21-122 - Week 7, Recitation 2

Section 9.3

31. Find the orthogonal trajectories of the family of curves $y=\frac{k}{x}$. Use a graphing device to draw several members of each family on a common screen.
Solution - The curve $y=\frac{k}{x}$ satisfies the differential equation $\frac{d y}{d x}=-\frac{k}{x^{2}}=-\frac{1}{x} \frac{k}{x}=-\frac{y}{x}$. The orthogonal trajectories must satisfy the differential equation $\frac{d y}{d x}=\frac{x}{y}$. To solve this differential equation, write

$$
\int y d y=\int x d x \Longrightarrow \frac{1}{2} y^{2}=\frac{1}{2} x^{2}+C \Longrightarrow y^{2}-x^{2}=C
$$

(in the last step, we replaced $2 C$ by C). This is a family of hyperbolas with asymptotes $y= \pm x$.
39. The differential equation $\frac{d P}{d t}=k(M-P)$ is a model for learning. Here, $P(t)$ measures the performance of someone learning a skill after a training time t, M is the maximum level of performance, and k is a positive constant. Solve this differential equation to find an expression for $P(t)$. What is the limit of this expression as $t \rightarrow \infty$?
Solution - Write

$$
\begin{aligned}
& \frac{d P}{d t}=k(M-P) \\
& \Longrightarrow \quad \int \frac{1}{M-P} d P=\int k d t \\
& \Longrightarrow \quad-\ln |M-P|=k t+C \\
& \Longrightarrow \quad \ln |M-P|=-k t+C \\
& \Longrightarrow \quad|M-P|=e^{C} e^{-k t} \\
& \Longrightarrow \quad M-P= \pm e^{C} e^{-k t} \\
& \Longrightarrow \quad P=M \pm e^{C} e^{-k t}
\end{aligned}
$$

As $t \rightarrow \infty$, we have $P \rightarrow M$.
43. A glucose solution is administered intravenously into the bloodstream at a constant rate r. As the glucose is added, it is converted into other substances and removed from the bloodstream at a rate that is proportional to the concentration at that time. Thus a model for the concentration $C=C(t)$ of the glucose solution in the bloodstream is

$$
\frac{d C}{d t}=r-k C
$$

where k is a positive constant.
(a) Suppose that the concentration at time $t=0$ is C_{0}. Determine the concentration at any time t by solving the differential equation.
(b) Assuming that $C_{0}<\frac{r}{k}$, find $\lim _{t \rightarrow \infty} C(t)$ and interpret your answer.

Solution - (a) Rearrange and integrate to get

$$
\int \frac{1}{r-k C} d C=\int d t \Longrightarrow-\frac{1}{k} \ln |r-k C|=t+D
$$

where D is an arbitrary constant. Since $C(0)=C_{0}$, then

$$
-\frac{1}{k} \ln \left|r-k C_{0}\right|=0+D=D
$$

Now

$$
\begin{aligned}
& -\frac{1}{k} \ln |r-k C|=t-\frac{1}{k} \ln \left|r-k C_{0}\right| \\
& \Longrightarrow \quad \ln |r-k C|=-k t+\ln \left|r-k C_{0}\right| \\
& \Longrightarrow \quad|r-k C|=\left|r-k C_{0}\right| e^{-k t} \\
& \Longrightarrow \quad r-k C= \pm\left(r-k C_{0}\right) e^{-k t} \\
& \Longrightarrow \quad C=\frac{r}{k} \pm\left(\frac{r}{k}-C_{0}\right) e^{-k t}
\end{aligned}
$$

Since we want $C(0)=C_{0}$, we conclude that $C(t)=\frac{r}{k}-\left(\frac{r}{k}-C_{0}\right) e^{-k t}$.
(b) As $t \rightarrow \infty$, we have $e^{-k t} \rightarrow 0$, so $C(t) \rightarrow \frac{r}{k}$. In particular, the limiting value of $C(t)$ does not depend on the initial concentration.

Section $9.4-$

9. One model for the spread of a rumor is that the rate of spread is proportional to the product of the fraction y of the population who have heard the rumor and the fraction who have not heard the rumor.
(a) Write a differential equation that is satisfied by y.
(b) Solve the differential equation.
(c) A small town has 1000 inhabitants. At $8 \mathrm{am}, 80$ people have heard a rumor. By noon, half the town has heard it. At what time will 90% of the population have heard the rumor?
Solution - (a) $\frac{d y}{d t}=k y(1-y)$.
(b) $y(t)=\frac{y_{0}}{y_{0}+\left(1-y_{0}\right) e^{-k t}}$, where $y_{0}=y(0)$. (For more detail, see pages 608-609 of your textbook.)
(c) Let $t=0$ correspond to 8 am , and let t be measured in hours. Using the notation of parts (a) and (b), we have $y_{0}=\frac{80}{1000}=0.08$. Now

$$
y(t)=\frac{0.08}{0.08+0.92 e^{-k t}}
$$

We need to determine k. Using the noon condition, we have $y(4)=\frac{1}{2}$. Now

$$
\frac{1}{2}=\frac{0.08}{0.08+0.92 e^{-4 k}} \Longrightarrow 0.08+0.92 e^{-4 k}=2 \cdot 0.08 \Longrightarrow k=-\frac{1}{4} \ln \left(\frac{0.08}{0.92}\right)
$$

To answer the stated question, set $y(t)=0.9$. Now

$$
0.9=\frac{0.08}{0.08+0.92 e^{-k t}} \Longrightarrow t=-\frac{1}{k} \ln \left(\frac{\frac{0.08}{0.9}-0.08}{0.92}\right) \approx 7.60 \text { hours }=7 \text { hours, } 36 \text { minutes }
$$

At 3:36 pm, 90% of the population will have heard the rumor.
16. Let c be a positive number. A differential equation of the form

$$
\frac{d y}{d t}=k y^{1+c}
$$

where k is a positive constant, is called a doomsday equation because the exponent in the expression $k y^{1+c}$ is larger than the exponent 1 for natural growth.
(a) Determine the solution that satisfies the initial condition $y(0)=y_{0}$.
(b) Show that there is a finite time $t=T$ (doomsday) such that $\lim _{t \rightarrow T^{-}} y(t)=\infty$.
(c) An especially prolific breed of rabbits has the growth term $k y^{1.01}$. If 2 such rabbits breed initially and the warren has 16 rabbits after three months, then when is doomsday?

Solution - (a) Rearrange and solve.
$\int y^{-(1+c)} d y=\int k d t \Longrightarrow-\frac{1}{c} y^{-c}=k t+C \Longrightarrow y^{-c}=-c k t+C \Longrightarrow y^{c}=\frac{1}{-c k t+C} \Longrightarrow y=\left(\frac{1}{-c k t+C}\right)^{1 / c}$
From $y(0)=y_{0}$, we have $y_{0}=\left(\frac{1}{0+C}\right)^{1 / c}=C^{-1 / c}$, so $C=y_{0}^{-c}$. Thus, the solution is

$$
y(t)=\left(\frac{1}{-c k t+y_{0}^{-c}}\right)^{1 / c}
$$

(b) To find the time T where the population blows up, set the denominator of $\frac{1}{-c k T+y_{0}^{-c}}$ equal to zero. Write

$$
-c k T+y_{0}^{-c}=0 \Longrightarrow c k T=y_{0}^{-c} \Longrightarrow T=\frac{y_{0}^{-c}}{c k}
$$

This is doomsday.
(c) Here $c=0.01, y_{0}=2$, so from part (a) we have $y(t)=\left(\frac{1}{-0.01 k t+2^{-0.01}}\right)^{1 / 0.01}=\left(\frac{1}{-0.01 k t+2^{-0.01}}\right)^{100}$.

To find doomsday, we must first determine k. The warren has 16 rabbits after three months, so

$$
16=y(3)=\left(\frac{1}{-0.03 k+2^{-0.01}}\right)^{100}
$$

Solving for k, we have

$$
\frac{1}{-0.03 k+2^{-0.01}}=16^{0.01} \Longrightarrow-0.03 k+2^{-0.01}=16^{-0.01} \Longrightarrow k=\frac{2^{-0.01}-16^{-0.01}}{0.03}
$$

Now doomsday is given by the answer from part (b),

$$
T=\frac{y_{0}^{-c}}{c k}=\frac{2^{-0.01}}{0.01 \cdot \frac{2^{-0.01}-16^{-0.01}}{0.03}} \approx 146
$$

Doomsday occurs after 146 months.

