21-122 - Week 10, Recitation 2

Agenda

- 11.4: $1,5,7,17,31$
- 11.5: 3, 7, 11, 17, 23, 32

Section 11.4 - The Comparison Tests

1. Suppose $\sum a_{n}$ and $\sum b_{n}$ are series with positive terms and $\sum b_{n}$ is known to be convergent.
(a) If $a_{n}>b_{n}$ for all n, what can you say about $\sum a_{n}$? Why?
(b) If $a_{n}<b_{n}$ for all n, what can you say about $\sum a_{n}$? Why?

Solutions - (a) We can't say anything about whether $\sum a_{n}$ converges or diverges. However, if $\sum a_{n}$ does converge, then we know $\sum a_{n}>\sum b_{n}$.
(b) We know $\sum a_{n}$ converges and that $\sum a_{n}<\sum b_{n}$.
$5,7,17,31$. Determine whether the series converges or diverges.
(5) $\sum_{n=1}^{\infty} \frac{n+1}{n \sqrt{n}}$,
(7) $\sum_{n=1}^{\infty} \frac{9^{n}}{3+10^{n}}$,
(17) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^{2}+1}}$,
(31) $\sum_{n=1}^{\infty} \sin \left(\frac{1}{n}\right)$

Solutions - (5) For all n, we have $\frac{n+1}{n \sqrt{n}}>\frac{n}{n \sqrt{n}}=\frac{1}{\sqrt{n}}$. Since $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ diverges (this is a p-series, $p=\frac{1}{2}$), then by the Comparison Test the original series diverges.
(7) For all $n \geq 1$, we have $\frac{9^{n}}{3+10^{n}}<\frac{9^{n}}{10^{n}}=\left(\frac{9}{10}\right)^{n}$. The geometric series $\sum_{n=1}^{\infty}\left(\frac{9}{10}\right)^{n}$ converges, so by the Comparison Test the original series converges.
(17) We can do this two ways. First, a solution that uses the Comparison Test. I'd like to compare $\frac{1}{\sqrt{n^{2}+1}}$ to something like $\frac{1}{n}$. Write

$$
\frac{1}{\sqrt{n^{2}+1}}>\frac{1}{\sqrt{n^{2}+2 n+1}}=\frac{1}{\sqrt{(n+1)^{2}}}=\frac{1}{n+1}
$$

Since $\sum_{n=1}^{\infty} \frac{1}{n+1}$ diverges, then by the Comparison Test, so does the original series.
Another (perhaps easier) solution uses the Limit Comparison Test. Let's compare $\frac{1}{\sqrt{n^{2}+1}}$ with $\frac{1}{n}$. We have

$$
\lim _{n \rightarrow \infty} \frac{\frac{1}{\sqrt{n^{2}+1}}}{\frac{1}{n}}=\lim _{n \rightarrow \infty} \frac{n}{\sqrt{n^{2}+1}}=\lim _{n \rightarrow \infty} \frac{n}{n \sqrt{1+\frac{1}{n^{2}}}}=\lim _{n \rightarrow \infty} \frac{1}{\sqrt{1+\frac{1}{n^{2}}}}=\frac{1}{\sqrt{1+0}}=1
$$

which is finite and positive. As above, since $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges, then so does the original series.
(31) Recall from Calculus I that $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$, so as $x \rightarrow 0$, we have $\sin (x) \approx x$. In light of this fact, let's compare $\sin \left(\frac{1}{n}\right)$ and $\frac{1}{n}$. We have

$$
\lim _{n \rightarrow \infty} \frac{\sin \left(\frac{1}{n}\right)}{\frac{1}{n}} \stackrel{\left(x=\frac{1}{n}\right)}{=} \lim _{x \rightarrow 0^{+}} \frac{\sin (x)}{x}=1
$$

which is finite and positive. Since $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges, then by the Limit Comparison Test so does the original series.

More Problems

$10,12,15,29,32$
Determine whether the series converges or diverges.
10. $\sum_{k=1}^{\infty} \frac{k \sin ^{2} k}{1+k^{3}}$
12. $\sum_{k=1}^{\infty} \frac{(2 k-1)\left(k^{2}-1\right)}{(k+1)\left(k^{2}+4\right)^{2}}$
15. $\sum_{n=1}^{\infty} \frac{4^{n+1}}{3^{n}-2}$
29. $\sum_{n=1}^{\infty} \frac{1}{n!}$
32. $\sum_{n=1}^{\infty} \frac{1}{n^{1+1 / n}}$

Solutions For (10), we can write $0 \leq \frac{k \sin ^{2} k}{1+k^{3}} \leq \frac{k}{1+k^{3}} \leq \frac{k}{k^{3}}=\frac{1}{k^{2}}$. Since $\sum_{k=1}^{\infty} \frac{1}{k^{2}}$ converges, then by the Comparison Test so does the given series.

For (12), rewrite the terms as

$$
\frac{(2 k-1)\left(k^{2}-1\right)}{(k+1)\left(k^{2}+4\right)^{2}}=\frac{k^{3}}{k^{5}} \frac{\left(2-\frac{1}{k}\right)\left(1-\frac{1}{k^{2}}\right)}{\left(1+\frac{1}{k}\right)\left(1+\frac{4}{k^{2}}\right)^{2}}=\frac{1}{k^{2}} \frac{\left(2-\frac{1}{k}\right)\left(1-\frac{1}{k^{2}}\right)}{\left(1+\frac{1}{k}\right)\left(1+\frac{4}{k^{2}}\right)^{2}}
$$

This suggests using the Limit Comparison Test with $\frac{1}{k^{2}}$. We have

$$
\lim _{k \rightarrow \infty} \frac{\frac{1}{k^{2}} \frac{\left(2-\frac{1}{k}\right)\left(1-\frac{1}{k^{2}}\right)}{\left(1+\frac{1}{k}\right)\left(1+\frac{4}{k^{2}}\right)^{2}}}{\frac{1}{k^{2}}}=\lim _{k \rightarrow \infty} \frac{\left(2-\frac{1}{k}\right)\left(1-\frac{1}{k^{2}}\right)}{\left(1+\frac{1}{k}\right)\left(1+\frac{4}{k^{2}}\right)^{2}}=\frac{(2)(1)}{(1)(1)^{2}}=2
$$

Since $\sum_{k=1}^{\infty} \frac{1}{k^{2}}$ converges, so does the original series. For (15), let's compare with $\left(\frac{4}{3}\right)^{n}$. We have

$$
\lim _{n \rightarrow \infty} \frac{\frac{4^{n+1}}{3^{n}-2}}{\left(\frac{4}{3}\right)^{n}}=\lim _{n \rightarrow \infty} \frac{4^{n+1}}{4^{n}} \frac{3^{n}}{3^{n}-2}=\lim _{n \rightarrow \infty} 4 \frac{1}{1-\frac{2}{3^{n}}}=4
$$

Since $\sum_{n=1}^{\infty}\left(\frac{4}{3}\right)^{n}$ diverges (geometric with $r>1$), then so does the given series.
For (29), note that $\frac{1}{n!}=\frac{1}{n(n-1)(n-2) \cdots 3 \cdot 2 \cdot 1} \leq \frac{1}{n(n-1)}$ for $n \geq 2$. Now

$$
\frac{1}{n(n-1)}=\frac{1}{n-1}-\frac{1}{n} \Longrightarrow \sum_{n=2}^{\infty} \frac{1}{n(n-1)}=\sum_{n=2}^{\infty}\left(\frac{1}{n-1}-\frac{1}{n}\right)=\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\cdots=1
$$

By the Comparison Test, the given series converges.

21-122 - Integration and Approximation
Instructor: Adam Gutter
Fall 2014

Finally, for (32), let's compare with $\frac{1}{n}$. We have

$$
\lim _{n \rightarrow \infty} \frac{\frac{1}{n}}{\frac{1}{n^{1+1 / n}}}=\lim _{n \rightarrow \infty} \frac{n^{1+1 / n}}{n}=\lim _{n \rightarrow \infty} n^{1 / n}
$$

To find this limit, let's consider $\lim _{x \rightarrow \infty} x^{1 / x}$ and use L'Hopital's Rule. We have

$$
\lim _{x \rightarrow \infty} \ln \left(x^{1 / x}\right)=\lim _{x \rightarrow \infty} \frac{\ln x}{x}=\lim _{x \rightarrow \infty} \frac{\frac{1}{x}}{1}=0
$$

Therefore, $\lim _{n \rightarrow \infty} n^{1 / n}=\lim _{x \rightarrow \infty} x^{1 / x}=e^{0}=1$. By the Limit Comparison Test, since $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges, then so does the given series.

