21-122 - Week 12, Recitation 1

Agenda

- Return HW 8, Quiz 3
- Quiz 3 Solutions
- 11.7 (Strategy for Testing Series) - 7, 18, 33
- 11.8 (Power Series) - 28
- 11.9 (Functions as Power Series) - 8, 22, 24

Section 11.7

Test the series for convergence or divergence.

$$
\text { (7) } \sum_{n=2}^{\infty} \frac{1}{n \sqrt{\ln n}}, \quad \text { (18) } \sum_{n=2}^{\infty} \frac{(-1)^{n-1}}{\sqrt{n}-1}, \quad \text { (33) } \sum_{n=1}^{\infty}\left(\frac{n}{n+1}\right)^{n^{2}}
$$

Solutions - For (7), let's use the Integral Test. The function $f(x)=\frac{1}{x \sqrt{\ln x}}$ is clearly continuous, positive, and decreasing for $x \geq 2$ (since x and $\ln x$ are increasing). Write

$$
\int_{2}^{\infty} \frac{1}{x \sqrt{\ln x}} d x \stackrel{(u=\ln x)}{=} \int_{\ln 2}^{\infty} \frac{1}{\sqrt{u}} d u
$$

The integral above is known to diverge (recall that $\int_{1}^{\infty} \frac{1}{x^{p}} d x$ diverges for $p \leq 1$). Therefore, the series diverges.

Since (18) is an alternating series, the Alternating Series Test seems appropriate. Write $b_{n}=\frac{1}{\sqrt{n}-1}$. Since $\sqrt{n}-1$ is increasing for $n \geq 2$, then b_{n} is decreasing. Moreover, $\lim _{n \rightarrow \infty} b_{n}=$ $\lim _{n \rightarrow \infty} \frac{1}{\sqrt{n}-1}=0$. By the Alternating Series Test, the series converges.

Since the terms in (33) are raised to the power n^{2}, the Root Test seems like it might be helpful. Write $a_{n}=\left(\frac{n}{n+1}\right)^{n^{2}}$. We have

$$
\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=\lim _{n \rightarrow \infty}\left(\left(\frac{n}{n+1}\right)^{n^{2}}\right)^{1 / n}=\lim _{n \rightarrow \infty}\left(\frac{n}{n+1}\right)^{n}
$$

This is an indeterminate form (of type 1^{∞}), so use L'Hopital's Rule to determine the limit. Write

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \log \left(\left(\frac{n}{n+1}\right)^{n}\right) & =\lim _{n \rightarrow \infty} n \log \left(\frac{n}{n+1}\right) \\
& =\lim _{x \rightarrow \infty} x \log \left(\frac{x}{x+1}\right) \\
& =\lim _{x \rightarrow \infty} \frac{\log \left(\frac{x}{x+1}\right)}{\frac{1}{x}} \\
& =\lim _{x \rightarrow \infty} \frac{\frac{1}{x}-\frac{1}{x+1}}{-\frac{1}{x^{2}}} \quad \text { (L'Hopital) } \\
& =\lim _{x \rightarrow \infty}-x^{2}\left(\frac{1}{x}-\frac{1}{x+1}\right) \\
& =\lim _{x \rightarrow \infty}-\cdot \frac{x^{2}}{x(x+1)} \\
& =-1
\end{aligned}
$$

Thus, $\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=\lim _{n \rightarrow \infty}\left(\frac{n}{n+1}\right)^{n}=e^{-1}<1$, so by the Root Test, the series convergs.

Section 11.8

(28) Find the radius and interval of convergence for the series $\sum_{n=1}^{\infty} \frac{n!x^{n}}{1 \cdot 3 \cdot 5 \cdots(2 n-1)}$.

$\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{\frac{(n+1)!x^{n+1}}{1 \cdot 3 \cdot 5 \cdots(2(n+1)-1)}}{\frac{n!x^{n}}{1 \cdot 3 \cdot 5 \cdots(2 n-1)}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(n+1)!}{n!} \frac{x^{n+1}}{x^{n}} \frac{1 \cdot 3 \cdot 5 \cdots(2 n-1)}{1 \cdot 3 \cdot 5 \cdots(2(n+1)-1)}\right|=\lim _{n \rightarrow \infty} \frac{n}{2(n+1)-1}|x|=\frac{1}{2}|x|$
We know the series converges if $\frac{1}{2}|x|<1$, i.e. $|x|<2$. The series diverges if $\frac{1}{2}|x|>1$, i.e. $|x|>2$. Thus, the radius of convergence is $R=2$.

To determine the interval of convergence, we need to test the endpoints $x=2$ and $x=-2$.

- When $x=2$, the terms of the series can be written as

$$
a_{n}=\frac{n!2^{n}}{1 \cdot 3 \cdot 5 \cdots(2 n-1)}=\frac{2 \cdot 4 \cdot 6 \cdots(2 n)}{1 \cdot 3 \cdot 5 \cdots(2 n-1)}=\frac{2}{1} \frac{4}{3} \frac{6}{5} \cdots \frac{2 n}{(2 n-1)}>1
$$

In particular, $\lim _{n \rightarrow \infty} a_{n} \neq 0$, so by the Divergence Test, the series diverges.

- When $x=-2$, we have the alternating series $\sum_{n=1}^{\infty}(-1)^{n} a_{n}$, where a_{n} is the same as in the previous case. But from the previous case, we know that $\lim _{n \rightarrow \infty} a_{n} \neq 0$, so $\lim _{n \rightarrow \infty}(-1)^{n} a_{n} \neq 0$. By the Divergence Test again, the series diverges.

Therefore, the interval of convergence is $(-2,2)$.

Section 11.9

Find a power series representation and the radius/interval of convergence (only for (8)) for the following functions.

$$
\text { (8) } f(x)=\frac{x}{2 x^{2}+1} \quad(22) f(x)=\ln \left(x^{2}+4\right) \quad(24) f(x)=\tan ^{-1}(2 x)
$$

Solutions - For (8), write

$$
f(x)=\frac{x}{2 x^{2}+1}=x \cdot \frac{1}{1-\left(-2 x^{2}\right)}=x \sum_{n=0}^{\infty}\left(-2 x^{2}\right)^{n}=x \sum_{n=0}^{\infty}(-2)^{n} x^{2 n}=\sum_{n=0}^{\infty}(-2)^{n} x^{2 n+1}
$$

The series converges exactly when $\left|-2 x^{2}\right|<1$, or when $x^{2}<\frac{1}{2}$, i.e. $|x|<\frac{1}{\sqrt{2}}$. Thus, the radius of convergence is $R=\frac{1}{\sqrt{2}}$ and the interval of convergence is $\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$.
(22) The derivative of $f(x)$ is $f^{\prime}(x)=\frac{2 x}{x^{2}+4}$. To find a power series for $f(x)$, let's find a power series for its derivative and then integrate. Write

$$
f^{\prime}(x)=\frac{2 x}{x^{2}+4}=\frac{2 x}{4} \cdot \frac{1}{1-\left(-\frac{x^{2}}{4}\right)}=\frac{x}{2} \sum_{n=0}^{\infty}\left(-\frac{x^{2}}{4}\right)^{n}=\frac{x}{2} \sum_{n=0}^{\infty}\left(-\frac{1}{4}\right)^{n} x^{2 n}=\sum_{n=0}^{\infty} \frac{1}{2}\left(-\frac{1}{4}\right)^{n} x^{2 n+1}
$$

Now we can write

$$
f(x)=\ln \left(x^{2}+4\right)=\int \sum_{n=0}^{\infty} \frac{1}{2}\left(-\frac{1}{4}\right)^{n} x^{2 n+1} d x=\sum_{n=0}^{\infty} \frac{1}{2}\left(-\frac{1}{4}\right)^{n} \int x^{2 n+1} d x=\sum_{n=0}^{\infty} \frac{1}{2}\left(-\frac{1}{4}\right)^{n} \frac{x^{2 n+2}}{2 n+2}+C
$$

21-122 - Integration and Approximation
Instructor: Adam Gutter
Fall 2014

To find C, substitute $x=0$. We get $f(0)=\ln (4)=C$, thus

$$
\ln \left(x^{2}+4\right)=\sum_{n=0}^{\infty} \frac{1}{2}\left(-\frac{1}{4}\right)^{n} \frac{x^{2 n+2}}{2 n+2}+\ln (4)
$$

We approach (24) similarly to (22). Write $f^{\prime}(x)=\frac{1}{1+(2 x)^{2}} \cdot 2=\frac{2}{1+4 x^{2}}$. Now

$$
f^{\prime}(x)=2 \frac{1}{1-\left(-4 x^{2}\right)}=2 \sum_{n=0}^{\infty}\left(-4 x^{2}\right)^{n}=2 \sum_{n=0}^{\infty}(-4)^{n} x^{2 n}=\sum_{n=0}^{\infty}(-1)^{n} 2^{2 n+1} x^{2 n}
$$

Now
$f(x)=\int f^{\prime}(x) d x=\int \sum_{n=0}^{\infty}(-1)^{n} 2^{2 n+1} x^{2 n} d x=\sum_{n=0}^{\infty}(-1)^{n} 2^{2 n+1} \int x^{2 n} d x=\sum_{n=0}^{\infty}(-1)^{n} 2^{2 n+1} \frac{x^{2 n+1}}{2 n+1}+C$
Since $f(0)=\tan ^{-1}(0)=0$, then $C=0$, so

$$
f(x)=\sum_{n=0}^{\infty}(-1)^{n} 2^{2 n+1} \frac{x^{2 n+1}}{2 n+1}
$$

