21-122 - Week 6, Recitation 1

Agenda

- 7.8: Example 7
- 7.8: \#21, 29, 49, 51, 52, 53

Section 7.8 - Improper Integrals

Example 7: Evaluate $\int_{0}^{3} \frac{d x}{x-1}$ if possible.
Solution - Wrong approach: Write

$$
\int_{0}^{3} \frac{d x}{x-1}=\left.\ln |x-1|\right|_{0} ^{3}=\ln (2)-\ln (1)=\ln (2)
$$

This doesn't work because there is an asymptote at $x=1$ (the integrand is not even defined there!). To approach this as an improper integral, write

$$
\int_{0}^{3} \frac{d x}{x-1}=\int_{0}^{1} \frac{d x}{x-1}+\int_{1}^{3} \frac{d x}{x-1}
$$

Now

$$
\int_{0}^{1} \frac{d x}{x-1}=\left.\ln |x-1|\right|_{0} ^{1}=\lim _{t \rightarrow 1^{-}}(\ln |t-1|-\ln (1))=-\infty
$$

Since $\int_{0}^{1} \frac{d x}{x-1}$ is divergent, then so is $\int_{0}^{3} \frac{d x}{x-1}$.
21, 29. Determine whether each integral is convergent or divergent. Evaluate those that are convergent.

$$
\begin{equation*}
\text { (21) } \quad \int_{1}^{\infty} \frac{\ln x}{x} d x, \quad \text { (29) } \quad \int_{-2}^{14} \frac{d x}{\sqrt[4]{x+2}} \tag{29}
\end{equation*}
$$

$\underline{\text { Solution - For (21), substitute } u=\ln x, d u=\frac{d x}{x} \text { and write }}$

$$
\int_{1}^{\infty} \frac{\ln x}{x} d x=\int_{0}^{\infty} u d u=\infty
$$

Therefore, this integral is divergent. Another way to do this is to split up the integral by writing $\int_{1}^{\infty} \frac{\ln x}{x} d x=\int_{1}^{e} \frac{\ln x}{x} d x+\int_{e}^{\infty} \frac{\ln x}{x} d x$. Then note that $\frac{\ln x}{x} \geq \frac{1}{x}$ for $x \geq e$, so by the Comparison Test, $\int_{e}^{\infty} \frac{\ln x}{x} d x$ is divergent, so then $\int_{1}^{\infty} \frac{\ln x}{x} d x$ is divergent.

For (29), write

$$
\int_{-2}^{14} \frac{d x}{\sqrt[4]{x+2}}=\int_{-2}^{14}(x+2)^{-1 / 4} d x=\left.\frac{4}{3}(x+2)^{3 / 4}\right|_{-2} ^{14}=\frac{4}{3}\left(16^{3 / 4}-0\right)=\frac{32}{3}
$$

so this integral is convergent.
$49,51,52,53$. Use the Comparison Test to determine whether the intergal is convergent or divergent.
(49) $\int_{0}^{\infty} \frac{x}{x^{3}+1} d x$,
(51) $\int_{1}^{\infty} \frac{x+1}{\sqrt{x^{4}-x}} d x$,
(52) $\int_{0}^{\infty} \frac{\arctan x}{2+e^{x}} d x$,
(53) $\int_{0}^{1} \frac{\sec ^{2} x}{x \sqrt{x}} d x$

Solution - For (49), write $\int_{0}^{\infty} \frac{x}{x^{3}+1} d x=\int_{0}^{1} \frac{x}{x^{3}+1} d x+\int_{1}^{\infty} \frac{x}{x^{3}+1} d x$. Now for $x \geq 1$, we have $\frac{x}{x^{3}+1} \leq \frac{x}{x^{3}}=\frac{1}{x^{2}}$. Since $\int_{1}^{\infty} \frac{1}{x^{2}} d x$ is convergent, then so is $\int_{1}^{\infty} \frac{x}{x^{3}+1} d x$, and so is the original integral.

For (51), observe that $x^{4}-x \leq x^{4}$ for $x \geq 1$, so then

$$
\frac{x+1}{\sqrt{x^{4}-x}} \geq \frac{x+1}{\sqrt{x^{4}}}=\frac{x+1}{x^{2}} \geq \frac{x}{x^{2}}=\frac{1}{x}
$$

Since $\int_{1}^{\infty} \frac{1}{x} d x$ is divergent, then by the Comparison Test, so is the original integral.
For (52), we can write $\frac{\arctan x}{2+e^{x}} \leq \frac{\pi}{2} \frac{1}{2+e^{x}} \leq \frac{\pi}{2} \frac{1}{e^{x}}$. Now

$$
\int_{0}^{\infty} \frac{\pi}{2} \frac{1}{e^{x}} d x=-\left.\frac{\pi}{2} e^{-x}\right|_{0} ^{\infty}=\frac{\pi}{2}
$$

so $\int_{0}^{\infty} \frac{\pi}{2} \frac{1}{e^{x}} d x$ is convergent. By the Comparison Test, so is the original integral.
For (53), we'd like to compare $\int_{0}^{1} \frac{\sec ^{2} x}{x \sqrt{x}} d x$ to $\int_{0}^{1} \frac{1}{x \sqrt{x}} d x$ or something like that. To do this, note that on $[0,1]$, we have $\sec ^{2} x \geq 1$ (since $\left.\cos ^{2} x \leq 1\right)$. Thus, $\frac{\sec ^{2} x}{x \sqrt{x}} \geq \frac{1}{x \sqrt{x}}$. Now

$$
\int_{0}^{1} \frac{1}{x \sqrt{x}} d x=\int_{0}^{1} x^{-3 / 2} d x=-\left.2 x^{-1 / 2}\right|_{0} ^{1}=2\left(\lim _{t \rightarrow 0^{+}} t^{-1 / 2}-1\right)=\infty
$$

By the Comparison Test, since $\int_{0}^{1} \frac{1}{x \sqrt{x}} d x$ is divergent, then so is $\int_{0}^{1} \frac{\sec ^{2} x}{x \sqrt{x}} d x$.

