21-122 - Week 8, Recitation 1

Section 4.8

17. Use Newton's method to find all roots of the equation

$$
3 \cos x=x+1
$$

correct to six decimal places.
Solution - Rewrite the equation as $x+1-3 \cos x=0$ and define $f(x)=x+1-3 \cos x$. We have $f^{\prime}(x)=1+3 \sin x$, so our formula for root-finding is

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}=x_{n}-\frac{x_{n}+1-3 \cos x_{n}}{1+3 \sin x_{n}}
$$

To determine the number of roots and what our initial guesses should be, let's sketch the functions $x+1$ and $3 \cos x$ on a common set of axes.

Going by our sketch, good guesses for the roots would be $1,-2$, and -4 . We do the calculations below.

- First root: Start with $x_{1}=1$. We have

$$
x_{2} \approx 0.8924380, \quad x_{3} \approx 0.8894729, \quad x_{4} \approx 0.8894704, \quad x_{5} \approx 0.8894704
$$

- Second root: Start with $x_{1}=-2$. We have

$$
x_{2} \approx-1.8562176, \quad x_{3} \approx-1.8623564, \quad x_{4} \approx-1.8623649, \quad x_{5} \approx-1.8623649
$$

- Third root: Start with $x_{1}=-4$. We have

$$
x_{2} \approx-3.6822814, \quad x_{3} \approx-3.6389597, \quad x_{4} \approx-3.6379585, \quad x_{5} \approx-3.6379580
$$

To six decimal places, the roots are $0.889470,-1.862365,-3.637958$.
31. Explain why Newton's method doesn't work for finding the root of the equation $x^{3}-3 x+6=0$ if the initial approximation is chosen to be $x_{1}=1$.
Solution - For this equation, the Newton's method formula is $x_{n+1}=x_{n}-\frac{x^{3}-3 x+6}{3 x^{2}-3}$. Since $x_{1}=1$ is a root of the denominator, then x_{2} is not defined.

Section 11.1

15,17 . Find a formula for the general term a_{n} of the sequence, assuming that the pattern of the first few terms continues.

$$
(15) \quad\left\{-3,2,-\frac{4}{3}, \frac{8}{9},-\frac{16}{27}, \ldots\right\},
$$

$$
\text { (17) }\left\{\frac{1}{2},-\frac{4}{3}, \frac{9}{4},-\frac{16}{5}, \frac{25}{6}, \ldots\right\}
$$

Solutions - (15) Each term is obtained from the previous term by multiplying by $-\frac{2}{3}$. Therefore, we have $a_{n}=-3\left(-\frac{2}{3}\right)^{n-1}$.
(17) The numerator of the nth term is given by n^{2}. The denominator is given by $n+1$. Moreover, the terms alternate in sign between positive and negative values, starting with a positive value. Therefore, write $a_{n}=(-1)^{n-1} \frac{n^{2}}{n+1}$

Determine whether the sequence converges or diverges. If it converges, find the limit.
25. $a_{n}=\frac{3+5 n^{2}}{n+n^{2}}$
29. $a_{n}=\tan \left(\frac{2 n \pi}{1+8 n}\right)$
31. $a_{n}=\frac{n^{2}}{\sqrt{n^{3}+4 n}}$
42. $a_{n}=\ln (n+1)-\ln (n)$
43. $a_{n}=\frac{\cos ^{2} n}{2^{n}}$
53. $\{0,1,0,0,1,0,0,0,1, \ldots\}$

Solutions - (25) Write

$$
\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \frac{3+5 n^{2}}{n+n^{2}}=\lim _{n \rightarrow \infty} \frac{\frac{3}{n^{2}}+5}{\frac{1}{n}+1}=\frac{0+5}{0+1}=5
$$

(29) Let's consider the expression inside $\tan (\cdot)$. We have

$$
\lim _{n \rightarrow \infty} \frac{2 n \pi}{1+8 n}=\lim _{n \rightarrow \infty} \frac{2 \pi}{\frac{1}{n}+8}=\frac{2 \pi}{0+8}=\frac{\pi}{4}
$$

Therefore, $\lim _{n \rightarrow \infty} a_{n}=\tan \left(\frac{\pi}{4}\right)=1$.
(31) Write

$$
\lim _{n \rightarrow \infty} \frac{n^{2}}{\sqrt{n^{3}+4 n}}=\lim _{n \rightarrow \infty} \frac{n^{2}}{n^{3 / 2} \sqrt{1+\frac{4}{n^{2}}}}=\lim _{n \rightarrow \infty} \frac{n^{1 / 2}}{\sqrt{1+\frac{4}{n^{2}}}}=\infty
$$

since the numerator approaches infinity and the denominator approaches 1 . Therefore, this sequence is divergent.
(42) It helps to rewrite $a_{n}=\ln (n+1)-\ln (n)=\ln \left(\frac{n+1}{n}\right)=\ln \left(1+\frac{1}{n}\right)$. Now

$$
\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)=1+0=1 \Longrightarrow \lim _{n \rightarrow \infty} a_{n}=\ln (1)=0
$$

(43) For all $n, 0 \leq \cos ^{2} n \leq 1$. Therefore, $0 \leq \frac{\cos ^{2} n}{2^{n}} \leq \frac{1}{2^{n}}$. Since $\lim _{n \rightarrow \infty} 0=0=\lim _{n \rightarrow \infty} \frac{1}{2^{n}}$, then $\lim _{n \rightarrow \infty} \frac{\cos ^{2} n}{2^{n}}=0$.
(53) This sequence is divergent, i.e. there is no limit L such that the terms a_{n} can be made arbitrarily close to L. This is because we can always find larger and larger values of n such that $a_{n}=0$ or such that $a_{n}=1$.

