21-122 - Week 8, Recitation 2

Section 11.1 - Sequences

64. (a) Determine whether the sequence defined as follows is convergent or divergent.

$$
a_{1}=1, \quad a_{n+1}=4-a_{n} \text { for } n \geq 1
$$

(b) What happens if we have $a_{1}=2$?

Solution - (a) We have

$$
a_{1}=1, \quad a_{2}=4-a-1=3, \quad a_{3}=4-a_{2}=1, \quad a_{4}=4-a_{3}=3
$$

So the sequence can be written as $\{1,3,1,3,1,3, \ldots\}$. This sequence is divergent.
(b) If $a_{1}=2$, then $a_{2}=4-a_{1}=2, a_{3}=4-a_{2}=2$, and clearly $a_{n}=2$ for all n. Thus, $\left\{a_{n}\right\}$ is convergent and $\lim _{n \rightarrow \infty} a_{n}=2$.
71. Suppose $\left\{a_{n}\right\}$ is a decreasing sequence and all its terms lie between the numbers 5 and 8 . Explain why the sequence has a limit. What can you say about the value of the limit?
$\underline{\text { Solution - Since the sequence is decreasing, it's monotonic. Since } 5 \leq a_{n} \leq 8 \text { for all } n \text {, the sequence }}$ is bounded. Therefore, the sequence is convergent.

Let $L=\lim _{n \rightarrow \infty} a_{n}$. Since $5 \leq a_{n} \leq 8$ for all n, then $5 \leq L \leq 8$. In fact, since the sequence is decreasing, we know that $5 \leq L<8$.

Determine whether the sequence is increasing, decreasing, or not monotonic. Is the sequence bounded?
72. $a_{n}=(-2)^{n+1}$
73. $a_{n}=\frac{1}{2 n+3}$
74. $a_{n}=\frac{2 n-3}{3 n+4}$
78. $a_{n}=n+\frac{1}{n}$

Solution - (72) The terms alternate in sign, so the sequence is not monotonic. Also, the sequence is not bounded above or below, since as n gets large, we can find terms that are arbitrarily large (when n is odd) or arbitrarily small (when n is even).
(73) This sequence is decreasing, since as n increases, $2 n+3$ increases, so $\frac{1}{2 n+3}$ decreases. The sequence is also bounded, since

$$
0<a_{n} \leq a_{1}=\frac{1}{2(1)+3}=\frac{1}{5}
$$

for all $n \geq 1$. (Note: Since the sequence is decreasing, it is bounded above by its first term.)
(74) It helps to rewrite the terms of this sequence. Write

$$
a_{n}=\frac{2 n-3}{3 n+4}=\frac{\frac{2}{3}(3 n)-3}{3 n+4}=\frac{\frac{2}{3}(3 n+4-4)-3}{3 n+4}=\frac{2}{3}+\frac{\frac{2}{3}(-4)-3}{3 n+4}=\frac{2}{3}-\frac{\frac{17}{3}}{3 n+4}
$$

As n increases, $3 n+4$ increases, so $\frac{1}{3 n+4}$ decreases, which means that $\frac{2}{3}-\frac{\frac{17}{3}}{3 n+4}$ increases. Thus, the sequence is increasing. The sequence is bounded, since

$$
-\frac{1}{7}=\frac{2(1)-3}{3(1)+4}=a_{1} \leq a_{n}=\frac{2}{3}-\frac{\frac{17}{3}}{3 n+4} \leq \frac{2}{3}
$$

for all $n \geq 1$. (Note: Since the sequence is increasing, it is bounded below by its first term.)
(78) For all $n \geq 1$, we have

$$
a_{n+1}-a_{n}=\left(n+1+\frac{1}{n+1}\right)-\left(n+\frac{1}{n}\right)=1+\frac{1}{n+1}-\frac{1}{n}=1+\frac{n-(n+1)}{n(n+1)}=1-\frac{1}{n(n+1)}>0
$$

Therefore, $a_{n+1}>a_{n}$, so the sequence is increasing. The sequence is not bounded, since for each n, $a_{n} \geq n$, so a_{n} grows arbitrarily large.
81. Show that the sequence defined by

$$
a_{1}=1, \quad a_{n+1}=3-\frac{1}{a_{n}}
$$

is increasing and $a_{n}<3$ for all n. Deduce that $\left\{a_{n}\right\}$ is convergent and find its limit.
Solution - We proceed by induction. The statement we wish to prove is: For all $n \geq 1, a_{n}<3$ and $a_{n+1}>a_{n}$.

For $n=1$, this is easy, since

$$
a_{1}=1<3, \quad a_{2}=3-\frac{1}{a_{1}}=3-1=2>a_{1}
$$

Now suppose that $a_{n}<3$ and $a_{n+1}>a_{n}$. We want to show that $a_{n+1}<3$ and $a_{n+2}>a_{n+1}$. Since $a_{n}<3$ and a_{n} is positive (because the sequence is increasing so far), we have $\frac{1}{a_{n}}>\frac{1}{3}$, so now

$$
a_{n+1}=3-\frac{1}{a_{n}}<3-\frac{1}{3}<3
$$

Furthermore,

$$
a_{n+2}=3-\frac{1}{a_{n+1}}>3-\frac{1}{a_{n}}=a_{n+1},
$$

since $a_{n+1}>a_{n}$.
By induction, we are done.
By the Monotonic Sequence Theorem, $\left\{a_{n}\right\}$ is convergent. Write $L=\lim _{n \rightarrow \infty} a_{n}$. We have

$$
a_{n+1}=3-\frac{1}{a_{n}} \Longrightarrow L=\lim _{n \rightarrow \infty} a_{n+1}=\lim _{n \rightarrow \infty}\left(3-\frac{1}{a_{n}}\right)=3-\frac{1}{L}
$$

Rearranging, we have

$$
L-3+\frac{1}{L}=0 \Longrightarrow L^{2}-3 L+1=0 \Longrightarrow L=\frac{3 \pm \sqrt{9-4}}{2}=\frac{3 \pm \sqrt{5}}{2}
$$

Using a calculator (or estimating), we see that $\frac{3-\sqrt{5}}{2}<1$. Since $a_{1}=1$ and the sequence is increasing, the limit cannot be less than 1 , so $L=\frac{3+\sqrt{5}}{2}$.

