21-122 - Week 10, Recitation 1

Agenda

- 11.2: 32, 36, 40, 45, 60

Section 11.2-Series

$32,36,40$. Determine whether the series is convergent or divergent. If it is convergent, find its sum.

$$
\text { (32) } \sum_{n=1}^{\infty} \frac{1+3^{n}}{2^{n}}, \quad \text { (36) } \sum_{n=1}^{\infty} \frac{1}{1+\left(\frac{2}{3}\right)^{n}}, \quad \text { (40) } \sum_{n=1}^{\infty}\left(\frac{3}{5^{n}}+\frac{2}{n}\right)
$$

Solutions - (32) Denote $a_{n}=\frac{1+3^{n}}{2^{n}}$. Note that

$$
\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty}\left(\frac{1}{2^{n}}+\left(\frac{3}{2}\right)^{n}\right)=\infty
$$

so $\sum_{n=1}^{\infty} \frac{1+3^{n}}{2^{n}}$ does not converge.
(36) Denote $a_{n}=\frac{1}{1+\left(\frac{2}{3}\right)^{n}}$. We have $\lim _{n \rightarrow \infty} a_{n}=\frac{1}{1+0}=1 \neq 0$, so $\sum_{n=1}^{\infty} \frac{1}{1+\left(\frac{2}{3}\right)^{n}}$ does not converge.
(40) The series $\sum_{n=1}^{\infty} \frac{3}{5^{n}}$ is convergent (this is a geometric series with $r=\frac{1}{5}$). However, the series $\sum_{n=1}^{\infty} \frac{2}{n}$ is divergent, since the series $\sum_{n=1}^{\infty} \frac{1}{n}$ is known to be divergent.
45. Determine whether the series $\sum_{n=1}^{\infty} \frac{3}{n(n+3)}$ is convergent or divergent by expressing s_{n} as a telescoping sum. If it is convergent, find its sum.
$\underline{\text { Solution }}$ - To get a telescoping sum, we use partial fractions. Write $\frac{3}{n(n+3)}=\frac{A}{n}+\frac{B}{n+3}$. Solving for A and B, we have

$$
3=A(n+3)+B n=(A+B) n+3 A \Longrightarrow A=1, B=-1
$$

Thus, $a_{n}=\frac{3}{n(n+3)}=\frac{1}{n}-\frac{1}{n+3}$. Now

$$
\begin{aligned}
s_{n} & =a_{1}+a_{2}+\cdots+a_{n} \\
& =\left(\frac{1}{1}-\frac{1}{4}\right)+\left(\frac{1}{2}-\frac{1}{5}\right)+\left(\frac{1}{3}-\frac{1}{6}\right)+\left(\frac{1}{4}-\frac{1}{7}\right)+\cdots+\left(\frac{1}{n}-\frac{1}{n+3}\right) \\
& =\frac{1}{1}+\frac{1}{2}+\frac{1}{3}-\frac{1}{n+1}-\frac{1}{n+2}-\frac{1}{n+3} \\
& =\frac{11}{6}-\frac{1}{n+1}-\frac{1}{n+2}-\frac{1}{n+3}
\end{aligned}
$$

Now $\sum_{n=1}^{\infty} a_{n}=\lim _{n \rightarrow \infty} s_{n}=\lim _{n \rightarrow \infty}\left(\frac{11}{6}-\frac{1}{n+1}-\frac{1}{n+2}-\frac{1}{n+3}\right)=\frac{11}{6}$.
60. Find the values of x for which the series $\sum_{n=0}^{\infty}(-4)^{n}(x-5)^{n}$ converges. Find the sum of the series for those values of x.

Solutions - We can rewrite the terms as follows: $a_{n}=(-4)^{n}(x-5)^{n}=(-4(x-5))^{n}$. Now this is a geometric series with $r=-4(x-5)$. This series will converge provided that $|r|<1$. Write this as

$$
|-4(x-5)|<1 \Longleftrightarrow 4|x-5|<1 \Longleftrightarrow|x-5|<\frac{1}{4} \Longleftrightarrow 5-\frac{1}{4}<x<5+\frac{1}{4} \Longleftrightarrow \frac{19}{4}<x<\frac{21}{4}
$$

Thus, the series converges precisely when $\frac{19}{4}<x<\frac{21}{4}$. In this case, the sum of the series is

$$
\sum_{n=0}^{\infty}(-4)^{n}(x-5)^{n}=\frac{1}{1-(-4)(x-5)}=\frac{1}{4 x-19}
$$

Section 11.3 - The Integral Test and Estimates of Sums

7, 11, 17, 21.
7. Use the Integral Test to determine whether the series $\sum_{n=1}^{\infty} \frac{n}{n^{2}+1}$ is convergent or divergent.

Solution - Consider $f(x)=\frac{x}{x^{2}+1}$. This function is certainly continuous and positive for $x>0$. Is it ultimately decreasing? We have

$$
f^{\prime}(x)=\frac{1 \cdot\left(x^{2}+1\right)-2 x(x)}{\left(x^{2}+1\right)^{2}}=\frac{1-x^{2}}{\left(x^{2}+1\right)^{2}}
$$

Now $f^{\prime}(x)<0$ when $x>1$, so $f(x)$ is decreasing when $x>1$. We apply the Integral Test.

$$
\int_{1}^{\infty} f(x) d x=\int_{1}^{\infty} \frac{x}{x^{2}+1} d x=\left.\lim _{t \rightarrow \infty} \frac{1}{2} \ln \left(x^{2}+1\right)\right|_{x=1} ^{t}=\lim _{t \rightarrow \infty} \frac{1}{2}\left(\ln \left(t^{2}+1\right)-\ln (2)\right)=\infty
$$

The integral is divergent, thus the sum is divergent.
$11,17,21$. Determine whether the series is convergent or divergent.

$$
\text { (11) } 1+\frac{1}{8}+\frac{1}{27}+\frac{1}{64}+\frac{1}{125}+\cdots, \quad \text { (17) } \sum_{n=1}^{\infty} \frac{1}{n^{2}+4} \quad \text { (21) } \sum_{n=2}^{\infty} \frac{1}{n \ln n}
$$

 it is convergent.
(17) The function $f(x)=\frac{1}{x^{2}+4}$ is positive, continuous, and increasing for $x \geq 1$. Write

$$
\int_{1}^{\infty} \frac{1}{x^{2}+4} d x=\int_{1}^{\infty} \frac{1}{4} \frac{1}{\left(\frac{x}{2}\right)^{2}+1} d x=\left.\lim _{t \rightarrow \infty} \frac{1}{2} \arctan \left(\frac{x}{2}\right)\right|_{x=1} ^{t}=\frac{1}{2}\left(\frac{\pi}{2}-\arctan \left(\frac{1}{2}\right)\right)
$$

The integral is convergent, so by the Integral Test, the series is convergent.
(21) The function $f(x)=\frac{1}{x \ln x}$ is continuous and positive for $x>1$. Moreover, it is decreasing because x and $\ln x$ are increasing for $x>1$. Since $f(x)$ is not defined at $x=1$, we consider the integral from 2 to infinity. Write

$$
\int_{2}^{\infty} \frac{1}{x \ln x} d x \stackrel{(u=\ln x)}{=} \int_{\ln 2}^{\infty} \frac{1}{u} d u
$$

The latter integral is known to be divergent, so the series is divergent.

