21-122 - Week 13, Recitation 1

Agenda

- Review
- Section 11.10: 19, 27, 33, 57, 63
- HW 9 Due

Section 11.10

19. Find the Taylor series for $f(x)=\cos x$ centered at $a=\pi$. Also find the associated radius of convergence.
Solution - Write

$$
\begin{array}{rlrl}
f(x) & =\cos x & f(\pi) & =-1 \\
f^{\prime}(x) & =-\sin x & f^{\prime}(\pi) & =0 \\
f^{\prime \prime}(x) & =-\cos x & f^{\prime \prime}(\pi) & =1 \\
f^{\prime \prime \prime}(x) & =\sin x & f^{\prime \prime \prime}(\pi) & =0 \\
f^{(4)}(x) & =\cos x & f^{(4)}(\pi) & =-1
\end{array}
$$

The derivatives repeat in a cycle of four, so we can write

$$
\begin{aligned}
f(x) & =f(\pi)+\frac{f^{\prime}(\pi)}{1!}(x-\pi)+\frac{f^{\prime \prime}(\pi)}{2!}(x-\pi)^{2}+\frac{f^{\prime \prime \prime}(\pi)}{3!}(x-\pi)^{3}+\cdots \\
& =-1+\frac{(x-\pi)^{2}}{2!}-\frac{(x-\pi)^{4}}{4!}+\frac{(x-\pi)^{6}}{6!}-\cdots \\
& =\sum_{n=0}^{\infty}(-1)^{n+1} \frac{(x-\pi)^{2 n}}{(2 n)!}
\end{aligned}
$$

For the radius of convergence, we use the Ratio Test, $a_{n}=(-1)^{n+1} \frac{(x-\pi)^{2 n}}{(2 n)!}$. For $x \neq \pi$, we have

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(x-\pi)^{2 n+2}}{(x-\pi)^{2 n}} \cdot \frac{(2 n)!}{(2 n+2)!}\right|=\lim _{n \rightarrow \infty}\left|\frac{(x-\pi)^{2}}{(2 n+2)(2 n+1)}\right|=0
$$

Thus, the radius of convergence is $R=\infty$.
27. Use the binomial series to expand the function $\frac{1}{(2+x)^{3}}$ as a power series. State the radius of convergence.
Solution - Write

$$
\frac{1}{(2+x)^{3}}=(2+x)^{-3}=2^{-3}\left(1+\frac{x}{2}\right)^{-3}=2^{-3} \sum_{n=0}^{\infty}\binom{-3}{n}\left(\frac{x}{2}\right)^{n}
$$

We can simplify this by writing
$\binom{-3}{n}\left(\frac{x}{2}\right)^{n}=\frac{(-3)(-3-1)(-3-2) \cdots(-3-n+1)}{n!} \frac{x^{n}}{2^{n}}=(-1)^{n} \frac{3 \cdot 4 \cdot 5 \cdots(3+n-1)}{n!} \frac{x^{n}}{2^{n}}=(-1)^{n} \frac{(n+2)!}{2 \cdot n!} \frac{x^{n}}{2^{n}}=(-1)^{n} \frac{(n+1)(n+2)}{2^{n+1}} x^{n}$
Now

$$
f(x)=2^{-3} \sum_{n=0}\binom{-3}{n}\left(\frac{x}{2}\right)^{n}=\sum_{n=0}^{\infty}(-1)^{n} \frac{(n+1)(n+2)}{2^{n+4}} x^{n}
$$

21-122 - Integration and Approximation
Instructor: Adam Gutter
Fall 2014

This expansion is only valid when $\left|\frac{x}{2}\right|<1$, or $|x|<2$. Thus, the radius of convergence is $R=2$.
33. Use a Maclaurin series in Table 1 to obtain the Maclaurin series for $f(x)=x \cos \left(\frac{1}{2} x^{2}\right)$.

Solutions - Write

$$
x \cos \left(\frac{1}{2} x^{2}\right)=x \sum_{n=0}^{\infty}(-1)^{n} \frac{\left(\frac{1}{2} x^{2}\right)^{2 n}}{(2 n)!}=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{4 n+1}}{2^{2 n}(2 n)!}
$$

57. Use series to evaluate the limit $\lim _{x \rightarrow 0} \frac{\sin x-x+\frac{1}{6} x^{3}}{x^{5}}$.

Solution - Write

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\sin x-x+\frac{1}{6} x^{3}}{x^{5}} & =\lim _{x \rightarrow 0} \frac{\left(x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots\right)-x+\frac{1}{6} x^{3}}{x^{5}} \\
& =\lim _{x \rightarrow 0} \frac{\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\frac{x^{9}}{9!}-\cdots}{x^{5}} \\
& =\lim _{x \rightarrow 0}\left(\frac{1}{5!}-\frac{x^{2}}{7!}+\frac{x^{4}}{9!}-\cdots\right) \\
& =\frac{1}{5!} \\
& =\frac{1}{120}
\end{aligned}
$$

63. Find the sum of the series $\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{4 n}}{n!}$.

Solution - We can rewrite this as

$$
\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{4 n}}{n!}=\sum_{n=0}^{\infty} \frac{\left(-x^{4}\right)^{n}}{n!}=e^{-x^{4}}
$$

