21-122 - Week 14, Recitation 1

Agenda

- Reminder: Concavity
- Section 10.2 Calculus With Parametric Curves: 11, 26, 41, 63 (time permitting, 31)

Section 10.2

11. Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$. For which values of t is the curve concave upward?

$$x = t^2 + 1, \qquad y = t^2 + t$$

<u>Solution</u> - When $\frac{dx}{dt} \neq 0$, we have

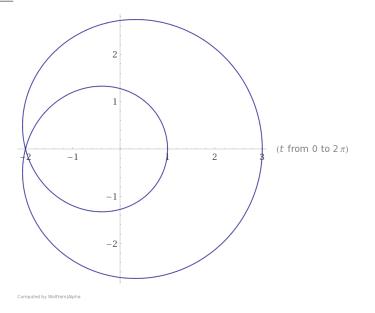
$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{2t+1}{2t} = 1 + \frac{1}{2t}$$

Now

$$\frac{d^2y}{dx^2} = \frac{\frac{d}{dt}(\frac{dy}{dx})}{\frac{dx}{dt}} = \frac{-\frac{1}{2t^2}}{2t} = -\frac{1}{4t^3}$$

This curve is concave upward for t < 0.

26. Graph the curve $x = \cos t + 2\cos 2t$, $y = \sin t + 2\sin 2t$ to discover where it crosses itself. Then find equations of both tangents at that point. Solutions -



This plot was produced by WolframAlpha. From the plot, the curve crosses itself at (-2, 0). First, let's find the values of t corresponding to this point. Consider the equations

 $x = \cos t + 2\cos 2t = -2,$ $y = \sin t + 2\sin 2t = 0,$ $0 \le t \le 2\pi$

We focus on the second equation. We have

$$\sin t + 2\sin 2t = \sin t + 4\sin t\cos t = \sin t(1 + 4\cos t) = 0 \implies \sin t = 0 \text{ or } \cos t = -\frac{1}{4}$$

The equation $\sin t = 0$ corresponds to t = 0 or $t = \pi$, neither of which satisfy the first equation above. Therefore, the point (-2, 0) must correspond to $\cos t = -\frac{1}{4}$, which yields t-values $t = \cos^{-1}(-\frac{1}{4})$ and $t = 2\pi - \cos^{-1}(-\frac{1}{4})$.

To find the equation of the tangents, we need $\frac{dy}{dx}$, which is given by

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{\cos t + 4\cos 2t}{-\sin t - 4\sin 2t} = -\frac{\cos t + 4(2\cos^2 t - 1)}{\sin t + 8\sin t\cos t}$$

When $t = \cos^{-1}(-\frac{1}{4})$, $\cos t = -\frac{1}{4}$ and $\sin t = \sqrt{1 - (\frac{1}{4})^2} = \frac{\sqrt{15}}{4}$. When $t = 2\pi - \cos^{-1}(\frac{1}{4})$, $\sin t = -\frac{\sqrt{15}}{4}$. Substituting these values into the formula for $\frac{dy}{dx}$, we see that the tangent lines have slopes

$$-\frac{-\frac{1}{4}+4(2\cdot(-\frac{1}{4})^2-1)}{\pm\frac{\sqrt{15}}{4}+8(\pm\frac{\sqrt{15}}{4})(-\frac{1}{4})} = \pm\frac{-1+16(\frac{1}{8}-1)}{\sqrt{15}-2\sqrt{15}} = \pm\frac{-1+2-16}{-\sqrt{15}} = \pm\sqrt{15}$$

The equations of the tangent lines are $y = \pm \sqrt{15}(x+2)$.

41. Find the exact length of the curve.

$$x = 1 + 3t^2$$
, $y = 4 + 2t^3$, $0 \le t \le 1$

Solution

$$\begin{split} L &= \int_0^1 \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} \, dt \\ &= \int_0^1 \sqrt{(6t)^2 + (6t^2)^2} \, dt \\ &= \int_0^1 6t \sqrt{1+t^2} \, dt \\ &= \int_1^2 3\sqrt{u} \, du \qquad (u = 1+t^2, \, du = 2t \, dt) \\ &= 2u^{3/2} \Big|_{u=1}^2 \\ &= 2(2^{3/2} - 1) \end{split}$$

63. Find the exact area of the surface obtained by rotating the given curve about the x-axis.

 $x = a\cos^3\theta, \qquad y = a\sin^3\theta, \qquad 0 \le \theta \le \frac{\pi}{2}$

Solution

$$S = \int_0^{\pi/2} 2\pi y \sqrt{\left(\frac{dx}{d\theta}\right)^2 + \left(\frac{dy}{d\theta}\right)^2} \, d\theta$$

= $2\pi a \int_0^{\pi/2} \sin^3 \theta \sqrt{(-3a\cos^2\theta\sin\theta)^2 + (3a\sin^2\theta\cos\theta)^2} \, d\theta$
= $2\pi a \int_0^{\pi/2} \sin^3 \theta \sqrt{9a^2\cos^2\theta\sin^2\theta(\cos^2\theta + \sin^2\theta)} \, d\theta$
= $6\pi a^2 \int_0^{\pi/2} \sin^3 \theta(\cos\theta\sin\theta) \, d\theta$
= $6\pi a^2 \int_0^1 u^4 \, du \qquad (u = \sin\theta, \, du = \cos\theta \, d\theta)$
= $6\pi a^2 \left(\frac{u^5}{5}\right) \Big|_{u=0}^1$
= $\frac{6}{5}\pi a^2$