c

]
≤ 1
cp
E[|MN |p] ∀c > 0
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Proof. |Mn|p is a submartingale (by Jensen), so

P

[
max
k≤N
|Mk| ≥ c

]
= P

[
max
k≤N
|Mk|p ≥ cp

]
etc.

Example 6.44. Application for insurances. How expensive should an insurance
policy be? Let x0 be the starting capital of the company (deterministic), cn be
the deterministic income, Yn(ω) be the stochastic loss, and

Xn(ω) = Xn−1(ω) + cn − Yn(ω)︸ ︷︷ ︸
=:∆nX(ω)

be the balance of the company. Let R(ω) be the time of ruin. Then P [R <
∞] ≤?

Let cn be big enough such that for some λ > 0,

E [exp(λ(Yn − cn))|An−1] ≤ 1

Is this realistic? If Yn is independent of An−1 then

E[exp(λ(Yn − cn))|An−1] = E[exp(λ(Yn − cn))]

and so the condition above means E[exp(λYn)] ≤ exp(λcn).
With the condition above, then (exp(−λXn)) is a supermartingale. To see

why, notice that

E[exp(−λXn)|An−1] = exp(−λ∆nX)E[exp(−λXn−1)|An−1]
≤ 1 · exp(−λXn−1)

Note that Xn = 0 ⇐⇒ exp(−λXn) = 1. Then

P [R <∞] = P [T1 <∞] ≤ P
[
sup
n

exp(−λXn) ≥ 1
]

≤ 1
1
E[exp(−λX0)] = exp(−λX0)

by the maximal inequality 6.42, so choosing λ large enough (or X0) will make
P [R <∞] small.

Theorem 6.45. Let (Xn) be an Lp-bounded martingale for p > 1 and let X? =
supn |Xn|. Then

‖X?‖p ≤
p

p− 1
· sup
n
‖Xn‖p

If Xn is a martingale with bounded entropy, i.e.

sup
n
E[|Xn| log |Xn|] <∞

then X? ∈ L1.

88



Before the proof we have a lemma.

Lemma 6.46. Let X,Y ≥ 0. If ∀c ≥ 0, c[PY ≥ c] ≤ E[X;Y ≥ c], then ∀f ≥ 0
with F (y) =

∫ y
0
f(x) dx, we have

E[F (Y )] ≤ E[X ·
∫ Y

0

1
c
f(c) dc]

Proof. Observe that

E[F (Y )] = E[
∫ ∞

0

1[0,Y (ω)](c)︸ ︷︷ ︸
=1{Y≥c}(ω)

f(c) dc]

=
∫ ∞

0

P [Y ≥ c]f(c) dc

≤
∫ ∞

0

f(c)
1
c
E[X;Y ≥ c] dc

= E[X ·
∫ Y

0

1
c
f(c) dc]

In particular, for F (y) = yp, we have f(c) = pcp−1 for p > 1, and so

E[Y p] ≤ E[X
∫ Y

0

1
c
pcp−1 dc] = E[X

∫ Y

0

pcp−2 dc]

= E[XY p−1 p

p− 1
] =

p

p− 1
E[Y p−1X]

≤ p

p− 1
‖X‖p‖Y p−1‖q

by Hölder, where q = p
p−1 . Notice ‖Y p−1‖q = E[Y p]

p−1
p , so we can divide

through by this factor and obtain

‖Y ‖p = E[Y p]1/p ≤ p

p− 1
‖X‖p

Now we’re ready to prove the theorem above.

Proof. First, notice Zn = |Xn| is a submartingale (≥ 0) so

cP [max
k≤N
|Xk| ≥ c] ≤ E[|XN |︸ ︷︷ ︸

X

; max
k≤N

Xk ≥ c︸ ︷︷ ︸
Y≥c

]

and thus ∥∥∥∥max
k≤N
|Xk|

∥∥∥∥
p

≤ q ‖XN‖p
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Then,

‖X?‖p = E

[(
lim
N

max
k≤N
|Xk|

)p]1/p

= E

[
lim
N

(
max
k≤N
|Xk|

)p]1/p

= lim
N
E

[(
max
k≤N
|Xk|

)p]1/p

≤ q sup
N
‖XN‖p

6.7 Backwards martingales

Let (An)↗ for n ≤ 0 (!) on (Ω,F , P ), i.e.

· · · ⊆ A−2 ⊆ A−1 ⊆ A0 ⊆ F

Then Xn is a martingale provided

E[Xn+k|An] = Xn ⇐⇒ Xn = E[X0|An]

Theorem 6.47. Set A−∞ :=
⋂
n≥0An. Then Xn → X−∞ as n → −∞ a.s.

and in L1 and X−∞ = E[X0|A−∞].

Proof. For N < 0,

E
[
U

(N,0]
a,b

]
≤ E [(X0 − a)−]

b− a
so

E[Ua,b] = E

[
lim

N→−∞
U

(N,0]
a,b

]
= lim
N→−∞

E
[
U

(N,0]
a,b

]
≤ E[(X0 − a)−]

b− a
<∞

by monotone integrability and since X0 ∈ L1. Thus, P [Ua,b < ∞] = 1 so
Xn → X−∞ a.s. By Fatou,

E[|X−∞|] ≤ lim inf
n→∞

E[|Xn|] ≤ E[|X0|]

and so X−∞ ∈ L1. But also, (Xn) is unif. int. so Xn → X−∞ in L1. Moreover,
for A ∈ A−∞,

E[X−∞1A] = lim
n→∞

E[X−n1A] = E[X01A]

and so X−∞ = E[X0|A−∞] a.s.

Corollary 6.48 (Law of large numbers). Let Y1, Y2, · · · ∈ L1 be i.i.d. and set
Sn =

∑n
i=1 Yi. Then 1

nSn → E[Y1] a.s.
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Proof. By symmetry E[Yi|Sn] = E[Yj |Sn], so 1
nSn = E[Y1|σ(Sn)]. Also,

1
n
Sn = E[Y1|σ(Sn, Yn+1, . . . , )] = E[Y1|σ(Sn, Sn+1, . . . )︸ ︷︷ ︸

=:A−n

]

Then A−n ↘ as n↗. Therefore,

X−n := E[Y1|A−n] =
1
n
Sn

is a martingale, which implies limn→∞
1
nSn = X−∞ exists a.s. and is in L1.

Thus,

lim
n→∞

1
n
Sn = X−∞ ∈ τ =

⋂
n≥1

σ

⋃
k≥n

σ(Y1)


so by Kolmogorov’s 0-1 law 1.20, X−∞ is constant a.s. ⇒ X−∞ = E[X−∞] =
E[X1] by uniform integrability.

Example 6.49. Next application: Hewitt-Savage 0-1 Law. If X1, X2 are i.i.d.
and A ∈ E then P [A] = 0 or 1 where E is the exchangeable σ-field (****
definition)

6.8 Concentration inequalities: the Martingale method

Let X be a L1 RV on some filtered probability space and assume Xn ∈ Fn. Set
Xk := E[X|Fk], an F· martingale. Assume that ∀k, ‖∆kX‖∞ =: ck < ∞, i.e.
the martingale has bounded increments. Then

P [(Xn − E[X]) ≥ t] ≤ exp
(
− t2

2
∑n
k=1 c

2
k

)
(7)

This inequality also holds for P [(X − E[X]) ≤ −t]. This is known as Azuma’s
Inequality.

Proof. Set F0 = {∅,Ω} so X0 = E[X] and Dk := ∆kX. Then

E[exp(λX)] = E[exp(λXn−1)

≤‖E[exp(λDn)|Fn−1]‖∞︷ ︸︸ ︷
E[exp(λDn)|Fn−1] ]

≤ ‖E[exp(λDn)|Fn−1]‖∞ · E[exp(λXn−1)]
...

≤
n∏
k=1

‖E[exp(λDk)|Fk−1]‖∞ · E[exp(λX0)]

Dividing both sides by E[exp(λX0)] = E[exp(λE[X])] tells us

E[exp(λ(X − E[X]))] ≤
n∏
k=1

‖E[exp(λDk)|Fk−1]‖∞
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Now, if ‖Dk‖∞ <∞, then

‖E[exp(λDk)|Fk−1]‖∞ ≤ exp
(
λ2

2
‖Dk‖2∞

)
(proof of this claim given below) and so

E[exp(λ(X − E[X]))] ≤ exp

(
λ2

2
·
n∑
k=1

‖Dk‖2∞

)
By Chebyshev 1.47 and optimal choice of λ, we get Azuma’s inequality.

Here, we prove the claim from a few lines above. Note that −ck ≤ Dk(ω) ≤
ck a.s. where ck = ‖Dk‖∞ < ∞. Write Dk(ω) as a convex combination of
−ck, ck (and now we drop the index k): D(ω) = p(ω)(−c) + (1 − p(ω))c, so
p = 1

2 −
D
2c and 1 − p = 1

2 + D
2c . Since exp(λ(·)) is convex, then exp(λD) ≤

p exp(−λc) + (1− p) exp(λc), so

E[exp(λD)|Fk−1]
≤ exp(−λc)E[p|Fk−1] + exp(λc)E[1− p|Fk−1]

= exp(−λc)
(

1
2
− 1

2c
E[D|Fk−2]︸ ︷︷ ︸

=0

)
+ exp(λc)

(
1
2

+
1
2c
E[D|Fk−2]︸ ︷︷ ︸

=0

)

= cosh(λc) ≤ exp
(
λ2c2

2

)
The claim follows.

Now, we prove the step using Chebyshev and optimizing λ. We have

P [(X −E[X]) > t] ≤ exp(−λt)E[exp(λ(X −E[X]))] ≤ exp

(
−λt+

λ2

2

n∑
k=1

c2k

)
where the first inequality is by Chebyshev with ϕ(t) = exp(λT ) and both in-
equalities hold for all λ. To find the optimal λ, we set(

−λt+
λ2

2

n∑
k=1

c2k

)′
= −t+ λ

∑
c2k = 0

which implies λ = tP
c2k

. Then

P [(X − E[X]) > t] ≤ exp
(
− t2∑

c2k
+

t2

2(
∑
c2k)

(
∑

c2k)
)

= exp
(
− t

2

2
· 1∑

c2k

)

The inequality in the proof involving cosh follows from the expansion of cosh:

coshx =
∑
k≥0

x2k

(2k)!
≤
∑
k≥0

1
k!
x2k

2k
= exp(x2/2)
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6.8.1 Applications

Definition 6.50. A function ϕ(x1, . . . , xn) is called discrete-Lipschitz provided
∀k

sup
~x

sup
y
|ϕ(x1, . . . , xk−1, xk, . . . , xn)− ϕ(x1, . . . , xk−1, y, xk+1, . . . , xn)|

=: ck <∞

Note: it is “Lipschitz” with respect to discrete metrics.

Theorem 6.51. Let ~Y := Y1, Y2, . . . , Yn be independent RVs and ϕ(x1, . . . , xn)
be discrete-Lipschitz. Then

P
[
ϕ(Y1, . . . , Yn)− E[ϕ(~Y )] ≥ t

]
≤ exp

(
−1

2
t2∑
c2k

)
The inequality also holds for ≤ −t.

Remark 6.52. The above theorem gives a concentration inequality around the
mean. ***** something about arbitrary t, ϕ, . . . ******

Definition 6.53. Let Y1, . . . , Yn b RVs on (Ω,F , P ) and ϕ : Rn → R measur-
able. We say that ϕ(Y1, . . . , Yn) has bounded variation in every argument a.s.
provided ∃Ω̄ ∈ F with P [Ω̄] = 1 such that ∀ω, ω′ ∈ Ω̄, ∀k = 1, . . . , n, we have

sup
~x∈Rn

|ϕ (x1, . . . , xk−1, Yk(ω), xk+1, . . . , xn)

− ϕ (x1, . . . , xk−1, Yk(ω′), xk+1, . . . , xn) | =: ck <∞

Example 6.54. For ~Y arbitrary and ϕ discrete Lipschitz, the condition holds. If
Yk is bounded a.s. for every k and ϕ is continuous, the condition holds.

Theorem 6.55. If ϕ(Y1, . . . , Yn) satisfies the condition (i.e. has bounded vari-
ation in every argument a.s.) and Y1, . . . , Yn are independent, then

P
[
ϕ(~Y )− E[ϕ(~Y )] ≥ t

]
≤ exp

(
− t2

2
∑n
k=1 c

2
k

)
Also true for P [· ≤ −t].

Proof. Set Fk = σ(Y1, . . . , Yk) and F0 = (∅,Ω) and let our martingale be Xk :=
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E[ϕ(Y1, . . . , Yn)|Fk]. WWTS it has bounded increments. Fix ω ∈ Ω. Then

|Xk(ω)−Xk−1(ω)|

= |E[ϕ(Y1, . . . , Yn)|Fk](ω)− E[ϕ(~Y )|Fk−1](ω)|
(for a.e. ω)
= |E[ϕ(Y1(ω), . . . , Yk(ω), Yk+1(·), . . . , Yn(·))]
− E[ϕ(Y1(ω), . . . , Yk−1(ω), Yk(·), . . . , Yn(·))]|

(cond. on Fk+1)
= |Eω′ [E[ϕ(Y1(ω), . . . , Yk(ω), Yk+1, . . . , Yn)|Fk+1](ω′)]
− Eω′ [E[ϕ(Y1(ω), . . . , Yk−1(ω), Yk, . . . , Yn)|Fk+1](ω′)]|

= |Eω′ [Eω′′ [ϕ(Y1(ω), . . . , Yk(ω), Yk+1(ω′), . . . , Yn(ω′))]]
− Eω′ [Eω′′ [ϕ(Y1(ω), . . . , Yk−1(ω), Yk(ω′′), Yk+1(ω′), . . . , Yn(ω′))]]|

≤ Eω′ [Eω′′ [|ϕ(Y1(ω), . . . , Yk(ω), Yk+1(ω′), . . . , Yn(ω′))
− ϕ(Y1(ω), . . . , Yk−1(ω), Yk(ω′′), Yk+1(ω′), . . . , Yn(ω′))|]]

≤ ck for a.e. ω

The theorem follows by Azuma (7).

Example 6.56 (Directed first passage percolation). Take Γ a directed path from
A to B. For every edge e, Ye is a U [0, 1] distributed RV representing the time
we need to pass through edge e. Let

ϕ(~Y (ω)) := min
Γ: path A→B

{∑
e∈Γ

Ye

}

be the passage time from A→ B. Questions: Expected value E[ϕ(~Y )]? Con-
centration? Variance? Large dev.? CLT?

6.9 Large Deviations: Cramer’s Theorem

Let (Xk)k≥1 be an i.i.d. sequence of RVs with Xk ∼ µ. The logarithmic moment
generating function is defined to be

Λ(λ) := logE[exp(λX)] ∈ (−∞,∞]

and its Legendre transform is

Λ?(x) := sup
λ
{λx− Λ(λ)}

Let

µn = P ◦ S̄−1
n = P ◦

(
1
n

n∑
k=1

Xk

)−1

be the distribution of the average (≤ n) of the Xis.
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Theorem 6.57 (Cramer’s Thm). Let A ⊆ R be Borel. Then

− inf
A◦

Λ? ≤ lim inf
n→∞

1
n

logµn(A◦) ≤ lim sup
n→∞

1
n

logµn(Ā) ≤ − inf̄
A

Λ?

Note: µn(A) = P [S̄n ∈ A], A◦ is interior of A, Ā is closure of A. Also,

lim sup
n→∞

1
n

logµn(Ā) ≤ − inf̄
A

Λ? ⇐⇒

∀ε > 0 µn(Ā) ≤ exp
(
−n inf̄

A
Λ? − ε

)
∀n ≥ n0(ε)

Note: if m = exp(−nΛ) for some Λ, then 1
n logm = −Λ (rate of exponential

decay).
Properties of Λ,Λ?:

1. Λ,Λ? are both convex and lower semi-continuous

2. ΛX(−λ) = Λ−X(λ) for λ ≥ 0

3. Λ(0) = 0, Λ?(x) ≥ 0

To prove these, notice

Λ = lim
c→∞

↗ logE[exp(λ(X ∧ c))]︸ ︷︷ ︸
const.

⇒ l.s.c.

and

Λ(pλ1 + (1− p)λ2) = logE
[
exp(λ1X)p exp(λ2X)1−p]

≤ log
(
E[exp(λ1X)]pE[exp(λ2X)]1−p

)
= pΛ(λ1) + (1− p)Λ(λ2)

by Hölder, which implues Λ is convex. Then Λ? is convex and l.s.c. as a
pointwise supremum of linear functions.

From now on, we assume “Cramer’s condition”, i.e. that X has some expo-
nential moment :

∃λ0 > 0 such that E[exp(λ0|X|)] <∞

which implies that Λ(λ) <∞ for |λ| < λ0. Set

DΛ = {λ ∈ R : Λ(λ) <∞}

6.9.1 Further properties under Cramer’s condition

1. E[X] =: x̄ is finite and Λ?(x̄) = 0.
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2. ∀x ≥ x̄,
Λ?(x) = sup

λ≥0
{λx− Λ(λ)}

and for x ≤ x̄, the sup is over λ ≤ 0.

3. Λ? is ↗ on [x̄,∞) and ↘ on (−∞, x̄].

Proof of (1): ∀λ,

Λ(λ) = logE[exp(λX)] ≥ E[log exp(λX)] = λx̄

by Jensen, so
sup
λ
λx̄− Λ(λ)︸ ︷︷ ︸

≤0

= Λ?(x̄) ≤ 0 ⇒ Λ?(x̄) = 0

Proof of (2): for x ≥ x̄, ∀λ > 0,

λx− Λ(λ) ≤ λx̄− Λ(λ) ≤ Λ?(x̄) = 0

Proof of (3): let x̄ ≤ x ≤ y, so then

Λ?(x) = sup
λ≥0

λx− Λ(λ)︸ ︷︷ ︸
≤λy−Λ(λ)

≤ supλy − Λ(λ) = Λ?(y)

etc.

Lemma 6.58. Λ is differentiable in D◦Λ with

Λ′(λ) =
1

E[exp(λX)]
E[X exp(λX)]

(finite) and
Λ′(λ0) = q ⇒ Λ?(q) = λ0q − Λ(λ0)

(i.e. λ0 is the optimizer for Λ?(q)).

Proof. First statement is straightforward application of dominated convergence.
To prove the second statement, let g(y) := λy−Λ(λ). Since g′(λ0) = y−Λ′(λ0) =
0 and g(·) is concave, we have that λ0 is a global max; that is,

λ0y − Λ(λ0) = g(λ0) = sup
λ
g(λ) = sup

λ
λy − Λ(λ) = Λ?(y)

Now we’re ready to prove Cramer’s Theorem 6.57.

Proof. Upper bound: Let x > x̄ (proof for x < x̄ is analogous). Then

P [S̄n ∈ [x,∞)] = E[1[x,∞)(S̄n)] ≤ E
[
exp(−nλx) exp(nλS̄n)

]
= (?)
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by Chebyshev and the fact that λ ≥ 0 ⇒ 1[x,∞)(·) ≤ exp(−nλx) exp(nλ(·)).
Continuing, we have

(?) = exp(−nλx)
n∏
k=1

E[exp(λX)] = exp(−nλx)E[exp(λX)]n

= exp (−n(λx− Λ(λ)))

≤ inf
λ≥0

exp(−n(· · · )) = exp
(
−n sup

λ≥0
(λx− Λ(λ))

)
= exp(−nΛ?(x))

Then, to get

lim sup
n→∞

1
n

logP [S̄n ∈ F ] ≤ − inf
F

Λ?

we notice that if x̄ ∈ F then infF Λ? = 0 (since Λ?(x̄) = 0) so there’s nothing
to show. Let x̄ /∈ F with F closed. Then

P [S̄n ∈ F ] ≤ P [Sn ≥ x+]︸ ︷︷ ︸
≤exp(−nΛ?(x+))

+ P [Sn ≤ x−]︸ ︷︷ ︸
≤exp(−nΛ?(x−))

Note
inf
F

Λ? = min
{

Λ?(x+),Λ?(x−)
}

since Λ? is ↗ on [x̄,∞) and ↘ on (−∞, x̄]. WOLOG Λ?(x+) is the minimum,
so

exp(−na) = exp(−nΛ?(x+)) ≥ exp(−nΛ?(x−)) = exp(−nb)

Then,

lim sup
n→∞

1
n

logP [S̄n ∈ F ] ≤ lim sup
n→∞

1
n

log
(

exp(−na)
(

1 +
exp(−nb)
exp(−na)

))
≤ lim sup

n→∞

1
n

(−na) + 0 = −Λ?(x+) = − inf
F

Λ?

since log
(

exp(−na)
(

1 + exp(−nb)
exp(−na)

))
≤ −na+ log 2.

Lower bound: we will show that ∀δ > 0, µ(∼ X) (with Cramer’s condi-
tion), the following (?) holds:

lim inf
n→∞

1
n

logµn((−δ, δ))︸ ︷︷ ︸
=P [|Sn|<δ]

≥ −Λ?(0)

This will, in turn, imply that

lim inf
n→∞

1
n
µn((q − δ, q + δ)) ≥ −Λ?(q);∀q
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after a shift Y := X − q. Morevoer, if G ⊆ R is open and q ∈ G then ∃δ > 0
such that (q − δ, q + δ) ⊆ G, so

lim inf
n→∞

1
n

logµn((q − δ, q + δ)) ≥ sup
q∈G

(−Λ?(q)) = − inf
q∈G

Λ?(q)

Now, WWTS (?). Assume, first, that µ(−∞, 0) > 0 and µ(0,∞) > 0 and X is
bounded (µ has compact support). From these assumptions, we have

lim
|λ|→∞

Λ(λ) = +∞ and Λ(λ) <∞ ∀λ ∈ R

Then D◦Λ = R and Λ is differentiable, which implies ∃ a global min λ0 where
Λ′(λ0) = 0 (which implies Λ?(0) = λ0 · 0 − Λ(λ0) = −Λ(λ0)). We use λ0 to
define a new probability measure µ̃ on R by

µ̃(dx) := exp(λ0x− Λ(λ0))µ(dx)

Note that ∫
R
µ̃(dx) = exp(−Λ(λ0))︸ ︷︷ ︸

=1/E[exp(λ0X)]

∫
exp(λ0x)µ(dx)︸ ︷︷ ︸
=E[exp(λ0X)]

= 1

Moreover,
∫

R xµ̃(dx) = 0 since∫
R
xµ̃(dx) =

∫
x exp(λ0x)µ(dx) · 1

E[exp(λ0x)]

=
E[X exp(λ0X)]
E[exp(λ0X)]

= Λ′(λ0) = 0

by the previous lemma. Let µ̃n be the joint distribution of S̄n where Xi ∼ µ̃
are i.i.d. Then

µn(−δ, δ) =
∫

Rn
1{ 1

n |
1
n

P
xi|<δ}(x)µ(dx1)︸ ︷︷ ︸ . . . µ(dxn)

=
∫

Rn
1{··· } exp(−λ0

∑
xi)) exp(nΛ(λ0))µ̃(dx1) . . . µ̃(dxn)

≥ exp(−nδ) exp(nΛ(λ0)) µ̃n(−δ, δ)︸ ︷︷ ︸
→1

since under µ̃n, S̄n → 0 weakly. Thus,

lim inf
n→∞

1
n

logµn(−δ, δ) ≥ −δ + Λ(λ0) = −δ − Λ?(0)

and let δ → 0.
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