21-122 - Week 15, Recitation 1

Agenda

- Review: Polar Coordinates
- Correction 1: The meaning of $(-r, \theta)$
- Symmetry:
- Section 10.3: 11, 14, 19, 25, 37

Correction 1 - See page 654.

$\overline{\text { Solution }}$ - The point lies in the fourth quadrant and has coordinates $\left(\sqrt{\frac{3}{2}},-\sqrt{\frac{3}{2}}\right)$.
Correction 2 - The rose $r=\cos (k \theta)(k$ integer $)$ has $2 k$ petals if k is even and k petals if k is odd.
Symmetry
See page 659 for diagrams.

1. If a polar equation is unchanged when θ is replaced by $-\theta$, the curve is symmetric about the polar axis (x-axis).
2. If the equation is unchanged when r is replaced by $-r$ (equivalently, when θ is replaced by $\theta+\pi)$, the curve is symmetric about the pole.
3. If the equation is unchanged by θ is replace by $\pi-\theta$, the curve is symmetric about the vertical line $\theta=\frac{\pi}{2}$.

Examples - The equation $r=\cos 2 \theta$ represents a four-leaved rose (see page 658 or use Wolfram Alpha). This exhibits all three types of symmetry above.

Section 10.3

11. Sketch the region in the plane.

$$
2<r<3, \quad \frac{5 \pi}{3} \leq \theta \leq \frac{7 \pi}{3}
$$

Solution - This is a segment of the ring of inner radius 2 and outer radius 3 . See diagram in the back of the book.
14. Find a formula for the distance between the points with polar coordinates $\left(r_{1}, \theta_{1}\right)$ and $\left(r_{2}, \theta_{2}\right)$. Solutions - In Cartesian coordinates, the distance between two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is

$$
d=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}
$$

To find the distance in polar coordinates, let's convert our polar coordinates to Cartesian coordinates. In Cartesian coordinates, the points $\left(r_{1}, \theta_{1}\right)$ and $\left(r_{2}, \theta_{2}\right)$ can be written as

$$
\left(r_{1} \cos \theta_{1}, r_{1} \sin \theta_{1}\right), \quad\left(r_{2} \cos \theta_{2}, r_{2} \sin \theta_{2}\right)
$$

Now the distance between these two points is

$$
\begin{aligned}
d & =\sqrt{\left(r_{1} \cos \theta_{1}-r_{2} \cos \theta_{2}\right)^{2}+\left(r_{1} \sin \theta_{1}-r_{2} \sin \theta_{2}\right)^{2}} \\
& =\sqrt{r_{1}^{2} \cos ^{2} \theta_{1}+r_{2}^{2} \cos ^{2} \theta_{2}-2 r_{1} r_{2} \cos \theta_{1} \cos \theta_{2}+r_{1}^{2} \sin ^{2} \theta_{1}+r_{2}^{2} \sin ^{2} \theta_{2}-2 r_{1} r_{2} \sin \theta_{1} \sin \theta_{2}} \\
& =\sqrt{r_{1}^{2}+r_{2}^{2}-2 r_{1} r_{2}\left(\cos \theta_{1} \cos \theta_{2}+\sin \theta_{1} \sin \theta_{2}\right)} \\
& =\sqrt{r_{1}^{2}+r_{2}^{2}-2 r_{1} r_{2} \cos \left(\theta_{1}-\theta_{2}\right)}
\end{aligned}
$$

19. Identify the curve $r^{2} \cos 2 \theta=1$ by finding a Cartesian equation for the curve.

Solution - Let's try and rewrite this in Cartesian coordinates. Write

$$
1=r^{2} \cos 2 \theta=r^{2}\left(\cos ^{2} \theta-\sin ^{2} \theta\right)=(r \cos \theta)^{2}-(r \sin \theta)^{2}=x^{2}-y^{2}
$$

The Cartesian equation of the curve is $x^{2}-y^{2}=1$. This corresponds to a hyperbola with center $(0,0)$, foci on the x-axis, and asymptotes $y= \pm x$.
25. Find a polar equation for the curve represented by the Cartesian equation $x^{2}+y^{2}=2 c x$. Solution - Rewriting each side, we have $r^{2}=2 c r \cos \theta$, or more $\operatorname{simply}, r=2 c \cos \theta$.
37. Sketch the curve $r=2 \cos 4 \theta$ by first sketching the graph of r as a function of θ in Cartesian coordinates.
Solution - See diagram in the back of the book.

