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M. Ŝırbu†

Department of Mathematics, Columbia University,
2990 Broadway, New York, NY, 10027, US

(sirbu@math.columbia.edu)

July 10, 2006

Abstract
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1 Introduction

In complete markets, any contingent claim can be replicated by trading.
The wealth process of such a hedging strategy follows the price process of
the claim, which is uniquely defined by no-arbitrage arguments. In incom-
plete markets an agent can not “trade away” (replicate) the risk of holding
contingent claims in his portfolio but can only attempt to reduce it. The
concept of hedging in incomplete markets is thus directly related to how risk
is quantified.

One of the most popular approaches is based on the mean-variance cri-
terion. This line of research was initiated by Föllmer and Sondermann [5]
and continued by Föllmer and Schweizer [4], Schweizer [12] and many other
authors. We single out here the paper of Gourieroux, Laurent and Pham [6]:
through a change of numéraire they convert the problem of mean-variance
hedging under historical measure to the hedging under a martingale mea-
sure, thus reducing it to the Föllmer-Sondermann case. A nice overview of
the literature can be found in Schweizer [13].

Mean-variance hedging is tractable, but it has some economic disadvan-
tages (like penalizing equally shortfalls and earnings). Therefore, more re-
cently, a number of authors studied the concept of utility-based hedging, where
a portfolio’s performance is measured by expected utility. We just mention
Duffie et al. [2], which uses direct PDE approach in the study of hedging
problem for a non-replicable income stream in the case of power utilities, and
Delbaen et al. [3], that relies on duality and martingale methods for the case
of exponential utility.

Since explicit computations of utility-based hedging strategies are rarely
possible, several authors proposed asymptotic techniques. For example, in
the framework of financial model with basic risk and for power and exponen-
tial utilities Davis [1] computes the first order approximation with respect
to a small parameter 1 − ρ2, where ρ is the correlation between traded and
non-traded assets, and Henderson and Hobson [8] and Henderson [7] derive
the first order expansion with respect to the number of contingent claims.

In this paper we generalize the results of [8] and [7] to the case of gen-
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eral semimartingale financial model and arbitrary utility function defined on
positive real line. Our main statement is Theorem 2 which shows that the
asymptotic hedging strategy is, in fact, the mean-variance hedging strategy
(as in [5]), where the role of the pricing measure is played by Y ′(y) (the
derivative of the dual minimizer) and the role of the numéraire is played by
X ′(x) (the derivative of the optimal investment strategy). The paper is a
companion to our work [11] and relies heavily on ideas and results there.

2 The Model

We work in the same model as in [11] and refer to this paper for more
details. We have d + 1 assets, one bond and d stocks. The price of the bond
is constant and the price process of the stocks S = (Si)1≤i≤d is assumed to be
a semimartingale on a filtered probability space (Ω,F , (Ft)0≤t≤T , P). Here T
is a finite time horizon and F = FT .

A portfolio is defined as a pair (x, H), where the constant x represents
the initial capital and H = (H i)1≤i≤d is a predictable S-integrable process.
The wealth process X = (Xt)0≤t≤T of the portfolio evolves in time as the
stochastic integral of H with respect to S:

Xt = x +

∫ t

0

HudSu, 0 ≤ t ≤ T. (1)

We denote by X (x) the family of wealth processes with nonnegative capital
at any instant and with initial value equal to x:

X (x) , {X ≥ 0 : X is defined by (1)}. (2)

A nonnegative wealth process is said to be maximal if its terminal value
cannot be dominated by that of any other nonnegative wealth process with
the same initial value. A (signed) wealth process X is said to be maximal if
it admits a representation of the form

X = X ′ −X ′′,

where both X ′ and X ′′ are nonnegative maximal wealth processes. A wealth
process X is said to be acceptable if it admits a representation as above,
where both X ′ and X ′′ are nonnegative wealth processes and, in addition,
X ′′ is maximal.

3



A probability measure Q ∼ P is called an equivalent local martingale
measure if any X ∈ X (1) is a local martingale under Q. We denote by Q
the set of equivalent martingale measures and assume, as usually, that

Q 6= ∅. (3)

In addition to the set of traded securities we consider a family of N non-
traded European contingent claims with payment functions f = (fi)1≤i≤N ,
which are F -measurable random variables, and maturity T . We assume that
this family is dominated by the terminal value of some nonnegative wealth
process X, that is

N∑
i=1

|fi| ≤ XT . (4)

For x ∈ R and q ∈ Rm we denote by X (x, q) the set of acceptable wealth
processes with initial capital x whose terminal values cover the potential
losses from the q contingent claims, that is

X (x, q) , {X : X is acceptable, X0 = x and XT + 〈q, f〉 ≥ 0} .

The set of points (x, q) where X (x, q) is not empty is a closed convex cone
in Rm+1. We denote by K the interior of this cone, that is

K , int
{
(x, q) ∈ Rm+1 : X (x, q) 6= ∅

}
.

In this financial model we consider an economic agent whose prefer-
ences over terminal wealth are described by a utility function U : (0,∞) →
(−∞,∞). The function U is assumed to be strictly concave and strictly
increasing. In addition, motivated by [10] and [11], we make the following
assumption on U :

Assumption 1. The utility function U is two-times continuously differen-
tiable on (0,∞) and its relative risk-aversion coefficient

A(x) , −xU ′′(x)

U ′(x)
, x > 0, (5)

is uniformly bounded away from zero and infinity, that is, there are constants
c1 > 0 and c2 < ∞ such that

c1 < A(x) < c2, x > 0. (6)
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Assume that the agent has some initial capital x and quantities q =
(qi)1≤i≤N of the contingent claims f such that (x, q) ∈ K. The quantities q of
the contingent claims will be held constant up to maturity. The capital x can
be freely invested into the stocks and the bond according to some dynamic
strategy. Therefore, the maximal expected utility that the agent can achieve
by trading in the financial market is given by

u(x, q) , sup
X∈X (x,q)

E [U (XT + 〈q, f〉)] , (x, q) ∈ K. (7)

Under our conditions there is a unique optimizer X(x, q) in (7), see [9, The-
orem 2].

Abusing notation, we denote by u(x) , u(x, 0) the value function for the
problem of optimal investment with no random endowment, i.e.

u(x) , u(x, 0) = sup
X∈X (x)

E [U (XT )] , x > 0, (8)

and by X(x) , X(x, 0) the optimizer in (8). To exclude the trivial case we
shall assume that

u(x) < ∞ for some x > 0, (9)

which together with (4) easily implies that

u(x, q) < ∞ for all (x, q) ∈ K. (10)

The dual problem to (8) is given as follows:

v(y) , inf
Y ∈Y(y)

E [V (YT )] , y > 0. (11)

Here V is the convex conjugate to U , that is

V (y) , sup
x>0

{U(x)− xy} , y > 0,

and Y(y) is the family of nonnegative supermartingales Y such that Y0 = y
and XY is a supermartingale for all X ∈ X (1). The solution to (11) is
denoted by Y (y). If y = u′(x) then the ratio Y (y)/y is called the state price
density corresponding to the cash amount x > 0. For such initial position
we denote

p(x) , E[
YT (u′(x))

u′(x)
f ] (12)
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the vector of marginal utility based prices for the contingent claims f .
In this paper we are interested to know how the above agent “hedges”

the q contingent claims he cannot trade, starting from position (x, q) ∈ K.
The formal definition of the hedging strategy is as follows.

Definition 1. Fix (x, q) ∈ K. The wealth process G(x, q) of the utility-based
hedging strategy is given by

G(x, q) , X(c(x, q))−X(x, q), (13)

where c(x, q) is the certainty equivalent value of the position (x, q) ∈ K
defined by the equation

u(c(x, q)) = u(x, q), (14)

X(c(x, q)) is the solution of (8) for initial wealth c(x, q) and X(x, q) is the
solution of (7).

Remark 1. For (x, q) ∈ K we have u(x, q) ∈ (u(0), u(∞)). Since u(x) ,
u(x, 0) is continuous and strictly increasing, equation (14) has a unique so-
lution c(x, q) > 0.

Recall that the contingent claim f = (fi)i≤i≤N is replicable if for every i
there is a maximal wealth process X i with the terminal value fi. In his case,
it is an easy exercise to show that a utility-based hedging strategy coincides
with a replication strategy:

G(x, q) = 〈q, X〉 , (x, q) ∈ K.

If f is not replicable, then, usually, it is not possible to compute G(x, q)
explicitly. The goal of the paper is to study the linear approximation of the
hedging strategy in the case of small q.

3 Asymptotic analysis

The main object of the paper is specified in the following

Definition 2. Let x > 0. An N -dimensional semimartingale H(x) is called
an asymptotic hedging strategy for the contingent claims f if each component
H i(x) is a wealth process (that is, a stochastic integral w.r.t. S) and
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1. the terminal value HT (x) satisfies

lim
‖q‖→0

|GT (x, q)− 〈q, HT (x)〉 |
‖q‖

= 0, (15)

where the above limit is in P-probability.

2. for y = u′(x) the product H(x)Y (y) is a martingale, where Y (y) is the
solution to (11).

The asymptotic hedging strategy H(x) represents (up to a sign) the
marginal action the investor needs to take in order to compensate the risk
coming from adding to his portfolio a small number of contingent claims. It
is easy to see, that H(x) is defined uniquely by Definition (2). Following
[11] we specify below precise mathematical conditions for the existence of
asymptotic hedging strategy and also describe some methods to compute it.

Since X(x)Y (y) is a uniformly integrable martingale, we can define the
probability measure R(x) by

dR(x)

dP
=

XT (x)YT (y)

xy
, y = u′(x). (16)

Denote by SX(x) the price process of the traded securities discounted by
X(x)/x, that is,

SX(x) =

(
x

X(x)
,

xS

X(x)

)
. (17)

Let H2
0(R(x)) be the space of square integrable martingales under R(x) with

initial value 0 and

M2(x) =

{
M ∈ H2

0(R(x)) : Mt =

∫ t

0

HdSX(x), 0 ≤ t ≤ T

}
.

Note that if M ∈M2(x), then X(x)
x

M is a wealth process (under the original
numéraire). We also denote by

gi = x
fi

XT (x)
, 1 ≤ i ≤ N, (18)

the payoffs of the European options discounted by XT (x)/x. The compu-
tation of the asymptotic hedging strategy is based on the solutions of the
following auxiliary optimization problems:

ci(x) = inf
M∈M2(x)

ER(x)[A(XT (x))(pi(x) + MT − gi)
2], 1 ≤ i ≤ N, (19)
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where the function A and the vector p(x) were defined in (5) and (12).
To state the result we require two technical assumptions from [11].

Assumption 2. The process SX(x) defined in (17) is sigma-bounded, that
is, there is a strictly positive predictable (one-dimensional) process h such
that the stochastic integral

∫
hdSX(x) is well-defined and is locally bounded.

Assumption 3. There are constant c > 0 and a process M ∈ M2(x), such
that

N∑
i=1

|gi| ≤ c + MT . (20)

Theorem 1. Assume (3) and (9) and also that Assumptions 1, 2 and 3 hold
true. Then the asymptotic hedging strategy H(x) exists and is given by

H i(x) =
X(x)

x
(pi(x) + M i(x)), 1 ≤ i ≤ N, (21)

where p(x) is defined by (12) and M i(x) are the solutions of (19).

The proof of Theorem 1 as well as the proofs of Theorems 2 and 3 below
will be given in Section 4. Our next goal is to characterize H(x) in terms
of the solution of a mean-variance hedging problem. We denote by X ′(x)
and Y ′(y) the derivatives to X(x) and Y (y) in the sense that X ′(x)Y (y) and
Y ′(y)X(x) are martingales and

X ′
T (x) = lim

ε→0

(
XT (x + ε)−XT (x)

ε

)
, (22)

Y ′
T (y) = lim

ε→0

(
YT (y + ε)− YT (y)

ε

)
, (23)

where the convergences take place in probability. Under conditions of Theo-
rem 1 (see [10, Theorem 1]) we have that X ′(x) and Y ′(y) are well-defined.
Hereafter we assume that X ′(x) is a strictly positive wealth process, that is,

X ′
T (x) > 0. (24)

(A simple example when this condition is violated can be found in [10].) In
this case the product X ′(x)Y ′(y) is a strictly positive martingale with initial

value 1 and, hence, we can define a new probability measure R̃(x) such that

dR̃(x)

dP
= X ′

T (x)Y ′
T (y). (25)
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We choose the wealth process X ′(x) as a numéraire and denote by SX′(x)

the price process of the traded securities discounted by X ′(x), that is,

SX′(x) =

(
1

X ′(x)
,

S

X ′(x)

)
. (26)

Let H2
0(R̃(x)) be the space of square integrable martingales under R̃(x) with

initial value 0 and

M̃2(x) =

{
M ∈ H2

0(R̃(x)) : Mt =

∫ t

0

HdSX′(x), 0 ≤ t ≤ T

}
.

We denote by g̃ the payoffs of the contingent claims discounted by X ′(x),
that is,

g̃i =
fi

X ′
T (x)

, 1 ≤ i ≤ N, (27)

and define the following N -dimensional martingale under R̃(x):

P̃t(x) = E
eR(x)[g̃|Ft], 0 ≤ t ≤ T. (28)

In Lemma 1 we shall show that P̃ (x) is a square integrable martingale

under R̃(x). Hence, it admits the the following Kunita-Watanabe decompo-
sition:

P̃ (x) = p̃(x) + M̃(x) + Ñ(x), (29)

where
p̃(x) = E

eR(x)[g̃] = E[Y ′
T (y)f ], (30)

M̃ i(x) belongs to M̃2(x) and Ñ i(x) is an element of H2
0(R̃(x)) orthogonal to

M̃2(x).

Theorem 2. Assume conditions of Theorem 1 and that X ′(x) is a strictly
positive wealth process. Then the asymptotic hedging strategy H(x) admits
the representation:

H i(x) = X ′(x)(pi(x) + M̃ i(x)), 1 ≤ i ≤ N, (31)

where p(x) is defined by (12) and M̃ i(x) are given by the Kunita-Watanabe
decomposition (29).
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Theorems 1 and 2 provide characterizations of the asymptotic hedging
strategy in terms of the numéraires X(x) and X ′(x) and the corresponding

risk-neutral probabilities R(x) and R̃(x). In our final Theorem 3 we give more
explicit description of H(x) under the original numéraire (bank account) and
the risk-neutral probability measure Q(y) defined by

dQ(y)

dP
,

YT (y)

y
.

Of course, for Q(y) to be a probability measure we need the following

Assumption 4. Y (y) is a uniformly integrable martingale, i.e. E[YT (y)] = y.

Recall from [11] that a semimartingale R(x) is called a risk-tolerance
wealth process if it is a maximal positive wealth process and

RT (x) = −U ′(XT (x))

U ′′(XT (x))
. (32)

Assumption 5. The risk-tolerance wealth process R(x) exists.

It was shown in [11, Theorem 4] that the existence of R(x) is equivalent
to the fact that

Y ′(y) =
Y (y)

y
, (33)

and that in this case

X ′(x) =
R(x)

R0(x)
. (34)

Moreover, Assumption 5 is a necessary and sufficient condition for some
“nice” qualitative properties of marginal utility-based prices to hold true
when q ≈ 0, see [11, Theorem 9]. Hence, one can argue that this assumption
should be valid for any “practical” incomplete financial model.

To state the result we also have to impose the following

Assumption 6. The stock price process S is continuous.

We would like to point out that Assumption 6 is stronger than Assump-
tion 2 and, as simple examples show, is needed for the validity of Theorem 3
below.
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Consider now the Q(y)-martingale P (x) (the marginal utility-based price
process)

Pt(x) = EQ(y)[f |Ft], 0 ≤ t ≤ T, (35)

and let

P i(x) = pi(x) +

∫
KidS + Li, 1 ≤ i ≤ N, (36)

be its Kunita-Watanabe decomposition, where L = (Li)1≤i≤N is a local mar-
tingale under Q(y) orthogonal to S such that L0 = 0 and we used the fact
that P0(x) = p(x).

Theorem 3. Let the conditions of Theorem 1 and Assumptions 4, 5 and 6
hold true. Then the asymptotic hedging strategy satisfies the equation

H i
t(x) = pi(x) +

∫ t

0

Ki
udSu +

∫ t

0

(H i
t(x)− P i

t−(x))
dRt(x)

Rt(x)
, (37)

where Ki is defined by (36), P (x) is given by (35) and R(x) is the risk-
tolerance wealth process.

Remark 2. The message of Theorem 3 is that asymptotic hedging is per-
formed the following way: start with p(x) cash and buy at any moment the
quantities of stocks S one would buy to hedge quadratically the payoff f
under the martingale measure Q(y). The missing dollar amount up to the
marginal price Pt−(x) is invested in the money market. Since perfect replica-
tion may not be possible, this strategy is not self-financing. The miss-match
(Ht(x) − Pt−(x)) should be financed by investing in (borrowing from) the
risk-tolerance wealth process.

4 Proofs

Proof of Theorem 1. Let g0 = 1 and consider the optimization problems

ai(x) = inf
N∈M2(x)

ER(x)[A(XT (x))(gi + NT )2], 0 ≤ i ≤ N. (38)

For 0 ≤ i ≤ N we denote by N i(x) the solution to (38). From [11, Theorem
1] we know that

X ′(x) =
X(x)

x
(1 + N0(x)) (39)
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(X ′(x) is defined by (22) and the martingale property of X ′(x)Y (y)). Also,
denoting

Zi(x) ,
X(x)

x
N i(x), 1 ≤ i ≤ N, (40)

we have by the same [11, Theorem 1] that

lim
|∆x|+|q|→0

(
XT (x + ∆x, q)−XT (x)−X ′

T (x)∆x− 〈ZT (x), q〉
|∆x|+ |q|

)
= 0, (41)

and the process Z(x)Y (y) is a uniformly integrable martingale. Taking into
account the linearity of the solutions of the quadratic optimization problems
(38) with respect to gi, we conclude that the solution M(x) of (19) can be
written as

M i(x) = pi(x)N0(x)−N i(x).

Using (39) and (40), we obtain

X(x)

x
(pi(x) + M i(x)) = pi(x)X ′(x)− Zi(x).

We know from [11, Theorem 10] that

∂c(x, q)

∂qi
|q=0 = pi(x), 1 ≤ i ≤ N,

so we can use Definition 2, relation (41) and a simple chain rule argument to
finish the proof.

For the proof of Theorem 2 we denote by N 2(y) the orthogonal comple-

ment of M2(x) in H2
0(R(x)) and by Ñ 2(y) the orthogonal complement of

M̃2(x) in H2
0(R̃(x)).

Lemma 1. Assume the hypotheses of Theorem 2. Then:

1. For a random vector h, we have

xh

XT (x)
∈ L2(Ω,F , R(x)) if and only if

h

X ′
T (x)

∈ L2(Ω,F , R̃(x)).

2. For a semimartingale Z and a fixed number a we have

xZ

X(x)
∈ a +M2(x) if and only if

Z

X ′(x)
∈ a + M̃2(x).
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3. For a semimartingale Wand a fixed number b we have

yW

Y (y)
∈ b +N 2(y) if and only if

W

Y ′(y)
∈ b + Ñ 2(y).

Proof. From [10, Theorem 1] we know that the function u is two-times dif-
ferentiable at x, and

U ′′(XT (x))X ′
T (x) = u′′(x)Y ′

T (y), y = u′(x). (42)

Relation (42) together with U ′(XT (x)) = YT (y) imply

A(XT (x))
xX ′

T (x)

XT (x)
= −xu′′(x)

u′(x)

yY ′
T (y)

YT (y)
.

By Assumption 1 we have that c1 ≤ A(XT (x)) ≤ c2 and by [10, Theorem 1]
we know that

0 < c1 ≤ a(x) , −xu′′(x)

u′(x)
≤ c2 < ∞.

Since xX′(x)
X(x)

and yY ′(y)
Y (y)

are uniformly integrable martingales under R(x) we
conclude that

c1

c2

xX ′(x)

X(x)
≤ yY ′(y)

Y (y)
≤ c2

c1

xX ′(x)

X(x)
. (43)

Note that xh
XT (x)

∈ L2(Ω,F , R(x)) if and only if

E
[
‖h‖2 YT (y)

XT (x)

]
< ∞,

and, similarly, h
X′

T (x)
∈ L2(Ω,F , R̃(x)) if and only if

E
[
‖h‖2 Y ′

T (y)

X ′
T (x)

]
< ∞.

Taking into account relation (43) (at time T ) we complete the proof of the
first item.

If xZ
X(x)

∈ a + M2(x) then Z
X′(x)

is a wealth process starting at a (un-

der X ′(x) numéraire) and, according to item 1, we also know that ZT

X′
T (x)

∈
L2(Ω,F , R̃(x)). Furthermore, since

dR̃(x)

dR(x)
=

xyX ′
T (x)Y ′

T (y)

XT (x)YT (y)
,
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and
Z

X ′(x)

X ′(x)Y ′(y)

X(x)Y (y)
=

Z

X(x)

Y ′(y)

Y (y)

is a uniformly integrable martingale under R(x) (because yY ′(y)
Y (y)

∈ 1+N 2(y),

see [10, Theorem 1]), we conclude that Z
X′(x)

is a uniformly integrable mar-

tingale under R̃(x). We obtain

Z

X ′(x)
∈ a + M̃2(x). (44)

Assume now (44). Then xZ
X(x)

is a wealth process starting at a, under

the numéraire X(x)/x. Because of Assumption 2, the process SX(x) is a
sigma-martingale under the measure R(x). Therefore, in order to prove that

xZ

X(x)
∈ a +M2(x)

it is enough to show that

sup
0≤τ≤T

ER(x)

[
Z2

τ

X2
τ (x)

]
< ∞, (45)

where the supremum above is taken with respect to all stopping times τ . In
view of relation (43) this amounts to

sup
0≤τ≤T

E
eR(x)

[
Z2

τ

(X ′
τ (x))2

]
< ∞,

which is true because of assumption (44). The proof of item 2 of the lemma
is also complete.

Choose now two arbitrary semimartingales Z and W . We observe that
the process

xZ

X(x)

yW

Y (y)

is a uniformly integrable martingale under R(x) if and only if

Z

X ′(x)

W

Y ′(y)

is a uniformly integrable martingale under R̃(x). The above observation,
applied for fixed W and any Z, together with the assertion of the second
item, finishes the proof of item 3.
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Proof of Theorem 2. From Lemma 1 (item 1) and Assumption 3 we have

g̃ ∈ L2(Ω,F , R̃(x)). This implies that the process (P̃t(x))0≤t≤T defined in

(28) is a square integrable martingale under R̃(x) and, hence, admits the
unique Kunita-Watanabe decomposition (29).

A standard argument in constraint optimization applied to problem (19)
leads to

−U ′′(XT (x))XT (x)

YT (y)

(
pi(x) + M i

T (x)− xfi

XT (x)

)
= Li

T , (46)

where
Li ∈ bi +N 2(y)

for some real number bi. Using (42) we obtain

fi

X ′
T (x)

=
XT (x)

xX ′
T (x)

(pi(x) + M i
T (x)) +

y

xu′′(x)

YT (y)Li
T

yY ′
T (y)

.

According to Lemma 1 we have

X(x)

xX ′(x)
(pi(x) + M i(x)) ∈ pi(x) + M̃2(x)

and
y

xu′′(x)

Y (y)Li

yY ′(y)
∈ y

xu′′(x)
bi + Ñ 2(y).

Since the Kunita-Watanabe decomposition (29) is unique, we obtain

M̃ i(x) =
X(x)

xX ′(x)
(pi(x) + M i(x))− pi(x).

Taking into account Theorem 1 we finally conclude that

H i(x) = X ′(x)(pi(x) + M̃ i(x)).

Proof of Theorem 3. We remind the reader that under the assumptions of
Theorem 3 we have

Y ′(y) =
Y (y)

y
, X ′(x) =

R(x)

R0(x)
.
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Consider decomposition (29). Since p̃(x) = p(x) and P (x) = R(x)P̃ (x)/R0(x),
we know from Theorem 2 that

P (x) = H(x) +
R(x)

R0(x)
Ñ(x). (47)

Under the measure R̃(x), the process Ñ(x) is a martingale orthogonal to the

continuous local martingale SX′(x). This implies easily that Ñ(x) and S are
orthogonal local martingales under Q(y). The process R(x) is a stochastic

integral with respect to S, so [Ñ(x), R(x)] = 0. We can now apply the Itô

formula to the product Ñ(x)R(x) in (47) to obtain

Pt(x) = Ht(x) +

∫ t

0

Ñu−(x)

R0(x)
dRu(x) +

∫ t

0

Ru(x)

R0(x)
dÑu(x).

Using again the fact that Ñ(x) and S are orthogonal local martingales under
Q(y), we can identify the terms in the Kunita-Watanabe decomposition (36)
as

p(x) +

∫ t

0

KudSu = Ht(x) +

∫ t

0

Ñu−(x)

R0(x)
dRu(x). (48)

Using (47) we have

Ñ(x) =
R0(x)(P (x)−H(x))

R(x)

so (48) can be rewritten as

Ht(x) = p(x) +

∫ t

0

KudSu −
∫ t

0

(Pu−(x)−Hu(x))
dRu(x)

Ru(x)
,

which ends the proof.
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