21-122 - Week 7, Recitation 1

Section 9.2

11. Sketch the direction field of $y^{\prime}=y-2 x$. Then use it to sketch a solution curve passing through the point $(1,0)$.

Solution - Check your answer using a slope field generator/drawer from Google. For example, I found one at
http://www.mathscoop.com/calculus/differential-equations/slope-field-generator.php
(Select "Graph a particular solution" and enter $-e^{x}+2 x+2$.)
19. (a) Use Euler's method to estimate the value of $y(0.4)$, where y is the solution of the initial-value problem $y^{\prime}=y, y(0)=1$.
(i) $h=0.4$
(ii) $h=0.2$
(iii) $h=0.1$
(b) The exact solution of the IVP from (a) is $y=e^{x}$. Sketch graphs of $y=e^{x}$ and your approximations from part (a). Use sketches to determine whether your estimates from (a) are overestimates or underestimates.
 $\left(x_{0}, y_{0}\right)=(0,1)$.

For $h=0.4$, we have $y_{1}=(1+h) y_{0}=(1+0.4) \cdot 1=1.4$, so $y(0.4) \approx 1.4$.
For $h=0.2$, write

$$
y_{1}=(1+h) y_{0}=1.2 \cdot 1=1.2, \quad y_{2}=(1+h) y_{1}=1.2 \cdot 1.2=1.44
$$

For $h=0.1$, write

$$
\begin{aligned}
& y_{1}=(1+h) y_{0}=1.1 \cdot 1=1.1 \\
& y_{2}=(1+h) y_{1}=1.1 \cdot 1.1=1.1^{2} \\
& y_{3}=(1+h) y_{2}=1.1 \cdot 1.1^{2}=1.1^{3} \\
& y_{4}=(1+h) y_{3}=1.1 \cdot 1.1^{3}=1.1^{4}
\end{aligned}
$$

Thus, $y(0.4) \approx 1.1^{4}=1.4641$.
(b) If you sketch $y=e^{x}$, you should notice that tangent lines to this curve always lie under the curve (this is because $y=e^{x}$ is concave up). Therefore, the approximation from part (a) is an underestimate.

Section 9.3

7. Solve $\frac{d y}{d t}=\frac{t}{y e^{y+t^{2}}}$.
$\underline{\text { Solution }}$ - Rewrite as $\frac{d y}{d t}=\frac{t}{e^{t^{2}}} \frac{1}{y e^{y}}$. Now

$$
\int y e^{y} d y=\int t e^{-t^{2}} d t \Longrightarrow e^{y}(y-1)=-\frac{1}{2} e^{-t^{2}}+C
$$

(For the first integral, use IBP. For the second, substitute $u=t^{2}$.)
13. Solve the initial-value problem $\frac{d u}{d t}=\frac{2 t+\sec ^{2} t}{2 u}, u(0)=-5$.

Solution - Rearrange and integrate to get

$$
\begin{equation*}
\int 2 u d u=\int\left(2 t+\sec ^{2} t\right) d t \Longrightarrow u^{2}=t^{2}+\tan t+C \tag{*}
\end{equation*}
$$

To solve for C, substitute $u(0)=-5$ into $(*)$ to get $25=0+0+C=C$. Now $u^{2}=t^{2}+\tan t+25$ so $u= \pm \sqrt{t^{2}+\tan t+25}$. Since $u(0)$ is negative, then $u=-\sqrt{t^{2}+\tan t+25}$.
19. Find an equation of the curve that passes through $(0,1)$ and whose slope at (x, y) is $x y$.

Solution - This question is asking us to solve the initial-value problem $\frac{d y}{d x}=x y, y(0)=1$. To solve the DE, write

$$
\int \frac{1}{y} d y=\int x d y \Longrightarrow \ln |y|=\frac{x^{2}}{2}+C
$$

To solve for C, use $y(0)=1$. We have

$$
\ln |1|=\frac{0^{2}}{2}+C \Longrightarrow C=\ln |1|=0
$$

Thus, $\ln |y|=\frac{x^{2}}{2}$. Solving for y, we have

$$
|y|=e^{\frac{x^{2}}{2}} \Longrightarrow y=e^{\frac{x^{2}}{2}},
$$

where the last step follows from the fact that $y(0)$ is positive.
21. Solve the differential equation $y^{\prime}=x+y$ by making the change of variable $u=x+y$.

$$
\begin{equation*}
y^{\prime}=x+y \Longrightarrow u^{\prime}-1=u \Longrightarrow u^{\prime}=1+u \tag{*}
\end{equation*}
$$

Assuming $u \neq-1$, write

$$
\int \frac{1}{1+u} d u=\int d x \Longrightarrow \ln |u+1|=x+C \Longrightarrow \ln |y+x+1|=x+C
$$

Rearranging, we have

$$
|y+x+1|=e^{C} e^{x} \Longrightarrow y+x+1= \pm e^{C} e^{x} \Longrightarrow y= \pm e^{C} e^{x}-x-1
$$

On the other hand, it's not hard to see from $(*)$ that $u=-1$ is a solution of the DE . This corresponds to $y+x=-1$, or $y=-x-1$. Thus, the general solution of the DE is

$$
y=K e^{x}-x-1, \quad K \in \mathbb{R}
$$

