21-122 - Week 3, Recitation 2

Agenda

- Quadratic Polynomials
- Review: Partial Fractions
- Section 7.4: Example 3, Example 4, 7.4: 2, 4, 6, 14, 15, 21
- Return HW 2

Quadratic Polynomials

- To show that a quadratic function $a x^{2}+b x+c$ is irreducible (i.e. it can't be factored), use the quadratic formula to show that it has no real roots, i.e. $b^{2}-4 a c<0$.
- Examples: For $x^{2}+x+1$, we have $b^{2}-4 a c=1-4=-3$, so this polynomial is irreducible. Similarly, for $x^{2}-x+1$, we have $b^{2}-4 a c=1-4=-3$, so this polynomial is irreducible.
- When factoring a quadratic $a x^{2}+b x+c$, we often guess the factorization. Sometimes it's better to simply find the roots x_{1} and x_{2} of the quadratic, then

$$
a x^{2}+b x+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)
$$

- Examples:

$$
\begin{aligned}
-6 x^{2}+15 x+36= & -6(x-4)\left(x+\frac{3}{2}\right), \quad 6 x^{2}+13 x+6=6\left(x+\frac{2}{3}\right)\left(x+\frac{3}{2}\right) \\
& 20 x^{2}-17 x-63=20\left(x-\frac{9}{4}\right)\left(x+\frac{7}{5}\right)
\end{aligned}
$$

Section 7.4

Example 3: Find $\int \frac{d x}{x^{2}-a^{2}}$, where $a \neq 0$.
Solution - Write

$$
\frac{1}{x^{2}-a^{2}}=\frac{1}{(x-a)(x+a)}=\frac{A}{x-a}+\frac{B}{x+a}
$$

Therefore, $A(x+a)+B(x-a)=1$. Now set $x=a$ to get $A(2 a)=1$, so $A=\frac{1}{2 a}$. Set $x=-a$ to get $B(-2 a)=1$, so $B=-\frac{1}{2 a}$. Now

$$
\int \frac{d x}{x^{2}-a^{2}}=\frac{1}{2 a} \int\left(\frac{1}{x-a}-\frac{1}{x+a}\right) d x=\frac{1}{2 a}(\ln |x-a|-\ln |x+a|)+C=\frac{1}{2 a} \ln \left|\frac{x-a}{x+a}\right|+C
$$

Example 4: Find $\int \frac{x^{4}-2 x^{2}+4 x+1}{x^{3}-x^{2}-x+1} d x$.
 get

$$
\frac{x^{4}-2 x^{2}+4 x+1}{x^{3}-x^{2}-x+1}=x+1+\frac{4 x}{x^{3}-x^{2}-x+1}
$$

Now factorize $x^{3}-x^{2}-x+1$ by writing

$$
x^{3}-x^{2}-x+1=x^{2}(x-1)-(x-1)=\left(x^{2}-1\right)(x-1)=(x-1)^{2}(x+1)
$$

Next, expand

$$
\frac{4 x}{x^{3}-x^{2}-x+1}=\frac{A}{x-1}+\frac{B}{(x-1)^{2}}+\frac{C}{x+1}
$$

Clearing the denominators, we have

$$
4 x=A(x-1)(x+1)+B(x+1)+C(x-1)^{2}
$$

Setting $x=1$, we have $4=2 B$, so $B=2$. Setting $x=-1$, we have $-4=C(-2)^{2}=4 C$, so $C=-1$. There's no nice way to get A directly, so let's just use the easy value $x=0$ and see what we get. Setting $x=0$, we have

$$
0=A(-1)(1)+2(1)-1(-1)^{2}=-A+2-1 \Longrightarrow A=2-1=1
$$

Now

$$
\begin{aligned}
\int \frac{x^{4}-2 x^{2}+4 x+1}{x^{3}-x^{2}-x+1} d x & =\int\left(x+1+\frac{4 x}{x^{3}-x^{2}-x+1} d x\right. \\
& =\int\left(x+1+\frac{1}{x-1}+\frac{2}{(x-1)^{2}}-\frac{1}{x+1}\right) d x \\
& =\frac{1}{2} x^{2}+x+\ln |x-1|-\frac{2}{x-1}-\ln |x+1|+C_{1} \\
& =\frac{1}{2} x^{2}+x+\ln \left|\frac{x-1}{x+1}\right|-\frac{2}{x-1}+C_{1}
\end{aligned}
$$

where C_{1} is a constant.
Recall - $\int \frac{d x}{x^{2}+a^{2}}=\frac{1}{a} \arctan \left(\frac{x}{a}\right)+C$. We will need this later today.
$(2,4,6)$ Write out the form of the partial fraction decomposition of the function. Do not determine the numerical values of the coefficients.

$$
\begin{array}{ll}
2(a) \frac{x}{x^{2}+x-2} & \text { (b) } \frac{x^{2}}{x^{2}+x-2} \\
4(a) \frac{x^{4}-2 x^{3}+x^{2}+2 x-1}{x^{2}-2 x+1} & \text { (b) } \frac{x^{2}-1}{x^{3}+x^{2}+x} \\
6(a) \frac{t^{6}+1}{t^{6}+t^{3}} & \text { (b) } \frac{x^{5}+1}{\left(x^{2}-x\right)\left(x^{4}+2 x^{2}+1\right)}
\end{array}
$$

$\underline{\text { Solutions - In }}(2)(\mathrm{a})$ and $(2)(\mathrm{b})$, the denominator factors as $x^{2}+x-2=(x+2)(x-1)$. Then

$$
\frac{x}{x^{2}+x-2}=\frac{A}{x+2}+\frac{B}{x-1}
$$

For (b), we have to perform long division first. We get

$$
\frac{x^{2}}{x^{2}+x-2}=1+\frac{-x+2}{x^{2}+x-2}=1+\frac{A}{x+2}+\frac{B}{x-1}
$$

For 4(a), we perform long divison and factorize $x^{2}-2 x+1=(x-1)^{2}$. We get.

$$
\frac{x^{4}-2 x^{3}+x^{2}+2 x-1}{x^{2}-2 x+1}=x^{2}+\frac{2 x-1}{(x-1)^{2}}=x^{2}+\frac{A}{x-1}+\frac{B}{(x-1)^{2}}
$$

For (b), factorize $x^{3}+x^{2}+x=x\left(x^{2}+x+1\right)$ and note that the quadratic is irreducible. Therefore,

$$
\frac{x^{2}-1}{x^{3}+x^{2}+x}=\frac{A}{x}+\frac{B x+C}{x^{2}+x+1}
$$

For 6(a), perform long division and factorize $t^{6}+t^{3}=t^{3}\left(t^{3}+1\right)=t^{3}(t+1)\left(t^{2}-t+1\right)$. The quadratic is irreducible, so we get

$$
\frac{t^{6}+1}{t^{6}+t^{3}}=1+\frac{-t^{3}+1}{t^{6}+t^{3}}=1+\frac{A}{t}+\frac{B}{t^{2}}+\frac{C}{t^{3}}+\frac{D}{t+1}+\frac{E x+F}{t^{2}-t+1}
$$

Finally, for (b) we factorize $\left(x^{2}-x\right)\left(x^{4}+2 x^{2}+1\right)=x(x-1)\left(x^{2}+1\right)^{2}$. Since $x^{2}+1$ is irreducible, we have

$$
\frac{x^{5}+1}{\left(x^{2}-x\right)\left(x^{4}+2 x^{2}+1\right)}=\frac{A}{x}+\frac{B}{x-1}+\frac{C x+D}{x^{2}+1}+\frac{E x+F}{\left(x^{2}+1\right)^{2}}
$$

(14) Evaluate $\int \frac{1}{(x+a)(x+b)} d x$.

$$
\frac{1}{(x+a)(x+b)}=\frac{A}{x+a}+\frac{B}{x+b}
$$

Clearing denominators, we have $1=A(x+b)+B(x+a)$. Setting $x=-a$, we have $1=A(b-a)$, so $A=\frac{1}{b-a}$. Setting $x=-b$, we have $1=B(a-b)=-B(b-a)$, so $B=-\frac{1}{b-a}$. Now

$$
\int \frac{1}{(x+a)(x+b)} d x=\frac{1}{b-a} \int\left(\frac{1}{x+a}-\frac{1}{x+b}\right) d x=\frac{1}{b-a}(\ln |x+a|-\ln |x+b|)+C=\frac{1}{b-a} \ln \left|\frac{x+a}{x+b}\right|+C
$$

(15) Evaluate $\int_{3}^{4} \frac{x^{3}-2 x^{2}-4}{x^{3}-2 x^{2}} d x$.

Solution - Perform long division (or just do this by inspection) to get $\frac{x^{3}-2 x^{2}-4}{x^{3}-2 x^{2}}=1-\frac{4}{x^{3}-2 x^{2}}$. Next, write

$$
-\frac{4}{x^{3}-2 x^{2}}=-\frac{4}{x^{2}(x-2)}=\frac{A}{x}+\frac{B}{x^{2}}+\frac{C}{x-2}
$$

Clearing denominators, we have

$$
-4=A x(x-2)+B(x-2)+C x^{2}
$$

Setting $x=2$, we have $4 C=-4$, so $C=-1$. Setting $x=0$, we have $-4=-2 B$, so $B=2$. To get A, set $x=1$, so

$$
-4=-A-B+C \Longrightarrow A=-B+C+4=-2-1+4=1
$$

Now

$$
\begin{aligned}
\int_{3}^{4} \frac{x^{3}-2 x^{2}-4}{x^{3}-2 x^{2}} d x & =\int_{3}^{4}\left(1-\frac{4}{x^{3}-2 x^{2}}\right) d x \\
& =\int_{3}^{4}\left(1+\frac{1}{x}+\frac{2}{x^{2}}-\frac{1}{x-2}\right) d x \\
& =\left.\left[x+\ln |x|-\frac{2}{x}-\ln |x-2|\right]\right|_{3} ^{4} \\
& =(4-3)+(\ln (4)-\ln (3))+\left(\frac{2}{3}-\frac{2}{4}\right)+(\ln (1)-\ln (2)) \\
& =1+\ln \frac{4}{3}+\frac{1}{6}-\ln (2) \\
& =\frac{7}{6}+\ln \frac{2}{3}
\end{aligned}
$$

(21) Evalute $\int \frac{x^{3}+4}{x^{2}+4} d x$.
 in partial fraction form, so we have

$$
\int \frac{x^{3}+4}{x^{2}+4} d x=\int\left(x+\frac{4-4 x}{x^{2}+4}\right) d x=\int\left(x+4 \frac{1}{x^{2}+4}-4 \frac{x}{x^{2}+4}\right) d x=\frac{1}{2} x^{2}+2 \arctan \left(\frac{x}{2}\right)-2 \ln \left(x^{2}+4\right)+C
$$

