21-122 - Week 15, Recitation 2

Section 10.3

61. Find the points on the curve $r=3 \cos \theta$ where the tangent line is horizontal or vertical.

Solution - Since $\frac{d y}{d x}=\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}$, then horizontal tangents correspond to $\frac{d y}{d \theta}=0$ (assuming $\frac{d x}{d \theta} \neq 0$). Vertical tangents correspond to $\frac{d x}{d \theta}=0$ (assuming $\frac{d y}{d \theta} \neq 0$).

- Horizontal tangents: $y=r \sin \theta=3 \cos \theta \sin \theta$, so $\frac{d y}{d \theta}=3 \cos ^{2} \theta-3 \sin ^{2} \theta$. Setting this equal to zero, we have $\cos ^{2} \theta-\sin ^{2} \theta=0$, or $\cos 2 \theta=0$. This gives rise to $\theta=\frac{\pi}{4}, \frac{3 \pi}{4}, \frac{5 \pi}{4}, \frac{7 \pi}{4}$. Finding the r-values corresponding to these θ-values, we end up with the two points

$$
\left(\frac{3 \sqrt{2}}{2}, \frac{\pi}{4}\right), \quad\left(\frac{3 \sqrt{2}}{2} \frac{7 \pi}{4}\right)
$$

The tangents are indeed horizontal here, because $\frac{d x}{d \theta} \neq 0$ at these points.

- Vertical tangents: $x=r \cos \theta=3 \cos ^{2} \theta$, so $\frac{d x}{d \theta}=-6 \cos \theta \sin \theta$. Setting this equal to zero, we have $-3 \sin 2 \theta=0$, or $\sin 2 \theta=0$. We have $\theta=0, \theta=\frac{\pi}{2}, \theta=\pi$, and $\theta=\frac{3 \pi}{2}$. Finding the r-values corresponding to these θ-values, we end up with two points

$$
(3,0), \quad\left(0, \frac{\pi}{2}\right)
$$

The tangents are indeed vertical here, because $\frac{d y}{d \theta} \neq 0$ at these points.

Section 10.4

21. Find the area of the region enclosed by one loop of the curve $r=1+2 \sin \theta$ (inner loop).

Solution - We'd like to use the formula $A=\int_{\alpha}^{\beta} \frac{1}{2} r^{2} d \theta$, but we first need to figure out what the angles α and β should be. To do this, it's best to start with a quick sketch of this curve.

Rather than plotting individual points, plot r as a function of θ in Cartesian coordinates (i.e. the standard way we plot functions), then use this sketch to help sketch the curve. (To check your progress on this, use Wolfram Alpha. See Examples 7 and 8 on page 658.)

The inner loop starts and ends at the origin, i.e. $r=0$. Setting $r=0$, we have

$$
1+2 \sin \theta=0 \Longrightarrow \sin \theta=-\frac{1}{2} \Longrightarrow \theta=\frac{7 \pi}{6} \text { or } \frac{11 \pi}{6}
$$

Comparing with the sketch, we see that the inner loop ranges from $\theta=\frac{7 \pi}{6}$ to $\theta=\frac{11 \pi}{6}$. Now

$$
\begin{aligned}
A & =\int_{7 \pi / 6}^{11 \pi / 6} \frac{1}{2}(1+2 \sin \theta)^{2} d \theta \\
& =\frac{1}{2} \int_{7 \pi / 6}^{11 \pi / 6} 1+4 \sin \theta+4 \sin ^{2} \theta d \theta \\
& =\frac{1}{2} \int_{7 \pi / 6}^{11 \pi / 6} 3+4 \sin \theta-2 \cos 2 \theta d \theta \\
& =\left.\frac{1}{2}(3 \theta-4 \cos \theta-\sin 2 \theta)\right|_{\theta=7 \pi / 6} ^{11 \pi / 6} \\
& =\frac{1}{2}\left[\left(\frac{11 \pi}{2}-4 \cos \left(\frac{11 \pi}{6}\right)-\sin \left(\frac{11 \pi}{3}\right)\right)-\left(\frac{7 \pi}{2}-4 \cos \left(\frac{7 \pi}{6}\right)-\sin \left(\frac{7 \pi}{3}\right)\right)\right] \\
& =\frac{1}{2}\left(2 \pi-8 \cos \left(\frac{\pi}{6}\right)+2 \sin \left(\frac{\pi}{3}\right)\right) \\
& =\pi-4 \cos \left(\frac{\pi}{6}\right)+\sin \left(\frac{\pi}{3}\right) \\
& =\pi-2 \sqrt{3}+\frac{\sqrt{3}}{2} \\
& =\pi-\frac{3 \sqrt{3}}{2}
\end{aligned}
$$

27. Find the area of the region that lies inside the first curve and outside the second curve.

$$
r=3 \cos \theta, \quad r=1+\cos \theta
$$

Solution - I'll leave it to you to sketch these curves as an exercise. (Use Wolfram Alpha if you need help.) To find the area of the region, find the θ-values corresponding to the points of intersection of the two curves. Set

$$
3 \cos \theta=1+\cos \theta \Longrightarrow 2 \cos \theta=1 \Longrightarrow \cos \theta=\frac{1}{2} \Longrightarrow \theta=\frac{\pi}{3} \text { or } \frac{5 \pi}{3}
$$

Looking at the diagram, we want the region $\theta \leq \frac{\pi}{3}$ or $\theta \geq \frac{5 \pi}{3}$. Another reason to write this is $-\frac{\pi}{3} \leq \theta \leq \frac{\pi}{3}$. Write

$$
\begin{aligned}
A & =\int_{-\pi / 3}^{\pi / 3} \frac{1}{2}(3 \cos \theta)^{2} d \theta-\int_{-\pi / 3}^{\pi / 3} \frac{1}{2}(1+\cos \theta)^{2} d \theta \\
& =\frac{1}{2} \int_{-\pi / 3}^{\pi / 3} 9 \cos ^{2} \theta-(1+\cos \theta)^{2} d \theta \\
& =\int_{0}^{\pi / 3} 9 \cos ^{2} \theta-(1+\cos \theta)^{2} d \theta \quad \text { (integrand is even) } \\
& =\int_{0}^{\pi / 3} 8 \cos ^{2} \theta-2 \cos \theta-1 d \theta \\
& =\int_{0}^{\pi / 3} 3+4 \cos 2 \theta-2 \cos \theta d \theta \quad \text { (half-angle formula) } \\
& =\left.(3 \theta+2 \sin 2 \theta-2 \sin \theta)\right|_{\theta=0} ^{\pi / 3} \\
& =\pi+2 \sin \frac{2 \pi}{3}-2 \sin \frac{\pi}{3} \\
& =\pi
\end{aligned}
$$

41. Find all points of intersection of the given curves.

$$
r=\sin \theta, \quad r=\sin 2 \theta
$$

Solution - To find the points of intersection, we set $\sin \theta=\sin 2 \theta$. We have

$$
\sin \theta-\sin 2 \theta=0 \Longrightarrow \sin \theta-2 \sin \theta \cos \theta=0 \Longrightarrow \sin \theta(1-2 \cos \theta)=0
$$

Thus, $\sin \theta=0$ or $\cos \theta=\frac{1}{2}$. This gives rise to the values $\theta=0, \theta=\pi, \theta=\frac{\pi}{3}, \theta=\frac{5 \pi}{3}$. In polar coordinates, the points of intersection are

$$
(0,0), \quad(0, \pi), \quad\left(\frac{\sqrt{3}}{2}, \frac{\pi}{3}\right), \quad\left(-\frac{\sqrt{3}}{2}, \frac{5 \pi}{3}\right)
$$

We can write these a little more nicely. Note that $(0,0)$ and $(0, \pi)$ both correspond to the origin. Moreover, we can rewrite the fourth point as $\left(\frac{\sqrt{3}}{2}, \frac{2 \pi}{3}\right)$. Thus, there are three points of intersection, namely

$$
(0,0), \quad\left(\frac{\sqrt{3}}{2}, \frac{\pi}{3}\right), \quad\left(\frac{\sqrt{3}}{2}, \frac{2 \pi}{3}\right)
$$

45. Find the exact length of the polar curve $r=2 \cos \theta, 0 \leq \theta \leq \pi$. Solution

$$
\begin{aligned}
L & =\int_{\alpha}^{\beta} \sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}} d \theta \\
& =\int_{0}^{\pi} \sqrt{(2 \cos \theta)^{2}+(-2 \sin \theta)^{2}} d \theta \\
& =\int_{0}^{\pi} \sqrt{4\left(\cos ^{2} \theta+4 \sin ^{2} \theta\right)} d \theta \\
& =\int_{0}^{\pi} 2 d \theta \\
& =2 \pi
\end{aligned}
$$

If you graph this curve, you'll see that it's a circle of radius 1 (and centre (1,0$)$). That being the case, it shouldn't be surprising that the length of the curve is 2π, i.e. the circumference of the circle.

