21-122 - Week 15, Recitation 2

Section 10.3

61. Find the points on the curve $r = 3\cos\theta$ where the tangent line is horizontal or vertical. <u>Solution</u> - Since $\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}}$, then horizontal tangents correspond to $\frac{dy}{d\theta} = 0$ (assuming $\frac{dx}{d\theta} \neq 0$). Vertical tangents correspond to $\frac{dx}{d\theta} = 0$ (assuming $\frac{dy}{d\theta} \neq 0$).

• Horizontal tangents: $y = r \sin \theta = 3 \cos \theta \sin \theta$, so $\frac{dy}{d\theta} = 3 \cos^2 \theta - 3 \sin^2 \theta$. Setting this equal to zero, we have $\cos^2 \theta - \sin^2 \theta = 0$, or $\cos 2\theta = 0$. This gives rise to $\theta = \frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4}$. Finding the *r*-values corresponding to these θ -values, we end up with the two points

$$\left(\frac{3\sqrt{2}}{2},\frac{\pi}{4}\right), \qquad \left(\frac{3\sqrt{2}}{2},\frac{7\pi}{4}\right)$$

The tangents are indeed horizontal here, because $\frac{dx}{d\theta} \neq 0$ at these points.

• Vertical tangents: $x = r \cos \theta = 3 \cos^2 \theta$, so $\frac{dx}{d\theta} = -6 \cos \theta \sin \theta$. Setting this equal to zero, we have $-3 \sin 2\theta = 0$, or $\sin 2\theta = 0$. We have $\theta = 0$, $\theta = \frac{\pi}{2}$, $\theta = \pi$, and $\theta = \frac{3\pi}{2}$. Finding the *r*-values corresponding to these θ -values, we end up with two points

$$(3,0), (0,\frac{\pi}{2})$$

The tangents are indeed vertical here, because $\frac{dy}{d\theta} \neq 0$ at these points.

Section 10.4

21. Find the area of the region enclosed by one loop of the curve $r = 1 + 2 \sin \theta$ (inner loop). Solution - We'd like to use the formula $A = \int_{\alpha}^{\beta} \frac{1}{2}r^2 d\theta$, but we first need to figure out what the angles α and β should be. To do this, it's best to start with a quick sketch of this curve.

Rather than plotting individual points, plot r as a function of θ in Cartesian coordinates (i.e. the standard way we plot functions), then use this sketch to help sketch the curve. (To check your progress on this, use Wolfram Alpha. See Examples 7 and 8 on page 658.)

The inner loop starts and ends at the origin, i.e. r = 0. Setting r = 0, we have

 $1 + 2\sin\theta = 0 \implies \sin\theta = -\frac{1}{2} \implies \theta = \frac{7\pi}{6} \text{ or } \frac{11\pi}{6}$

Comparing with the sketch, we see that the inner loop ranges from $\theta = \frac{7\pi}{6}$ to $\theta = \frac{11\pi}{6}$. Now

$$A = \int_{7\pi/6}^{11\pi/6} \frac{1}{2} (1+2\sin\theta)^2 \, d\theta$$

$$= \frac{1}{2} \int_{7\pi/6}^{11\pi/6} 1 + 4\sin\theta + 4\sin^2\theta \, d\theta$$

$$= \frac{1}{2} \int_{7\pi/6}^{11\pi/6} 3 + 4\sin\theta - 2\cos 2\theta \, d\theta$$

$$= \frac{1}{2} (3\theta - 4\cos\theta - \sin 2\theta) \Big|_{\theta=7\pi/6}^{11\pi/6} \frac{1}{\theta=7\pi/6} = \frac{1}{2} [(\frac{11\pi}{2} - 4\cos(\frac{11\pi}{6}) - \sin(\frac{11\pi}{3})) - (\frac{7\pi}{2} - 4\cos(\frac{7\pi}{6}) - \sin(\frac{7\pi}{3}))]$$

$$= \frac{1}{2} (2\pi - 8\cos(\frac{\pi}{6}) + 2\sin(\frac{\pi}{3})) = \pi - 4\cos(\frac{\pi}{6}) + \sin(\frac{\pi}{3}) = \pi - 2\sqrt{3} + \frac{\sqrt{3}}{2} = \pi - \frac{3\sqrt{3}}{2}$$

27. Find the area of the region that lies inside the first curve and outside the second curve.

$$r = 3\cos\theta, \qquad r = 1 + \cos\theta$$

<u>Solution</u> - I'll leave it to you to sketch these curves as an exercise. (Use Wolfram Alpha if you need help.) To find the area of the region, find the θ -values corresponding to the points of intersection of the two curves. Set

$$3\cos\theta = 1 + \cos\theta \implies 2\cos\theta = 1 \implies \cos\theta = \frac{1}{2} \implies \theta = \frac{\pi}{3} \text{ or } \frac{5\pi}{3}$$

Looking at the diagram, we want the region $\theta \leq \frac{\pi}{3}$ or $\theta \geq \frac{5\pi}{3}$. Another reason to write this is $-\frac{\pi}{3} \leq \theta \leq \frac{\pi}{3}$. Write

$$A = \int_{-\pi/3}^{\pi/3} \frac{1}{2} (3\cos\theta)^2 \, d\theta - \int_{-\pi/3}^{\pi/3} \frac{1}{2} (1+\cos\theta)^2 \, d\theta$$

$$= \frac{1}{2} \int_{-\pi/3}^{\pi/3} 9\cos^2\theta - (1+\cos\theta)^2 \, d\theta$$
 (integrand is even)

$$= \int_{0}^{\pi/3} 8\cos^2\theta - 2\cos\theta - 1 \, d\theta$$

$$= \int_{0}^{\pi/3} 3 + 4\cos 2\theta - 2\cos\theta \, d\theta$$
 (half-angle formula)

$$= (3\theta + 2\sin 2\theta - 2\sin\theta) \Big|_{\theta=0}^{\pi/3}$$

$$= \pi + 2\sin \frac{2\pi}{3} - 2\sin\frac{\pi}{3}$$

41. Find all points of intersection of the given curves.

$$r = \sin \theta, \qquad r = \sin 2\theta$$

<u>Solution</u> - To find the points of intersection, we set $\sin \theta = \sin 2\theta$. We have

$$\sin\theta - \sin 2\theta = 0 \implies \sin\theta - 2\sin\theta\cos\theta = 0 \implies \sin\theta(1 - 2\cos\theta) = 0$$

Thus, $\sin \theta = 0$ or $\cos \theta = \frac{1}{2}$. This gives rise to the values $\theta = 0$, $\theta = \pi$, $\theta = \frac{\pi}{3}$, $\theta = \frac{5\pi}{3}$. In polar coordinates, the points of intersection are

$$(0,0), (0,\pi), (\frac{\sqrt{3}}{2},\frac{\pi}{3}), (-\frac{\sqrt{3}}{2},\frac{5\pi}{3})$$

We can write these a little more nicely. Note that (0,0) and $(0,\pi)$ both correspond to the origin. Moreover, we can rewrite the fourth point as $(\frac{\sqrt{3}}{2}, \frac{2\pi}{3})$. Thus, there are *three* points of intersection, namely

$$(0,0), \qquad \left(\frac{\sqrt{3}}{2},\frac{\pi}{3}\right), \qquad \left(\frac{\sqrt{3}}{2},\frac{2\pi}{3}\right)$$

45. Find the exact length of the polar curve $r = 2\cos\theta$, $0 \le \theta \le \pi$. Solution

$$L = \int_{\alpha}^{\beta} \sqrt{r^2 + (\frac{dr}{d\theta})^2} \, d\theta$$

=
$$\int_{0}^{\pi} \sqrt{(2\cos\theta)^2 + (-2\sin\theta)^2} \, d\theta$$

=
$$\int_{0}^{\pi} \sqrt{4(\cos^2\theta + 4\sin^2\theta)} \, d\theta$$

=
$$\int_{0}^{\pi} 2 \, d\theta$$

=
$$2\pi$$

If you graph this curve, you'll see that it's a circle of radius 1 (and centre (1,0)). That being the case, it shouldn't be surprising that the length of the curve is 2π , i.e. the circumference of the circle.