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Abstract

At each step, a random walk moves from its current position on a hypergraph to a
randomly selected neighbour. The move is effected by picking a random endpoint of a
random hyperedge incident with the current vertex occupied by the walk. We consider
two definitions of cover time for random walks on a hypergraph H. If the walk sees only
the vertices it moves between, then the usual definition of cover time, C(H), applies.
If the walk sees the complete edge during the transition, then an alternative definition
of cover time, the inform time I(H) is used. We calculate these quantities for random
r-regular, s-uniform hypergraphs, and find that C(H)/I(H) = Ω(s) for large s. As
far as we know, this is the first analysis of cover time for random walks on classes of
hypergraphs.

The notion of inform time is a reasonable model of passive listening which fits the
following types of situations. The particle is a message transmitted randomly from
location to location by a directional transmission in an ad-hoc network, and all receivers
within the transmission range can hear. The particle is a rumor passing between friends,
which is overheard by other friends present in the group at the same time.
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1 Introduction

The problem we consider is intended as a model of the following process. The vertices of a
network are associated into groups, and these groups define the edges of the network. In the
simplest case, the network is a graph so the groups are exactly the edges of the graph. In
general, the groups may be larger, and represent friends, a family, a local computer network, all
receivers within transmission range of a directed transmission in an ad-hoc network etc. In this
case the network is modeled as a hypergraph, the hyperedges being the group relationships.
An individual vertex can be in many groups, and two vertices are neighbours if there share a
common hyperedge. Within the network a particle (message, rumor, infection etc) is moving
randomly from vertex to neighboring vertex. When this transition occurs all vertices in a given
group are somehow affected (infected, informed) by the passage of the particle within the group.
Examples of this type of process include the following. The particle is an infection passed
from person to person and other family members also become infected with some probability.
The particle is a virus traveling on a network connection in an intra-net. The particle is a
message transmitted randomly from location to location by a directional transmission in an
ad-hoc network, and all receivers within the transmission range can hear. The particle is a
rumor passing between friends, which may be overheard by other friends present in the group
at the same time.

Let H = (V (H), E(H)) be a hypergraph. For v ∈ V let d(v) be the degree of v, i.e. the number
of edges e ∈ E incident with v. For e ∈ E let s(e) be the size |e| of hyperedge e, i.e. the number
of vertices v ∈ e. Let N(v) be the neighbour set of v, N(v) = {w : ∃e ∈ E, e ⊇ {v, w}}. We
regard N(v) as a multi-set in which each w ∈ N(v) has a multiplicity equal to the number of
edges e containing both v and w. Each edge e ∈ E incident with a vertex v ∈ V represents
a different transmission group. We assume a message M originated at some vertex u and, at
step t, is moving randomly from a vertex v to a vertex w in N(v). We model the problem
conceptually as a random walk Wu = (Wu(0), Wu(1), . . . , Wu(t), . . .) on the vertex set of
hypergraph H = (V, E), where Wu(0) = u, and Wu(t) = v.

Several natural models arise for reversible random walks on hypergraphs. Assume that the
walk W is at vertex v, and consider the transition from that vertex. In the first model (Model
1), an edge e incident with v is chosen proportional to s(e) − 1, where s(e) is the size of
hyperedge e. The walk then moves to a random endpoint of that edge, other than v. This
is equivalent to v choosing a neighbour w uar from the multi-set of neighbours N(v), where
vertex w is chosen according to its multiplicity. The stationary distribution of v in Model 1
is given by

πv =

∑
e:v∈e(s(e) − 1)∑

e∈E(H) s(e)(s(e) − 1)
.

In the case of graphs this reduces to πv = d(v)/2m, where d(v) is the degree of v, and m is
the number of edges in the graph. An alternative model (Model 2), is that when W is at v,
edge e is chosen uar from the hyperedges incident with v, and then w is chosen uar from the
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vertices w ∈ e, w 6= v. The stationary distribution of v in Model 2 is given by

πv =
d(v)∑

u∈V (H) d(u)
,

which corresponds to the familiar formula for graphs. If the hypergraph is uniform (all edges
have the same size) then the models are equivalent.

Random walks on graphs are a well studied topic, for an overview see e.g. [1, 10]. Random
walks on hypergraphs were used in [5] to cluster together electronic components which are
near in graph distance for physical layout in circuit design. For that application, edges were
chosen inversely proportional to their size, and then a random vertex within the edge was
selected. A random walk model is also used for generalized clustering in [11]. As before, the
aim is to partition the edge set, and this is done via the Laplacian of the transition matrix.
The only paper we can find which directly considers notions of cover time for random walks
on hypergraphs is [3]. The quantity examined in detail in [3] is closer to look-ahead in a
random walk on a graph. A look-ahead random walk inspects all neighbours within some
fixed distance of the current position.

The (vertex) cover time C(G) of a graph G, is given by C(G) = maxu Cu(G), where Cu(G)
is the expected time to visit all vertices of G for a walk starting at vertex u. The edge cover
time CE(G) is similarly defined as CE(G) = maxu Cu,E(G), where Cu,E(G) is the expected
time to visit all edges of G for a walk starting at vertex u.

For a hypergraph H , we define three quantities, the vertex cover time C(H), the inform time
I(H) and the edge cover time CE(H).

The cover time C(H) of a hypergraph H , is given by C(H) = maxu Cu(H), where Cu(H) is
the expected time for the walk Wu described above, to visit all vertices of H . To define I(H)
we need to define what it means for a vertex to be informed by a step of the walk. Suppose
that the walk Wu is at vertex v. Using e.g. Model 2, the will first selects an edge e incident
with v and then makes a transition to w ∈ e. The vertices of e are said to be informed by
this move. The inform time I(H) is the maximum over start vertices u, of the expected time
at which all vertices of the graph are informed. The edge cover time CE(H) = maxu Cu,E(H),
where Cu,E(H) is the expected time to visit every edge of H for a walk starting at vertex u.

For random walks on connected graphs there is an upper bound of O(nm) steps, [2], based on
a twice round the spanning tree argument, and there are graphs for which this bound is tight.
For Model 1, if we replace each edge e by a graph consisting of a clique of size

(
e
2

)
this gives

an upper bound of O(nms2) for connected hypergraphs. Here s2 is the expected squared edge
size (

∑
e∈E(H) e2)/m. However, it seems unlikely this is a tight upper bound.

In this paper we analyze random walks for the case of simple random r-regular, s-uniform
hypergraphs H . A hypergraph is r regular if each vertex is in r edges, and it is s-uniform if
every edge is of size s. A hypergraph is simple if no edge contains a repeated vertex, and no

3



two edges are identical.

Theorem 1. Suppose that r ≥ 2 and s ≥ 3 are such that rs = O(log n/ log log n). Suppose
that H is chosen uar from the set of all simple r-regular, s-uniform hypergraphs with vertex
set V = [n]. Then whp as n → ∞,

C(H) ∼
(

1 +
1

(r − 1)(s − 1) − 1

)
n log n,

I(H) ∼
(

1 +
s − 1

(r − 1)(s − 1) − 1

)
n

s − 1
log n,

and

CE(H) ∼
(

1 +
s − 1

(r − 1)(s − 1) − 1

)
rn

s
log n.

An interesting case is when s → ∞, so that C(H) ∼ n log n and

I(H) ∼ r

r − 1

n

s
log n.

Thus, perhaps predictably, inspecting s items at each step leads to an Ω(s) speed up in cover
time.

In the case of graphs, I(G) = C(G), and CE(G) ≥ C(G). For hypergraphs, clearly I(H) ≤
C(H). However there is the possibility that CE(H) ≤ C(H), as every edge can be visited
without visiting every vertex. Also, I(H) ≤ CE(H) as a vertex is informed whenever the walk
covers an edge containing that vertex. Indeed, intuitively we should have CE(H) about r times
I(H) if every vertex has degree r. We note that our theorem gives CE(H) ∼ r(s− 1)/s I(H).

2 Analysis

2.1 Outline proof of Theorem 1

We explain the proof of the value of C(H) of Theorem 1; the proofs of I(H), CE(H) are
similar. We reduce the walk Wu(H) on the hypergraph H to an equivalent walk Wu(G) on a
graph G(H). This is done in Section 2.5. We next establish the conductance of the walk on
G, and hence the value of the mixing time T on G.

The proof of Theorem 1 is based on the following result, which gives the probability that a
random walk Wu(t) an a graph G, does not visit a given vertex v after a suitably defined
mixing time T . The result is a corollary of Lemma 3.
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Lemma 2. Let Av(t) be the event that a walk Wu on graph G, does not visit vertex v at steps
T, T + 1, . . . , t. Then assuming the conditions of Lemma 3 hold,

Pr(Av(t)) =
(1 + O(Tπv))

(1 + pv)t
+ O(T 2πve

−t/KT ), (1)

where pv is given by (9), and K is a large constant.

The value of pv, as defined in (9) is given by pv ∼ πv/Rv, where πv is the stationary distribution
of v, and Rv can be calculated from the structure of the graph around v. The precise definitions
of T, Rv are given in Section 2.2 below.

In Section 2.4 we define a property, tree-like vertex of a hypergraph, which holds for most
vertices of H , whp. In Section 3, we derive the parameter pv of the walk in the associated
graph G, for tree-like vertices v of H . In Section we prove the conditions of Lemma 3 hold for
the associated graph G, provided v is tree-like. Having established this, we can apply Lemma
2 to such vertices. In Section 4 we prove Theorem 1. The proof is given in most detail for
C(H). An upper bound on C(H) is established in Section 4.1, and a lower bound in Section
4.2.

2.2 First visit probability

Let G denote a fixed connected graph with n vertices and m edges. Let P be the matrix of
transition probabilities of the walk and let P

(t)
u (v) = Pr(Wu(t) = v). We assume the random

walk Wu on G is ergodic, and thus the random walk has stationary distribution π, where
πv = d(v)/(2m). d(v) is the degree of vertex v.

In this section we consider the distribution of the number of visits to a given vertex v made
by a random walk Wu(t). We use the approach developed in [6], [7].

Let λ2 be the second eigenvalue of P , and let ΦG be the conductance of G i.e. ΦG =
minS⊆V,πS≤1/2 ΦG(S) where

ΦG(S) =

∑
x∈S πxP (x, S̄)

πS

. (2)

Then,

1 − ΦG ≤ λ2 ≤ 1 − Φ2
G

2
(3)

|P (t)
u (x) − πx| ≤ (πx/πu)

1/2λt
2. (4)

A proof of this can be found for example in Jerrum and Sinclair [9]. (For (4) we need λ2 = λmax

which can be achieved by making the chain lazy i.e. by not moving with probability 1/2 at
each step. This has no significant effect on the analysis).
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Let T be such that, for t ≥ T

max
u,x∈V

|P (t)
u (x) − πx| ≤ n−3. (5)

If this inequality holds, we say the distribution of the walk is in near stationarity. Fix two
vertices u, v. We consider the returns to vertex v made by a walk Wv, starting at v. Let
rt = Pr(Wv(t) = v) be the probability that the walk returns to v at step t = 0, 1, .... In
particular note that r0 = 1, as the walk starts on v.

Let

RT (z) =
T−1∑

j=0

rjz
j . (6)

Thus, evaluating RT (z) at z = 1, we have RT (1) ≥ r0 = 1.

For t ≥ T let ft = ft(u→v) be the probability that the first visit made to v by the walk Wu

to v in the period [T, T + 1, . . .] occurs at step t.

The following lemma gives the probability that a walk, starting from near stationarity makes
a first visit to vertex v at a given step. For proofs of the lemma and its corollary, see [6], [7].

Lemma 3. Let Rv = RT (1), where RT (z) is from (6). For some sufficiently large constant
K, let

λ =
1

KT
, (7)

where T satisfies (5). Suppose that

(i) For some constant θ > 0, we have

min
|z|≤1+λ

|RT (z)| ≥ θ. (8)

(ii) Tπv = o(1) and Tπv = Ω(n−2).

There exists
pv =

πv

Rv(1 + O(Tπv))
, (9)

such that for all t ≥ T ,

ft(u→v) = (1 + O(Tπv))
pv

(1 + pv)t+1
+ O(Tπve

−λt/2). (10)
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2.3 Configuration model

We will need a workable model of an r-regular s-uniform hypergraph. We use a hypergraph
version of the configuration model of Bollobás [4]. A configuration C(r, s) consists of a parti-
tion of rn labeled points {a1,1, ..., a1,r, · · · , an,1, ..., an,r} into unordered sets Ei, i = 1, ..., rn/s
of size s. We assume naturally that s divides rn. We refer to these sets as the hyperedges
of the configuration, and to the sets vi = {ai,1, ..., ai,r} as the vertices. By identifying the
points of vi, we obtain an r-regular, s-uniform (multi-)hypergraph H(C). In general, many
configurations map to one underlying hypergraph H(C). Considering the set C(r, s) of all
configurations C(r, s) with the uniform measure, the measure µ(H(C)) depends only on the
number of parallel edges (if any) at each vertex, and as an example all simple hypergraphs
i.e. those without multiple edges have equal measure in H(C). The probability a uar sampled
configuration is graphic is bounded below by a constant dependent only on r and s.

For the values of r, s considered in this paper, the probability H(C) is simple is Ω(e−(r−1)(s−1)).
It follows that any almost sure property of H(C) is also an almost sure property of simple
hypergraphs H .

2.4 Tree-like vertices

We need to identify the local structure of a typical vertex of H . Let

ω = log log log n.

A sequence v1, v2, . . . , vk ∈ V is said to define a path of length k − 1 if there are distinct edges
e1, e2, . . . , ek−1 ∈ E such that {vi, vi+1} ⊆ ei for 1 ≤ i ≤ k − 1. A sequence v1, v2, . . . , vk ∈
V, k ≥ 3 is said to define a cycle of length k if there are distinct edges e1, e2, . . . , ek ∈ E such
that {vi, vi+1} ⊆ ei for 1 ≤ i ≤ k. (Here vk+1 = v1). A path/cycle is small if it has length
at most ω. A vertex v ∈ V is said to be locally-tree-like if there does not exist a small path
v = v1, v2, . . . , vk from v to a small cycle vk = w1, w2, . . . , wl. An edge is locally-tree-like if it
only contains tree-like vertices.

We argue next that almost all vertices of H are locally-tree-like.

Lemma 4. Whp there are at most (rs)3ω vertices that are not locally-tree-like.

Proof We work with the model H(C). The expected number of vertices on cycles of
length k can be bounded above by

ω∑

k=3

sknk
(rs

n

)k

≤ O (sω(rs)ω) .

The Markov inequality implies that whp there are at most (rs)2ω vertices on small cycles.
For each such vertex there are at most (rs)ω vertices reachable by a walk of length ω. 2
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Lemma 5. Whp there are no short walks joining distinct short cycles.

Proof If such a structure exists then there exists a walk v1, v2, . . . , vk of length at most
3ω and a pair i, j ∈ [k] and edges f1, f2 ∈ E such that v1, vi ∈ f1 and vk, vj ∈ f2. The
probability of this is at most

3ω∑

k=5

s2k2nk
(rs

n

)k+1

= O

(
s3ω3(rs)3ω

n

)
.

2

2.5 Construction of an equivalent (contracted) graph

To calculate the quantities C(H), I(H) and CE(H) we replace H by graphs G(H), Γ(v) and
Γ(e), where v, e are a tree-like vertex and edge of H respectively. The precise construction of
these graphs is as follows:

Clique graph G(H). To estimate the cover time of hypergraph H we define a (multi-)graph
G(H) with the same cover time. To obtain G(H) we replace each hyperedge e(H) by a clique
of size |e(H)|, transforming the hypergraph H into a multi-graph G(H), which we call the
clique graph of H . Formally, G(H) = (V, F ) where F =

⋃
e∈E

(
e
2

)
.

We can think of Wu as a walk on G(H). Thus, the cover time of H is the cover time of G(H).

Inform-Contraction graph Γ(v). Let Sv be the multi-set of edges {w, x} in G(H), not
containing v, but which are contained in hyperedges incident with vertex v in H i.e.

Sv = {{w, x} : ∃e ∈ E, v ∈ e, and w, x ∈ e \ {v}} .

Since H is r-regular and s-uniform, each Sv has size r
(

s−1
2

)
.

A vertex v is informed if either (i) v is visited or (ii) Sv is visited by Wu. To compute the
probability that v or Sv is visited we subdivide each edge f = {w, x} of Sv by introducing an
artificial vertex af . Thus f is replaced by {w, af}, {af , x}. Call the resulting graph Gv(H).
Let Dv = {v} ∪ {af : f ∈ Sv} and note that Dv is independent in Gv(H). Now contract Dv

to a single vertex γ = γ(Dv). Let Γ(v) be the resulting multi-graph. The degree of γ is then

d(γ) = r

(
2

(
s − 1

2

)
+ (s − 1)

)
= r(s − 1)2.

Furthermore,
d(Γ(v)) = r(s − 1)n + r(s − 1)(s − 2).
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For a random walk in Γ the stationary distribution of γ is thus

π(γ) =
s − 1

n + s − 2
. (11)

Note that mv = r(s − 1)n/2 + r
(

s−1
2

)
= |E(Γ(v)| = |E(G(H)| + r

(
s−1
2

)
.

Suppose now that Xu is a random walk in Gv(H) starting at u /∈ Dv. For t ≥ T , let Bv(t) be
the event that the walk Wu in G(H) does not visit Sv ∪ {v} at steps T, T + 1, . . . , t. Then
Bv(t) is equivalent to ∧x∈Dv

Ax(t) defined with respect to Xu.

Edge-Contraction graph Γ(e). Starting from G(H), and given e ∈ E(H) form Ge(H) as
follows. For each of the edges f = {u, v} ∈

(
e
2

)
, subdivide f using an artificial vertex af .

Thus f is replaced by {u, af}, {af , v}. The set De = {af : f ∈ e ∈ H} gives rise to Ge(H) as
above. Contract De to a vertex γ to form a graph Γ(e), as for Γ(v).

The degree of γ is then
d(γ) = s(s − 1).

Furthermore,

d(Γ(e)) = rn(s − 1) +

(
s

2

)
.

For a random walk in Γ the stationary distribution of γ is thus

π(γ) =
2s

2rn + s
. (12)

Suppose now that X̂u is a random walk in Ge(H) starting at u /∈ De. For t ≥ T , let Be(t) be
the event that the walk Wu in Ge(H) does not visit De at steps T, T + 1, . . . , t.

Lemma 6. Let x = v, e. Let Γ = Γ(v), Γ(e). Let Yu be a random walk in Γ starting at u 6= γ.
Let T be a mixing time satisfying (5) in both Gx(H) and Γ. Then

Pr(Aγ(t); Γ) = Pr(Bx(t); G(H))
(
1 + O

( s

n

))
,

where the probabilities are those derived from the walk in the given graph.

Proof

We give the proof for Γ(v). The proof for Γ(e) is similar. Let Yx(j) (resp. Xx(j)) be the
position of walk Yx (resp. Xx(j)) at step j. Let Λ = G(H), Γ(v) and let P s

u(x; Λ) be the
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transition probability in Λ, for the walk to go from u to x in s steps.

Pr(Aγ(t); Γ(v)) =
∑

y 6=γ

P T
u (y; Γ(v)) Pr(Yy(σ − T ) 6= γ, T ≤ σ ≤ t; Γ(v))

=
∑

y 6=γ

(
d(y)

2m
(1 + O(n−3))

)
Pr(Yy(σ − T ) 6= γ, T ≤ σ ≤ t; Γ(v)) (13)

=
∑

x 6∈Dv

(
P T

u (x; Gv(H))(1 + O(s/n))
)
Pr(Xx(σ − T ) 6∈ Dv, T ≤ σ ≤ t; Gv(H))

(14)

= Pr(∧x∈Dv
Ax(t); Gv(H))(1 + O(s/n)).

Equation (13) follows from (5). Equation (14) follows because there is a natural measure
preserving map φ between walks in Gv(H) that start at x 6∈ Dv and avoid Dv and walks in
Γ(v) that start at x 6= γ and avoid γ. 2

To establish the theorem we need precise estimates of Rv in G(H) and Rγ in Γ(v) (resp. Γ(e)).
Once this is done the theorem will follow from Corollary 2. But first we have to estimate the
value of T in (5).

2.6 Mixing time of the random walk

We estimate the conductance of the walks on G(H) and Γ(v).

2.6.1 Conductance of G(H)

Lemma 7. Suppose that r = 2, s ≥ 3 or that r ≥ 3. Let C(r, s) be sampled uar from C(r, s).
Then there exists ǫ > 0 such that whp there is no set of t ≤ n/2 vertices that contain
rt(1 − ǫ)/s edges or more.

Proof Let N(t, k, r, s) be the expected number of sets of configuration vertices of size t
which induce at least k hyperedges, where ks = rt(1−ǫ). We will prove the lemma by showing
that in the configuration model

n/2∑

t=1

N(t, k, r, s) = o(n−1/10).

Now

N(t, k, r, s) ≤
(

n

t

)(
rt

ks

)
F (ks)F (rn − ks)

F (rn)
,
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where F (a) = a!/((a/s)!(s!)(a/s)) for s | a. Note that if s | a, b and a > b then

F (b)F (a − b)

F (a)
=

(
a/s
b/s

)
(

a
b

) = O(
√

s)

(
b

a

)b(s−1)/s (
1 − b

a

)(a−b)(s−1)/s

, (15)

and that

(
n

t

)
= O(1)

√
n

t(n − t)

(n

t

)t
(

1 − t

n

)t−n

(
rt

ks

)
= O(1)

√
rt

ks(rt − ks)

(
rt

ks

)ks(
1 − ks

rt

)ks−rt

.

Thus, assuming t ≤ n/2 and that ks = rt(1 − ǫ) where ǫ > 0 constant,

N(t, k, r, s) =O

(
1√
ks

)(rn

ks

)k (n

t

)t−ks
(

1 − ks

rn

)(rn−ks)(s−1)/s(
1 − ks

rt

)ks−rt(
1 − t

n

)t−n

=O(1)

(
n

(1 − ǫ)t

)rt(1−ǫ)/s (
t

n

)rt(1−ǫ)−t(
1

ǫ

)ǫrt(
1 − t(1 − ǫ)

n

)r(n−t(1−ǫ)) s−1

s

(
1 − t

n

)t−n

=O(1)

((
1

1 − ǫ

)(1−ǫ)/s(
1

ǫ

)ǫ(
1 − t(1 − ǫ)

n

)ǫ(1−1/s)(
t

n

)(1−ǫ)(1−1/s)−1/r
)tr

(16)

×
(

(1 − t(1 − ǫ)/n)r(1−1/s)

1 − t/n

)n−t

. (17)

To establish an upper bound, we first consider the term (17). We write

(1 − t(1 − ǫ)/n)r(1−1/s)

1 − t/n
=

(
1 +

ǫt

n − t

)r(1−1/s)(
1 − t

n

)r(1−1/s)−1

≤ exp

{
t

n
(1 − r(1 − 1/s)(1 − 2ǫ)

}
.

Now r(1− 1/s) ≥ 4/3 and so if ǫ < 1/8 we find that the contribution of (17) is less than one.
Considering (16), for t ≤ n/2 it holds that t/n ≤ 1− t(1−ǫ)/n, and thus (16) is O(Ψtr

t ) where
Ψt is given by

Ψt =

(
1

1 − ǫ

)(1−ǫ)/s (
1

ǫ

)ǫ(
t

n

)(1−2ǫ)(1−1/s)−1/r

.

Provided (1− 2ǫ)(1− 1/s)− 1/r > 0, Ψ is monotone increasing in t, and putting t = n/2, r =
2, s = 3,

Ψt ≤
(

1

1 − ǫ

)(1−ǫ)/3(
1

ǫ

)ǫ(
1

2

)(1−2ǫ)(2/3)−1/2

,
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and choosing ǫ = 1/100 we find Ψt < 0.95. Thus

n/2∑

t=1

N(t, k, r, s) ≤
n/2∑

t=1

Ψtr
t = o(n−1/10)

. 2

Going back to (2) we see that if G is a d-regular graph then ΦG(S) = e(S:S)
d|S|

, were e(S : S)

denotes the number of edges with one endpoint in S and the other in S = V \ S. Note that
in this case π(S) ≤ 1/2 if |S| ≤ n/2.

The corollary below follows from Lemma 7, and the definition of the underlying clique graph
G(H) of a hypergraph H .

Corollary 8. The conductance ΦG of the graph G(H) is Ω(1/s) whp.

Proof For S ⊆ V , |S| = t ≤ n/2,

ΦG(S) =
e(S : S)

d|S| ≥ (s − 1)ǫrt(
s
2

)
rt

= Ω(1/s). (18)

2

Corollary 9. The conductance ΦΓ of the graph Γ = Γ(v), Γ(e) is Ω(1/s) whp.

Proof Note first that contracting vertices cannot reduce conductance. This is because
we minimise the same Φ(S) value over a smaller collection of sets S. It is a simple matter to
see that subdividing at most r

(
s
2

)
edges within S increases the degree of S by at most rs(s−1)

and thus ΦΓ = Ω(1/s). 2

It follows from (3) and (4) that in both G(H) and Γ(v), Γ(e), we can take T = O(s2 log n) =
o(log3 n) in (5).

3 To apply Lemma 2

3.1 Returns in G(H)

For a vertex v and integer k ≥ 1 let Nk(v) denote the set of vertices w for which there is a
path of length at most k from v to w. The following construction models an infinite extension
of the neighbourhood of v in G = G(H), for a locally-tree-like vertex v. Let T ∗

G be an infinite
graph (with a tree-like structure) defined recursively as a root h joined to each vertex of r− 1
disjoint cliques C1, C2, . . . , Cr−1 of size s − 1. Each vertex in C1 ∪ · · · ∪ Cr is the root of a

12



further disjoint copy of T ∗
G . For TG we take a root vertex h and join it to each vertex of

r disjoint cliques C1, C2, . . . , Cr of size s − 1. Each vertex in C1 ∪ · · · ∪ Cr is the root of a
further disjoint copy of T ∗

G . If v is locally-tree-like, then provided k ≤ ω, the subgraph of
G(H) induced by Nk(v) is isomorphic to the first k levels of TG.

We first compute the expected number of returns RG to the root for a random walk on TG.
We can then argue as in the proof of Lemma 7 of [6] that Rv = RG +o(1) for a locally-tree-like
vertex v of G(H). We can project a walk on TG onto the non-negative integers by mapping a
vertex v of TG to its distance ∆v from the root. If v 6= h then v has degree (s − 1)r, and if
the walk is at v, then it moves to a neighbour w where

∆w =






∆v + 1 probability r−1
r

∆v probability s−2
r(s−1)

∆v − 1 probability 1
r(s−1)

(19)

Now RG is the expected number of returns to the origin of a random walk on the non-negative
integers, with probabilities defined as in (19).

We note the following result (see e.g. [8]), for a random walk on the non-negative integers
{0, 1, . . .} with transition probabilities at k > 0 of q < p for moves left and right respectively.
Starting at vertex 1, the probability of ultimate return to the origin 0 is

ρ =
q

p
. (20)

It follows that if the walk always moves to 1 from the origin than the expected number of
returns R to the origin is given by

R =
1

1 − ρ
=

p

p − q
. (21)

In which case we see that

Rv = RG + o(1) =
(r − 1)(s − 1)

(r − 1)(s − 1) − 1
+ o(1).

Finally, for locally-tree-like vertices v we have that the value of pv in (9) is given by

pv = (1 + o(1))
1

n

(r − 1)(s − 1) − 1

(r − 1)(s − 1)
. (22)

3.2 Returns in Γ(v)

The following construction models an infinite extension of the neighbourhood of γ in Γ =
Γ(v), for a locally-tree-like vertex v. Let TΓ be an infinite multi-graph consisting of a root h

13



(corresponding to γ) joined to r(s − 1) distinct vertices wi,j, i = 1, 2, . . . , r, j = 1, 2, . . . s − 1
(corresponding to the vertices in cliques with v) and with s − 1 parallel edges between h and
each wi,j. Each vertex w = wi,j is the root of r − 1 copies of an infinite tree isomorphic to T ∗

G

defined in Section 3.1.

The probability Pγ of a return to h of a walk on TΓ starting at h is given by

Pγ =
∞∑

k=0

ρk(1 − ρ̂)kρ̂ =
ρ̂

1 − ρ(1 − ρ̂)
(23)

where ρ = 1
(r−1)(s−1)

(see (19) and (20)) is the probability of a return to the root w of a T ∗
G

and ρ̂ = s−1
s−1+(r−1)(s−1)

= 1
r

is the probability of moving from a wi,j to the root h in a single

step. Plugging these values into (23) gives

Pγ =
s − 1

r(s − 1) − 1
.

Therefore, using arguments similar to those in Lemma 7 of [6] we see that

Rγ =
1

1 − Pγ
+ o(1) =

r(s − 1) − 1

(r − 1)(s − 1) − 1
+ o(1). (24)

For locally-tree-like vertices v, using (11), the value of pγ in (9) is given by

pγ = (1 + o(1))
s − 1

n

(r − 1)(s − 1) − 1

r(s − 1) − 1
. (25)

3.3 Returns in Γ(e)

Let T ′
Γ be an infinite multi-graph consisting of a root h (corresponding to γ) joined to s distinct

vertices wi, i = 1, 2, . . . s (corresponding to the vertices in clique of edge e) and with s − 1
parallel edges between h and each wi,. Each vertex w = wi is the root of r − 1 copies of an
infinite tree isomorphic to T ∗

G defined in Section 3.1.

We find R′
γ = (1 + o(1))Rγ, that d(γ) = s(s − 1) and that d(Γ(e)) = rn(s − 1) +

(
s
2

)
.

For locally-tree-like vertices v, using (12), and assuming s = o(n), the value of pγ in (9) is
given by

pγ = (1 + o(1))
s

rn

(r − 1)(s − 1) − 1

r(s − 1) − 1
. (26)
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3.4 Technical condition (8)

We will only verify this for locally-tree-like vertices. Observe first that if R = Rv, Rγ satisfies
R ≤ 2−ǫ for some constant ǫ > 0 then it is easy to verify this condition. Indeed, for |z| ≤ 1+λ,

|RT (z)| ≥ r0 − (1 + λ)T
T∑

t=1

rt = 1 − (1 + λ)T (R − 1) ≥ 1 − (1 + λ)T (1 − ǫ) > ǫ/2.

3.4.1 Case of G(H)

We write

Rv = 1 +
1

(r − 1)(s − 1) − 1
+ o(1)

and see that we only need to consider r = 2, s = 3.

For any z,

|RT (z) − RT (1)| ≤
T∑

j=1

rj |zj − 1|. (27)

Now Rv ∼ 2 in our case, so we only need to show that the RHS of (27) is strictly less than 2.

Next observe that πv = 1/n for v ∈ V and that (4) implies that

S0 =
T∑

i=ω

rj|zj − 1| ≤ 2
T∑

i=ω

ri ≤ 2
T∑

i=ω

(λi
max + πv) = o(1) (28)

since λmax ≤ ζ < 1 for some constant ζ . This follows from (3).

Now consider j < ω. Fix 0 ≤ θ < 2π and let z = eiθ, then

|zj − 1| = (2(1 − cos jθ))1/2 = 2| sin jθ/2|.

Then

S1 =

ω−1∑

j=1

rj|zj − 1| =

ω−1∑

j=1

rj (2(1 − cos jθ))1/2 = 2

ω−1∑

j=1

rj| sin jθ/2|.

Note that r1 = 0, r2 = 1
4

and r3 = 1
16

. Suppose first that θ /∈ I = [3π
8

, 5π
8

] ∪ [11π
8

, 13π
8

]. Then
| sin θ| ≤ sin 3π

8
and so

S1 ≤ 2

ω−1∑

j=1

rj − r2

(
1 − sin

3π

8

)
. (29)
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On the other hand, if θ ∈ I then | sin 3θ/2| ≤ sin 7π
16

and then

S1 ≤ 2

ω−1∑

j=1

rj − r3

(
1 − sin

7π

16

)
. (30)

From (4),

RT (1) = 1 +

ω−1∑

j=1

rj + O(λω
2 ).

Thus, as RT (1) = 2 + o(1), (28), (29), (30) imply that S0 + S1 ≤ 2(RT (1) − 1) − 1/20 =
39/20 − o(1).

This confirms that the RHS of (27) is less than 2 and that technical condition (8) holds.

3.4.2 Case of Γ(v)

From (24) we write

Rγ = 1 +
s − 1

(r − 1)(s − 1) − 1
+ o(1).

Once again we see that we only need to consider r = 2, s = 3.

We then use the same argument as in Section 3.4.1. Equation (29) holds and this time
r2 = 1/2, r3 = 0, r4 = 1/3. If θ ∈ I then | sin 2θ| ≤ sin π

4
and then

S1 ≤ 2
σ−1∑

j=1

rj − r4

(
1 − sin

π

4

)
. (31)

We use (31) in place of (30) to prove that technical condition (8) holds.

3.4.3 Case of Γ(e)

It was noted in Section 3.3 that the value of R′
γ in Γ(e) satisfies R′

γ = (1 + o(1))Rγ in Γ(v),
as given in (24). Thus the results of the above section apply.

4 Cover time of G(H)

We follow a similar argument to that given in [6].

16



4.1 Upper bound on cover time

Let t0 = (1+o(1)) (r−1)(s−1)
(r−1)(s−1)−1

n log n where the o(1) term is large enough so that all inequalities

below are satsified. Let TG(u) be the time taken to visit every vertex of G by the random
walk Wu. Let Ut be the number of vertices of G = G(H) which are not visited by Wu in the
interval [T, t]. We note the following:

Cu = Cu(H) = ETG(u) =
∑

t>0

Pr(TG(u) > t), (32)

Pr(TG(u) > t) = Pr(Ut > 0) ≤ min{1,EUt}. (33)

It follows from (32), (33) that for all t

Cu ≤ t +
∑

σ≥t

EUσ = t +
∑

v∈V

∑

σ≥t

Pr(Av(σ)). (34)

Let V1 be the set of locally-tree-like vertices and let V2 = V − V1.

We apply Corollary 2. For v ∈ V1, from (22) we have npv ∼ (r−1)(s−1)−1
(r−1)(s−1)

. Hence,

∑

σ≥t0

Pr(Av(σ)) ≤ (1 + o(1))e−t0pv

∑

σ≥t0

e−(σ−t0)pv + O(e−λt0/2)

≤ 2p−1
v e−t0pv

≤ 5.

Furthermore, we see also that,
Pr(Av(3n)) ≤ e−1. (35)

Suppose next that v ∈ V2. It follows from Lemmas 4 and 5 that we can find w ∈ V1 such that
dist(v, w) ≤ ω. So from (35), with ν = 3n + ω, we have

Pr(Av(ν)) ≤ 1 − (1 − e−1)(rs)−ω,

since if our walk visits w, it will with probability at least (rs)−ω visit v within the next ω
steps. Thus if ζ = (1 − e−1)(rs)−ω,

∑

σ≥t0

Pr(Av(σ)) ≤
∑

σ≥t0

(1 − ζ)⌊σ/ν⌋

≤
∑

σ≥t0

(1 − ζ)σ/(2ν)

=
(1 − ζ)t0/(2ν)

1 − (1 − ζ)1/(2ν)

≤ 3νζ−1. (36)
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Thus, for all u ∈ V ,

Cu ≤ t0 + 5|V1| + 3|V2|νζ−1 (37)

= t0 + O((rs)4ωn)

= t0 + o(t0),

as ω = log log log n.

4.2 Lower bound on cover time

For any vertex u, we can find a set of vertices S, such that at time t1 = t0(1 − o(1)), the
probability the set S is covered by the walk Wu tends to zero. Hence TG(u) > t1 whp which
implies that CG ≥ t0 − o(t0).

We construct S as follows. Let S ⊆ V1 be some maximal set of locally tree-like vertices all of
which are at least distance 2ω + 1 apart. Thus |S| ≥ (n − (rs)3ω)(rs)−(2ω+1).

Let S(t) denote the subset of S which has not been visited by Wu in the interval [T, t]. Now,

E|S(t)| ≥ (1 − o(1))
∑

v∈S

(
1 + o(1)

(1 + pv)t
+ o(n−2)

)
.

Setting t = t1 = (1 − ǫ)t0 where ǫ = 2ω−1, we have

E|S(t1)| = (1 + o(1))|S|e−(1−ǫ)t0pv

= (1 + o(1))
n2/ω

(rs)2ω+1

≥ n1/ω. (38)

Let Yv,t be the indicator for the event that Wu has not visited vertex v at time t. Let
Z = {v, w} ⊂ S. We will show (below) that that for v, w ∈ S

E(Yv,t1Yw,t1) =
1 + o(1)

(1 + pZ)t+2
+ o(n−2), (39)

where pZ ∼ pv + pw. Thus

E(Yv,t1Yw,t1) = (1 + o(1))E(Yv,t1)E(Yw,t1). (40)

It follows from (38) and (40), that

Pr(|S(t1)| > T ) ≥ (E|S(t1)| − T )2

E((|S(t1)| − T )2)
=

1
E((|St1

|−T )(|St1
|−T−1))

(E|S(t1)|−T )2
+ (E|St1 | − T )−1

= 1 − o(1).
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At most T/ω of S(t1) can be visited in the first T steps and the lower bound follows.

Proof of (39). Let G∗ be obtained from G by merging v, w into a single node Z. This node
has degree 2r(s − 1) and every other node has degree r(s − 1).

There is a natural measure preserving mapping from the set of walks in G which start at u
and do not visit v or w, to the corresponding set of walks in G∗ which do not visit Z. Thus
the probability that Wu does not visit v or w during [T, t] is equal to the probability that a

random walk Ŵu in G∗ which also starts at u does not visit Z in the first t steps.

We apply Corollary 2 to G∗. That πZ = 2
n

is clear. The derivation of RT (1) in Section 3.1 is
also valid. The vertex Z is tree-like up to distance ω in G∗. The fact that the root vertex of
the corresponding infinite structure is in 2r cliques does not affect the calculation of RT (1).

2

5 Computation of I(H) and CE(H)

This is very similar to the previous sections 4.1, 4.2 and so we will be light on details.

We briefly outline the upper bound proof for I(H). Let t0 = (1+o(1))
(
1 + s−1

(r−1)(s−1)−1

)
n

s−1
log n.

Let Iu(H) be the expected time for Wu to inform all vertices. Then

Iu(H) ≤ t +
∑

v∈V

∑

σ≥t

Pr(Bv(σ))

where Bv(σ) is the event that vertex v is not informed in the interval [T, σ].

For locally-tree-like vertices we use pγ from (25), and apply Corollary 2. For non-locally-tree-
like vertices we use the argument for (36) and obtain

Iu(H) ≤ t0 + 5|V1| + 3|V2|νζ−1 = t0 + o(t0)

as we did for (37).

We briefly outline the upper bound proof for CE(H). Let t0 = (1+o(1))
(
1 + s−1

(r−1)(s−1)−1

)
2rn+s

2s
log n.

Let CE,u(H) be the expected time for Wu to cover all edges. Then

CE,u(H) ≤ t +
∑

e∈E

∑

σ≥t

Pr(Be(σ))

where Be(σ) is the event that vertex e is not covered in the interval [T, σ].

For locally-tree-like edges we use pγ from (26), and apply Corollary 2. For non-locally-tree-like
vertices we use the argument for (36) and obtain as we did for (37),

Iu(H) ≤ t0 + 5|E1| + 3|E2|νζ−1 = t0 + o(t0)
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where E = E1 ∪ E2 is a partition of E into locally-tree-like edges and the rest.
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