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Abstract

In this paper, we provide a polylogarithmic bound that holds with high probability on the
insertion time for cuckoo hashing under the random-walk insertion method. Cuckoo hashing
provides a useful methodology for building practical, high-performance hash tables. The es-
sential idea of cuckoo hashing is to combine the power of schemes that allow multiple hash
locations for an item with the power to dynamically change the location of an item among its
possible locations. Previous work on the case where the number of choices is larger than two
has analysed breadth-first search, which is both inefficient in practice and currently has only a
polynomial upper bound on the insertion time that holds with high probability. On the other
hand it does have expected constant amortized insertion time. Here we significantly advance
the state of the art by proving a polylogarithmic bound that holds with high probability on the
more efficient random-walk method, where items repeatedly kick out random blocking items
until a free location for an item is found.

1 Introduction

Cuckoo hashing [13] provides a useful methodology for building practical, high-performance hash
tables by combining the power of schemes that allow multiple hash locations for an item (e.g.,
[1, 2, 3, 14]) with the power to dynamically change the location of an item among its possible
locations. Briefly (more detail is given in Section 2), each of n items x has d possible locations
h1(x), h2(x), . . . , hd(x), where d is typically a small constant and the hi are hash functions, typically
assumed to behave as independent fully random hash functions. (See [12] for some theoretical
justification of this assumption, as well as [13] for related experimental results.) We assume each
location can hold only one item. When an item x is inserted into the table, it can be placed
immediately if one of its d locations is currently empty. If not, one of the items in its d locations
must be displaced and moved to another of its d choices to make room for x. This item in turn
may need to displace another item out of one its d locations. Inserting an item may require a
sequence of moves, each maintaining the invariant that each item remains in one of its d potential
locations, until no further evictions are needed. Further variations of cuckoo hashing, including
possible implementation designs, are considered in for example [5, 6, 8, 9, 10].

It is often helpful to place cuckoo hashing in a graph theoretic setting, with each item corre-
sponding to a node on one side of a bipartite graph, each location corresponding to a node on the
other side of a bipartite graph, and an edge between an item x and a location b if b is one of the d
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locations where x can be placed. In this case, an assignment of items to locations forms a matching
and a sequence of moves that allows a new item to be placed corresponds to a type of augmenting
path in this graph. We call this the cuckoo graph (and define it more formally in Section 2).

The case of d = 2 choices is notably different than for other values of d. When d = 2, after
the first choice of an item to kick out has been made, there are no further choices as one walks
through the cuckoo graph to find an augmenting path. Alternatively, in this case one can think
of the cuckoo graph in another form, where the nodes represent locations and items correspond
to edges between the locations, with each item connecting the two locations corresponding to it.
Because of these special features of the d = 2 case, its analysis appears much simpler, and the
theory for the case where there are d = 2 location choices for each item is well understood at this
point [4, 11, 13].

The case where d > 2 remains less well understood, although values of d larger than 2 rate to
be important for practical applications. The key question is which item to move if the d potential
locations for a newly inserted item x are occupied. A natural approach in practice is to pick one
of the d locations randomly, replace the item y at that location with x, and then try to place y in
one of its other d − 1 location choices [6]. If all of the locations for y are full, choose one of the
other d−1 locations (other than the one that now contains x, to avoid the obvious cycle) randomly,
replace the item there with y, and continue in the same fashion. At each step (after the first), place
the item if possible, and if not randomly exchange the item with one of d− 1 choices. We refer to
this as the random-walk insertion method for cuckoo hashing.

There is a clear intuition for how this random walk on the locations should perform. If a fraction
f of the items are adjacent to at least one empty location in the corresponding graph, then we
might expect that each time we place one item and consider another, we should have approximately
a probability f of choosing an item adjacent to an empty location. With this intuition, assuming
the load of the hash table is some constant less than 1, the time to place an item would be at most
O(logn) with high probability and O(1) in expectation.1

Unfortunately, it is not clear that this intuition should hold true; the intuition assumes in-
dependence among steps when the assumption is not necessarily warranted. Bad substructures
might arise where a walk could be trapped for a large number of steps before an empty location is
found. Indeed, analyzing the random-walk approach has remained open, and is arguably the most
significant open question for cuckoo hashing today.

Because the random-walk approach has escaped analysis, thus far the best analysis for the case
of d > 2 is due to Fotakis et al. [6], and their algorithm uses a breadth-first search approach.
Essentially, if the d choices for the initial item x are filled, one considers the other choices of the d
items in those locations, and if all those locations are filled, one considers the other choices of the
items in those locations, and so on. They prove a constant expected time bound for an insertion
for a suitably sized table and a constant number of choices, but to obtain a high probability bound
under their analysis requires potentially expanding a logarithmic number of levels in the breadth-
first search, yielding a polynomial bound (O(nζ), for some constant ζ < 1), on the time to find
an empty location with high probability. It was believed this should be avoidable by analyzing
the random-walk insertion method. Further, in practice, the breadth-first search would not be the
choice for most implementations because of its increased complexity and memory requirements over
the random-walk approach.

In this paper, we demonstrate that, with high probability, for sufficiently large d the cuckoo
graph has certain structural properties that yield that on the insertion of any item, the time re-

1Generally, an event En occurs with high probability if P(En) = 1 − O(1/nα) for some constant α > 0. However,
please see the discussion in Section 2, just before Theorem 1, for more details on our usage here.
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quired by the random-walk insertion method is polylogarithmic in n also with high probability.
The required properties and the intuition behind them are given in subsequent sections. Besides
providing an analysis for the random-walk insertion method, our result can be seen as an improve-
ment over [6] in that the bound holds for every possible starting point for the insertion (with high
probability). The breadth-first search of [6] gives constant expected time, implying polylogarith-
mic time with probability 1− o(1). However when inserting Ω(n) elements into the hash table, the
breadth-first search algorithm cannot guarantee a sub-polynomial running time for the insertion
of each element. This renders the breadth-first search algorithm unsuitable for many applications
that rely on guarantees for individual insertions and not just expected or amortized time bounds.

While the results of [6] provide a starting point for our work, we require further deconstruction
of the cuckoo graph to obtain our bound on the performance of the random-walk approach.

Simulations in [6] (using the random-walk insertion scheme), indicate that constant expected
insertion time is possible. While our guarantees do not match the running time observed in simu-
lations, they give the first clear step forward on this problem for some time.

We note that since the publication of our results in RANDOM 2009, Fountoulakis, Panagioutou
and Steger [7] have been able to show polylogarithmic insertion time with high probability for all
d ≥ 3, for any number of locations above the threshold necessary for the existence of a matching
from elements into locations. Their results offer an improved analysis of the methodology set out
in this paper.

2 Definitions and Results

We begin with the relevant definitions, followed by a statement of and explanation of our main
result.

Let h1, . . . hd be independent fully random hash functions hi : [n] → [m] where m = (1 + ε)n.
This is clearly sufficient to cover the general case where h : U → [m] for some universe of keys U .
The necessary number of choices d will depend on ǫ, which gives the amount of extra space in the
table. We let the cuckoo graph G be a bipartite (multi-)graph with a vertex set L∪R and an edge
set

⋃

x∈L{(x, h1(x)), . . . (x, hd(x))}, where L = [n] and R = [m]. We refer to the left set L of the
bipartite graph as items and the right set R as locations. We use log n for loge n throughout.

An assignment of the items to the locations is a left-perfect matching M of G such that every
item x ∈ L is incident to a matching edge. The vertices F ⊆ R not incident to the matching M
are called free vertices. For a vertex v the M -distance to a free vertex is the length of the shortest
M -alternating path from v to a free vertex. We do not include matching edges in this count.

We present the algorithm for insertion as Algorithm 1 below. The algorithm augments the
current matching M with an augmenting path P . An item is assigned to a free neighbor if one
exists; otherwise, a random neighbor is chosen to displace from its location, and this is repeated
until an augmenting path is found. (In some rare cases, the path P will contain cycles. These will
be ignored in the augmentation). In practice, one generally sets an upper bound on the number
of moves allowed to the algorithm, and a failure occurs if there remains an unassigned item after
that number of moves. Such failures can be handled by additional means, such as stashes to store
items that cause failures [9]. Note that a good estimate of the appropriate upper bound on the
number of moves before declaring a failure is key for keeping the stash reasonably sized (preferably
constant-sized). Also, because we do not augment the matching until an appropriate free cell is
found, the algorithm may experience cycles as we perform the random walk. Because of this, edges
are exclusive-ored into the path, so that repeated edges can be removed.

We note that our analysis that follows also holds when the table experiences deletions (and even
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Algorithm 1 Insert-node

1: procedure Insert-node(G,M ,u)
2: P ← ()
3: v ← u
4: i← d+ 1
5: loop

6: if hj(v) is not covered by M for some j ∈ {1, . . . , d} then
7: P ← P ⊕ (v, hj(v))
8: return Augment(M ,P )
9: else

10: Let j ∈R {1, . . . , d} \ {i} and w be such that (hj(v), w) ∈M
11: P ← P ⊕ (v, hj(v))⊕ (hj(v), w)
12: v ← w
13: i← j
14: end if

15: end loop

16: end procedure

Algorithm 2 Simple-Insert-node

1: procedure Simple-Insert-node(G,M ,u)
2: v ← u
3: loop

4: if hj(v) is not covered by M for some j ∈ {1, . . . , d} then
5: M ←M ∪ {(v, hj(v))}
6: return M
7: else

8: Let j ∈R {1, . . . , d} and (w, hj(v)) ∈M
9: M ← (M \ {(w, hj(v))}) ∪ {(v, hj(v))}

10: v ← w
11: end if

12: end loop

13: end procedure
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re-insertion of deleted items). This is because our result is based on the structure of the underlying
graph G, and not on the history that led to the specific current matching. The statement of the
main result is that given that G satisfies certain conditions, which it will with high probability, the
insertion time is polylogarithmic with high probability. It is important to note that we have two
distinct probability spaces, one for the hash functions which induce the graph G, and another for
the randomness employed by the algorithm. For the probability space of hash functions, we say
that an event En occurs with high probability if P(En) = 1 − O(n−2d). For the probability space
of randomness used by the algorithm we use a common definition of with high probability, namely
that the event occurs with probability 1 − O(n−α) for some α > 0. In the following, log refers to
natural logarithms, i.e. to the base e.

Although the analysis is focused on Algorithm 1, which keeps track of the path used, our
analysis goes through similarly for the simpler Algorithm 2, which instead modifies the matching
at each step and can immediately reverse the last move made. This is because our argument works
regardless of the initial vertex of the random walk or the current matching and is based on showing
that at any point there are many simple paths the random walk can take to reach a free vertex.
Since the two algorithms behave the same way for simple walks, our results follow for this algorithm
as well.

Theorem 1 Let ǫ and d be such that if ε < 1
6 , then d ≥ 4 + 2ε− 2(1 + ε) log

(

ε
1+ε

)

, and if ε ≥ 1
6 ,

then d ≥ 8. Let γ0 = d+log d
(d−1) log(d/3) and γ1 = d+log d

(d−1) log(d−1) . Conditioned on an event of probability

1− O(n4−2d) regarding the structure of the cuckoo graph G, the expected time for insertion into a
cuckoo hash-table using Algorithms 1 and 2 is O

(

log1+γ0+2γ1 n
)

. Furthermore, the insertion time
is O

(

log2+γ0+2γ1 n
)

with high probability.

We have worked reasonably hard so that the constants γ0, γ1 are small for large d.
The algorithm will fail if the graph does not have a left-perfect matching, which happens

with probability O(n4−2d) [6]. We show that all necessary structural properties of G hold with
probability 1−O(n−2d), so that the probability G fails to have the right structure is dominated by
the probability that G has no left-perfect matching.

At a high level, our argument breaks down into a series of steps. First, we show that the cuckoo
graph expands suitably so that most vertices are within O(log log n) M -distance from a free vertex.
Calling the free vertices F and this set of vertices near to the free vertices S, we note that if we
reach a vertex in S, then the probability of reaching F from there over the next O(log log n) steps in
the random walk process is inverse polylogarithmic in n, so we have a reasonable chance of getting
to a free vertex and finishing. We next show that if the cuckoo graph has a suitable expansion
property, then from any starting vertex, we reach a vertex of S through the random walk in only
O(logn) steps, with probability Ω(log−γ1 n). This second part is the key insight into this result;
instead of trying to follow the intuition to reach a free vertex in O(logn) steps, we aim for the
simpler goal of reaching a vertex S close to F and then complete the argument.

We prove the necessary lemmas below. We start with some basic structural lemmas on the
cuckoo graph that we require. Lemma 2 shows that large subsets of R have large neighborhoods in
L. Lemma 3 shows that at least half the vertices of L are at a constant M -distance from F . This
is an improvement over similar previous results that we utilize subsequently.

From here we prove the key points. First, we show that the number of R-vertices at M -distance
k from F shrinks geometrically with k, which proves that the number of vertices at M -distance
Ω(log log n) from F is sufficiently small. Next we show that successive levels in a breadth first
search started at the vertex corresponding to an item to be inserted expands very fast i.e. at a rate
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close to d− 1. This will allow us to conclude that a random walk will quickly reach a vertex within
M -distance O(log log n) from F . Putting it all together then yields our main result.

3 Expansion and Related Cuckoo Graph Structure

We first show that large subsets of R have corresponding large neighborhoods in L. For S ⊆ L∪R
we let N(S) = {u /∈ S : ∃v ∈ S such that (u, v) ∈ E(G)}.

Lemma 2 If 1/2 ≤ β ≤ 1− 2d3 logn
n and α = d− 1− d+log d

1−log(1−β) > 0 then with high probability for

every subset Y ⊆ R of size |Y | = (β + ε)n we have X = N(Y ) ⊆ L is of size at least n
(

1− 1−β
α

)

.

For some intuition as to the use of this lemma, consider the set X ′ of vertices of L at M -distance
at most i, with |X ′| = βn where β ≥ 1/2, and let Y be the set of vertices in R matched with X ′

along with the free vertices in R. Then Y has size (β+ ε)n, and it’s neighborhood has size at least

n
(

1− 1−β
α

)

. This means that R \X ′, the set of vertices at M -distance more than i+ 1 is α times

smaller than R \X ′, the set of vertices at M -distance more than i.
Proof: We show that with high probability, there does not exist a pair X,Y such that |Y | =

(β + ε)n, |X| < n− (1+ε)n−|Y |
α and X is the neighborhood of Y in G.

Let S = L \X and T = R \ Y . Then our assumptions on X,Y imply that |S| ≥ (1+ε)n−|Y |
α =

n(1−β)
α and |T | = (1 + ε)n − (β + ε)n = (1 − β)n. Each vertex in L has all of its edges in T with

probability
(

1−β
1+ε

)d
independently of other vertices. Thus for any T the size of S is a binomially

distributed random variable, Bin(n,
(

1−β
1+ε

)d
). Thus the probability of the existence of a pair X,Y

is at most

(

(1 + ε)n

(β + ε)n

)

P

(

|S| ≥
(1− β)n

α

)

=

(

(1 + ε)n

(1− β)n

)

P

(

Bin

(

n,

(

1− β

1 + ε

)d
)

≥
(1− β)n

α

)

≤

(

e
1 + ε

1− β

)(1−β)n






e

(

1−β
1+ε

)d

1−β
α







1−β

α
n

=

(

αe1+α(1 + ε)α−d

(1− β)α−d+1

)

1−β

α
n

(1)

where we have used the inequality P (Bin(n, p) ≥ ρpn) ≤
(

e
ρ

)ρpn
. (While there are tighter bounds,

this is sufficient for our purposes.)
Taking logarithms, dropping the 1+ ε factor, and letting D = d+ log d and B = log(1−β) and

using the definition of α gives

log(RHS(1))

(1− β)n/α
≤ log

(

d− 1−D/(1−B)

d

)

+D −
D

1−B
+

DB

1−B

= log

(

d− 1−D/(1−B)

d

)

≤ log

(

d− 1

d

)

.

Then we can upper bound (1) by

(

d− 1

d

)
1−β

α
n

≤ exp

(

−
1

d

2d3 logn

d

)

≤ n−2d
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The following Lemma corresponds to Lemma 8 in [6]. We give an improved bound on an
important parameter k∗ which gives an improvement for the running time of the breadth-first
search algorithm. We require this improvement over the analysis of [6] for our result.

Lemma 3 Assume d ≥ 8, and furthermore if ε ≤ 1
6 also assume d ≥ 4 + 2ε − 2(1 + ε) log

(

ε
1+ε

)

.

Then with high probability the number of vertices in L at M -distance at most k∗ from F is at least
n
2 , where k∗ = 4 +

log( 1
6ε)

log( d
6 )

if ε ≤ 1
6 and k∗ = 5 if ε ≥ 1

6 .

Proof

Let M be any left-perfect matching of the cuckoo graph G. Let Y0 = F be the free vertices in
R and X1 = N(Y0). The vertices of X1 are adjacent to free vertices, and thus are at augmentation
M -distance 1. Let Y1 be the matching neighbors of vertices in X1 in addition to Y0. In general,
given Xi we let

Yi = Y0 ∪ {y ∈ R : (x, y) ∈M for some x ∈ Xi} and Xi+1 = N(Yi) (2)

Note that |Y0| = εn and |Yi| = |Xi|+ εn for i ≥ 1. Thus to show that |Xi| ≥
n
2 for some i it is

enough to concentrate on expansion properties of the Y sets in R.

Claim 4 With high probability any set Y ⊆ R of size ξ(1 + ε)n has a neighborhood of size at least






























d
6ξn if ξ ≤ 6

d2
Case 1

1
dn if 6

d2
≤ ξ ≤ 1

d Case 2
1
5n if 1

d ≤ ξ ≤ 1
5 Case 3

3
10n if 1

5 ≤ ξ ≤ 3
10 Case 4

2
5n if 3

10 ≤ ξ ≤ 2
5 Case 5

1
2n if 2

5 ≤ ξ Case 6

Using Claim 4 we see that it will take at most log d
6

(

6

d2

ε

)

steps to go from size εn to at least

6
d2
n and 5 additional steps to go from 6

d2
n to 1

2n. This makes for a total of at most

i∗ ≤ log d
6

(

6
d2
ε

1+ε

)

+ 6

=
− log(ε) + log 6

log
(

d
6

) + 6− 2 ·
log d− 1

2 log (1 + ε)

log d− log 6

≤ 4 +
log
(

1
6ε

)

log
(

d
6

)

steps to go from Y0 of size εn to Xi∗ of size at least 1
2n. Note that if ε ≥ 1

6 we can use i∗ ≤ 5,
since then ξ ≥ 1

7 ≥
1
d . This concludes the proof of Lemma 3 assuming Claim 4, which we now prove

below. �

Proof of Claim 4

Assume d ≥ 8 and if ε ≤ 1
6 we require d ≥ 4 + 2ε − 2(1 + ε) log

(

ε
1+ε

)

. For ε ≤ 1 this implies

log
(

ε
1+ε

)

≥ 1− d−2
2(1+ε) . Now let Y ⊆ R, |Y | = ξ(1 + ε)n and assume |Y | ≥ εn. So ε

1+ε ≤ ξ and for

ε ≥ 1 we have ξ ≥ 1
2 .
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We first upper bound the probability that any set Y has exactly sn neighbors in L. We then
argue from the fact that our bound is monotone increasing in s that this will suffice to eliminate
the possibility for fewer than sn neighbors. Our bound is

(

(1 + ε)n

ξ(1 + ε)n

)(

n

sn

)

(

(1− ξ)d
)(1−s)n

(1− (1− ξ)d)sn (3)

≤ exp
(

n
(

(1 + ε)H (ξ) +H(s) + (1− s)d log(1− ξ) + s log(1− (1− ξ)d)
))

where H(x) = −ξ log(ξ)−(1−ξ) log(1−ξ) is the standard entropy (expressed in natural logarithms,

as log represents loge) and
(

n
k

)

≤ enH(
k
n). We will assume that

s ≤ 1− (1− ξ)d. (4)

We observe that the product of the terms involving s in (3) is monotone increasing in s up to this
point.

It is enough now to show that

Φ1 = (1 + ε)H(ξ) +H(s) + (1− s)d log(1− ξ) + s log(1− (1− ξ)d) (5)

is strictly negative to obtain a bound of e−Ω(n) on the probability that Y has sn neighbors. If we
show that this holds for some particular value s∗ ≤ 1− (1− ξ)d, then by a simple union bound the
probability that Y has s∗n neighbors or fewer is bounded by O(ne−Ω(n)) = e−Ω(n) as well.
Case 1: ε

1+ε ≤ ξ ≤ 6
d2
.

We start with (5) and write s = γdξ and assume s ≤ 1
d . We also use the upper bound H(ξ) ≤

ξ(1− log ξ) and get

Φ1 ≤ (1 + ε)ξ(1− log ξ) + γdξ(1− log(γdξ)) + (1− γdξ)d log(1− ξ) + γdξ log(1− (1− ξ)d) (6)

Now use log(1− ξ) ≤ −ξ− ξ2

2 , (1−γdξ)d ≥ (1− 1
d)d = d−1 and log(1− (1− ξ)d) ≤ log dξ to obtain

Φ1 ≤ Φ2 = ξ ((1 + ε)(1− log ξ) + γd(1− log γ)− (d− 1))− (d− 1)
ξ2

2
(7)

Since ξ ≥ ε
1+ε and (1 + ε)

(

1− log
(

ε
1+ε

))

≤ d−2
2 , we see that using γ = 6 gives γ(1− log γ) < 1/2

and so the coefficient of ξ in (7) is negative.
Case 2: 6

d2
≤ ξ ≤ 1

d .
If |Y | ∈

[

6m
d2

, md
]

we can choose a subset Y ′ of Y of size exactly 6m
d2

and use |N(Y )| ≥ |N(Y ′)| ≥ n
d

from Case 1.

Case 3: 1
d ≤ ξ.

Φ1 is increasing with respect to ε and ξ ≥ ε
1+ε . So we can take ε = ξ

1−ξ in order to bound Φ1.

Φ1 ≤ Φ3 =
1

1− ξ
H(ξ) +H(s) + (1− s)d log(1− ξ) + s log(1− (1− ξ)d) (8)

The derivative of the RHS of (8) with respect to ξ is given by

d

(

s(1− ξ)d−1

1− (1− ξ)d
−

1− s

1− ξ

)

−
log ξ

(1− ξ)2
=
−d(1− ξ)

(

1− s
1−(1−ξ)d

)

− log ξ

(1− ξ)2
(9)
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Note that both −d(1 − s
1−(1−ξ)d

) and − log ξ
1−ξ are decreasing in ξ, so it is enough to verify that

the numerator in the RHS of (9) is negative at the left endpoint ξ = 1/d.
For s ≤ 1

5 we get

− d

(

1−
1

d

)

(

1−
s

1− (1− 1
d)

d

)

+ log d

≤− (d− 1)

(

1−
0.2

1− e−1

)

+ log d ≤ −0.68(d− 1) + log d

which is negative for d ≥ 8.
So for s ≤ 1

5 we see that Φ3 is decreasing in ξ. Since ξ ≥ 1
d , the maximum is obtained at ξ = 1

d
and plugging in ξ = 1

d yields

Φ3 ≤ Φ4 =
d

d− 1
H

(

1

d

)

+H(s) + (1− s)d log

(

1−
1

d

)

+ s log

(

1−

(

1−
1

d

)d
)

. (10)

Taking the derivative of Φ4 with respect to d gives

(d− 1)(1− (1− 1
d)

d − s)(1 + (d− 1) log(1− 1
d))− (log d)(1− (1− 1

d)
d)

(d− 1)2(1− (1− 1
d)

d)
. (11)

Note that

0 ≤ (d− 1)

(

1 + (d− 1) log

(

1−
1

d

))

≤ (d− 1)/d.

We want to show that Φ′
4 < 0 and so we can drop the contribution from s. Factoring 1− (1−1/d)d

from the remainder of the numerator gives at most (d− 1)/d− log d < 0.
For an upper bound on Φ4 we plug in d = 8 into equation (10) and get

Φ4 ≤
8

7
H

(

1

8

)

+H(s) + (1− s)8 log

(

7

8

)

+ s log

(

1−

(

7

8

)8
)

. (12)

The derivative of the RHS of (12) with respect to s is

log

(

1− s

s

)

+ s log

(

1−
(

7
8

)8

(

7
8

)8

)

which is positive for s ≤ 1/5. Thus plugging in s = 1
5 into the RHS of (12) we get

8

7
H

(

1

8

)

+H

(

1

5

)

+
32

5
log

(

7

8

)

+
1

5
log

(

1−

(

7

8

)8
)

< −0.006

which is strictly negative.
Case 4: 1/5 ≤ ξ ≤ 3/10.
Starting from (8) we see that the derivative of Φ3 with respect to d is

(

1−
s

1− (1− ξ)d

)

log(1− ξ)

9



which is negative since we are assuming s ≤ 1− (1− ξ)d. So we will use d = 8 from now on to get
an upper bound on Φ3 and obtain

Φ3 ≤ Φ5 =
1

1− ξ
H(ξ) +H(s) + 8(1− s) log(1− ξ) + s log(1− (1− ξ)8). (13)

The derivative of Φ5 with respect to ξ is

Φ′
5 =
−8(1− ξ)

(

1− s
1−(1−ξ)8

)

− log ξ

(1− ξ)2
. (14)

If 1
5 ≤ ξ ≤ 1 and s ≤ 1

2 , then we can upper bound the numerator by

−8(1− ξ)

(

1−
1
2

1−
(

4
5

)8

)

− log ξ ≤ −3(1− ξ)− log ξ,

which is convex and negative at both endpoints, ξ = 1/5 and ξ = 1. Thus Φ5 is decreasing in ξ on
[15 , 1]. Evaluating Φ5 with ξ = 1

5 and s = 3
10 gives Φ5 < −0.06.

Case 5: 3/10 ≤ ξ ≤ 2/5.
We evaluate Φ5 at ξ = 3

10 and s = 2
5 , and get Φ5 < −0.19.

Case 6: 2/5 ≤ ξ ≤ 1.
Evaluating Φ5 with ξ = 2

5 and s = 1
2 gives Φ5 < −.23.

This completes the proof of Lemma 3 �

Let k∗ = max{4 +
log( 1

6ε)
log( d

6 )
, 5} and for notational convenience now let Yk be the vertices in R at

M -distance at most k∗+k from F (as opposed to Yk+k∗ as in (2)) and let |Yk| = (βk+ε)n. We note
that Lemma 3 guarantees that with high probability at most n

2 vertices in R are at M -distance
more than k∗ from F and so with high probability βk ≥ 1/2 for k ≥ 0.

Indeed, we further note that as a byproduct of our Lemma 3, we obtain an improved bound

on the expected running time for the breadth-first variation on cuckoo hashing from [6], of
(

1
ε

)O(1)

instead of
(

1
ε

)O(log d)
. Although it is something of an aside from our main argument, we present

the result below for completeness.

Theorem 5 The breadth-first search insertion procedure given in [6] runs in O

(

max

{

d4
(

1
6ε

)

1

1−
log 6
log d , d5

})

expected time, provided d ≥ 8. If ε ≤ 1
6 then d ≥ 4 + 2ε− 2(1 + ε) log

(

ε
1+ε

)

suffices.

Proof of Theorem 5

We follow the proof of Theorem 1 in [6]. The breadth-first search insertion procedure takes time
O(|Tv|) where Tv is a BFS tree rooted at the newly inserted vertex v, which is grown until a free
vertex is found.

The expected size of Tv is bounded above by dk
∗
, which is at most d5 for ε ≥ 1

6 and at most

d4+log( 1
6ε)/ log(

d
6 ) = d4

(

1

6ε

)
log d

log d−log 6

= d4
(

1

6ε

) 1

1−
log 6
log d

for ε ≤ 1
6 . �
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4 Vertices Near Free Vertices

We now move to showing that for sufficiently large k of size O(log log n), a large fraction of the
R-vertices are within M -distance k of the free vertices F with high probability. This provides one
of the cornerstones of our main result.

Our next lemma might look circular, but what it is saying is that if βk satifies a certain upper
bound then whp it will satify an even stronger one.

Lemma 6 Suppose that d ≥ 8 and if ε ≤ 1
6 assume d ≥ 4 + 2ε − 2(1 + ε) log

(

ε
1+ε

)

. Then with

high probability

1− βk = O

(

logγ0 n

(d− 1)k

)

whenever 1− βk ≥ 2d3 log n/n. (15)

where γ0 =
d+log d

(d−1) log(d/3) is defined in Theorem 1.

The reader should not be put off by the fact that the lemma only has content for k = Ω(log logn).
It is only needed for these values of k.

Proof: Assume that the high probability event in Lemma 2 occurs and 1 − βk ≥ log n/n and

the neighborhood Xk of Yk in L has size at least n− (1−βk)n
αk

where αk = d− 1− d+log d
1−log(1−βk)

. Note

that for βk ≥
3
4 and d ≥ 8 this implies

αk ≥
d

3
and

(d+ log d)/(d− 1)

1− log(1− βk)
≤ 0.9. (16)

First assume that β0 ≥ 3/4, we will deal with the more general case of β0 ≥
1
2 later. Recall that

Yk+1 = F ∪M(Xk) where M(Xk) = {y : (x, y) ∈M for some x ∈ Xk}. Thus |Yk+1| = (βk+1 +

ε)n ≥ εn+ n− (1−βk)n
αk

. This implies that

1− βk+1 ≤
1− βk
αk

(17)

=
1− βk
d− 1

(

1−
(d+ log d)/(d− 1)

1− log(1− βk)

)−1

≤
1− βk
d− 1

exp

(

h

(

(d+ log d)/(d− 1)

1− log(1− βk)

))

(18)

where h(t) = t+ 3t2/2. NWe ote that (1− t)−1 ≤ exp(h(t)) for t ∈ [0, .9].
(19)

≤
1− βk
d− 1

exp

(

h

(

(d+ log d)/(d− 1)

1− log(1− β0) + k log(d/3)

))

. (20)

For (20) we have assumed that 1− βk ≤ 3k(1− β0)/d
k, which follows from (16) and (17) provided

βk ≥ 3/4.
For β0 ∈ [12 ,

3
4 ] note that αk is increasing in d and βk. Also starting with β0 =

1
2 and using d = 8

we see numerically that 1− β3 ≤
1
2

α0α1α2
≤ 1

4 . Thus after at most 3 steps we can assume β3 ≥ 3/4.
To simplify matters we will assume β0 ≥ 3/4, since doing this will only “shift” the indices by at
most 3 and distort the equations by an O(1) factor.
Using inequality (20) repeatedly gives

1− βk+1 ≤

11



1− β0
(d− 1)k+1

exp







d+ log d

(d− 1) log(d/3)

k
∑

j=0

1

j + 1−log(1−β0)
log(d/3)

+O







k
∑

j=0

1
(

j + 1−log(1−β0)
log(d/3)

)2













≤
1− β0

(d− 1)k+1
exp

(

d+ log d

(d− 1) log(d/3)
log

(

1− log(1− βk)

1− log(1− β0)

)

+O(1)

)

(21)

=O

(

logγ0 n

(d− 1)k+1

)

.

Note that (21) is obtained as follows:

k
∑

j=0

1

j + 1−log(1−β0)
log(d/3)

= log

(

k + ζ

ζ

)

+O(1) ≤ log

(

1− log(1− βk)

1− log(1− β0)

)

+O(1) (22)

where ζ = 1−log(1−β0)
log(d/3) . Now 1−βk ≤ 3k(1−β0)/d

k implies that k ≤ log((1−β0)/(1−βk))/ log(d/3).

Substituting this upper bound for k into the middle term of (22) yields (21). �

5 BFS Expansion from Any Starting Point

We now require some additional structural lemmas regarding the graph G in order to show that
a breadth first search on the graph expands suitably. Proving this expansion it what allows us to
show that from any starting point, a random walk on the cuckoo graph quickly reaches a vertex
that is near a free vertex.

Lemma 7 If k ≤ 1
6 logd n, then with high probability G does not contain a connected subgraph H

on 2k + 1 vertices with 2k + 3d edges, where k + 1 vertices come from L and k vertices come from
R.

Proof: We put an upper bound on the probability of the existence of such a subgraph using the
union bound. Given the vertices of H, H can be constructed by taking a bipartite spanning tree
on the k + 1 vertices from L and k vertices from R and adding j = 3d edges. There are

(

n

k + 1

)(

(1 + ε)n

k

)

ways of choosing the vertices of H,
k(k+1)−1(k + 1)k−1

possible spanning trees, and
(k(k + 1))j

ways of choosing the configuration for the j other edges. All 2k + j edges occur with probability
at most

(

d

(1 + ε)n

)2k+j

,

12



giving us that the probability of such a subgraph is at most
(

n

k + 1

)(

(1 + ε)n

k

)

k(k+1)−1(k + 1)k−1 (k(k + 1))j
(

d

(1 + ε)n

)2k+j

≤

(

en

k + 1

)k+1(e(1 + ε)n

k

)k

kk(k + 1)k−1

(

dk(k + 1)

(1 + ε)n

)j

d2k
(

1

(1 + ε)n

)2k

≤ n (ed)2k
(

dk(k + 1)

n

)j

. (23)

For k ≤ 1
6 logd n and d ≥ 4 and n sufficiently large we have (ed)2k ≤ exp

(

2 log(d) log n
3 log d

)

= n2/3

and dk(k+1)
n is O(n−1+ 1

d ). Hence for j = 3d we have the right hand side of (23) is O(n2/3n−3d+3) =
O(n−2d). �

Lemma 8 With high probability there do not exist S ⊆ L, T ⊆ R such that N(S) ⊆ T , 2d2 log n ≤
s = |S| ≤ n/d, t = |T | ≤ (d− 1− θs)s and

θs =
d+ log d

log(n/((d− 1)s))
≥

d+ log d

log(n/t)
. (24)

Proof: The expected number of pairs S, T satisfying the given conditions can be bounded by

n/d
∑

s=2d2 logn

(

n

s

)(

(1 + ε)n

t

)(

t

(1 + ε)n

)ds

≤

n/d
∑

s=2d2 logn

(ne

s

)s
(

(1 + ε)ne

t

)t( t

(1 + ε)n

)ds

≤

n/d
∑

s=2d2 logn

(ne

s

)s
e(d−1−θs)s

(

t

(1 + ε)n

)ds−(d−1−θs)s

≤

n/d
∑

s=2d2 logn

(

t

s

ed−θs

(1 + ε)1+θs

(

t

n

)θs
)s

≤

n/d
∑

s=2d2 logn

(

(d− 1)ed−θs

(

t

n

)θs
)s

≤

n/d
∑

s=2d2 logn

(

d− 1

d

)s

= O

(

n− 2d2 logn

d

)

= O
(

n−2d
)

.

�

Suppose now that we are in the process of adding u to the hash table. For our analysis, we
consider exploring a subgraph of G using breadth-first search, starting with the root u ∈ L and
proceeding until we reach F . We emphasize that this is not the behavior of our algorithm; we
merely need to establish some properties of the graph structure, and the natural way to do that is
by considering a breadth-first search from u.

Let L1 = {u}. Let the R-neighbors of u be w1, w2, . . . , wd and suppose that none of them are
in F . Let R1 = {w1, w2, . . . , wd}. Let L2 = {v1, v2, . . . , vd} where vi is matched with wi in M ,
for i = 1, 2, . . . , d. In general, suppose we have constructed Lk for some k. Rk consists of the
R-neighbors of Lk that are not in R≤k−1 = R1 ∪ · · · ∪Rk−1 and Lk+1 consists of the M -neighbors
of Rk. Note that we assign an (arbitrary) ordering to the vertices each Lk. An edge (x, y) from Lk

is wasted if either y ∈ Rj for some j < k or if there exists x′ ∈ Lk with x′ prior to x in the ordering
of Lk such that the edge (x′, y) ∈ G. We let

k0 =
⌊

logd−1(n)− 1
⌋

13



and ρk = |Rk|, λk = |Lk| for 1 ≤ k ≤ k0. Assume for the moment that

|Rk| ∩ F = ∅ for 1 ≤ k ≤ k0. (25)

Lemma 9 Assume that (25) and the high probability events of Lemma 7 and Lemma 8 hold. Then

ρk0 = Ω

(

n

logγ1 n

)

, (26)

where γ1 =
d+log d

(d−1) log(d−1) .

Proof: We can assume that 1−βk0 ≥ 2d3 log n/n. Otherwise we have that |R≤k0−1| ≥ n−2d3 log n.
But

|R≤k0−1| ≤
k0−1
∑

k=1

|Rk| ≤
k0−1
∑

k=1

(d− 1)k−1 ≤
(d− 1)⌊logd−1(n)−1⌋−1

d− 2
≤

n

(d− 1)(d− 2)

and we have a contradiction.
For 1 ≤ k ≤ k1 =

⌊

logd n
6

⌋

Lemma 7 implies that we generate at most 3d wasted edges in the

construction of Lj , Rj , 1 ≤ j ≤ k. If we consider the full BFS path tree, where vertices can be
repeated, then each internal vertex of the tree L has d− 1 children. For every wasted edge we cut
off a subtree of the full BFS tree. What remains when all the wasted edges have been cut is the
regular BFS tree. Clearly the worst case is when all the subtrees cut off are close to the root, in
which case the 3d wasted edges can at most stunt the growth of the tree for four levels. In this
case d − 2 edges cut at the first three levels, so that there is just one node on each level, and six
edges cut off at the fourth level. That is, the worst case in terms of the expansion of the BFS tree
is that the first 4 levels offer no expansion, and subsequent levels expand by a factor of d− 1. This
means that in the worst case we have

ρk > (d− 1)k−5 for 1 ≤ k ≤ k1. (27)

In particular ρk1 = Ω
(

(d− 1)
logd n

6

)

> 2d2 log n for large enough n and so Lemma 8 applies to the

BFS tree at this stage. In general Lemma 8 implies that for k1 ≤ j ≤ k0

ρ1 + ρ2 + · · ·+ ρj ≥ (d− 1− θs)s (28)

where
s = λ1 + λ2 + · · ·+ λj = 1 + ρ1 + ρ2 + · · ·+ ρj−1. (29)

This follows from the fact that λ1 = 1 and (25) implies λj = ρj−1 for j ≥ 2.
Now λj ≤ (d−1)λj−1 for j ≥ 3 and so s in (29) satisfies s ≤ 1+d+d(d−1)+ · · ·+d(d−1)j−2 <

(d− 1)j . Thus θs in (24) and (28) satisfies

θs ≤ φj =
d+ log d

log n− j log(d− 1)
.

Thus, by (28) and (29) we have (after dropping a term)

ρj ≥ (d− 2− φj)(ρ1 + ρ2 + · · ·+ ρj−1). (30)

An induction then shows that for ℓ ≥ 1,

ρk1+ℓ ≥ (ρ1 + · · ·+ ρk1)(d− 2− φk1+ℓ)
ℓ−1
∏

k=1

(d− 1− φk1+k). (31)

14



Indeed the case ℓ = 1 follows directly from (30). Then, by induction,

ρk1+ℓ+1 ≥ (ρ1 + · · ·+ ρk1)(d− 2− φk1+ℓ+1)

(

1 +
ℓ
∑

k=1

(d− 2− φk1+k)
k−1
∏

i=1

(d− 1− φk1+i)

)

(32)

= (ρ1 + · · ·+ ρk1)(d− 2− φk1+ℓ+1)
ℓ
∏

k=1

(d− 1− φk1+k). (33)

To check (33) we can use induction on ℓ. Re-write

1 +

ℓ+1
∑

k=2

(d− 2− φk1+k)

k−1
∏

i=2

(d− 1− φk1+i)

= 1 +
ℓ
∑

k′(=k−1)=1

(d− 2− φ(k1+1)+k′)
k′−1
∏

i′=(i−1)=1

(d− 1− φ(k1+1)+i′) (34)

Assume inductively that

RHS(34) =
ℓ
∏

k′=1

(d− 1− φ(k1+1)+k′). (35)

Then re-write the RHS of (35) as
ℓ+1
∏

k=2

(d− 1− φk1+k). (36)

Then multiply LHS(34) by d− 1− φk1+1 and tidy up to get the expression in brackets in the RHS
of (32) with ℓ replaced by ℓ + 1. Finally observe that multiplying (36) by d − 1 − φk1+1 gives us
the required expression for ℓ+ 1.

We deduce from (27) and (31) that provided k1 + ℓ ≤ k0 (which implies
φk1+ℓ

d−1 ≤
1
2),

ρk1+ℓ ≥ ((d− 1)k1−5 − 1)(d− 2− φk1+ℓ)
ℓ−1
∏

k=1

(d− 1− φk1+k)

= ((d− 1)k1−5 − 1)

(

1−
1

d− 1− φk1+ℓ

)

(d− 1− φk1+ℓ)
ℓ−1
∏

k=1

(d− 1− φkl+k)

=

(

1−
1

(d− 1)k1−5

)(

1−
1

d− 1− φk1+ℓ

)

(d− 1)k1+l−5
ℓ
∏

k=1

(

1−
φkl+k

d− 1

)

≥
1

2
(d− 1)k1+ℓ−5 exp

{

−
1

d− 1

ℓ
∑

k=1

φk1+k −
1

(d− 1)2

ℓ
∑

k=1

φ2
k1+k

}

(37)

where we have used the fact that 1 − 1
(d−1)k1−5 = o(1) and 1 − 1

d−1−φk1+ℓ
≥ 1 − 1

(d−1)/2 ≥ 1 − 2
7 .

To simplify the product we use the inequality 1− x ≥ e−x−x2

which is valid for x ∈ [0, 12 ] and note

that
φk1+k

d−1 ≤
φk1+l

d−1 ≤
1
2 .
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Note next that

ℓ
∑

k=1

φk1+k =
ℓ
∑

k=1

d+ log d

log n− (k1 + k) log(d− 1)

=
ℓ
∑

k=1

d+ log d

log(d− 1)

1
logn

log(d−1) − k1 − k

=
d+ log d

log(d− 1)

(

log

(

log n

log(d− 1)
− k1

)

− log

(

logn

log(d− 1)
− k1 − ℓ

)

+O(1)

)

=
d+ log d

log(d− 1)

(

log

(

log n− k1 log(d− 1)

log n− (k1 + ℓ) log(d− 1)

)

+O(1)

)

≤
d+ log d

log(d− 1)
(log log n+O(1))

where the sum is estimated in the same way as in (22).
Similarly we find that

ℓ
∑

k=1

φ2
k1+k ≤

ℓ
∑

k=1

(

d+ log d

log(d− 1)

)2 1
(

log n
log(d−1) − k1 − k

)2

≤

(

d+ log d

log(d− 1)

)2 ∞
∑

k=1

1

k2

= O(1).

Thus, putting ℓ = k0 − k1 we get

ρk0 = Ω

(

(d− 1)k0

(log n)(d+log d)/((d−1) log(d−1))

)

and the lemma follows. �

6 Proof of Theorem 1

Assume that all high probability events identified so far occur. Let S denote the set of vertices
v ∈ R at M -distance at most ∆ = k∗ + (γ0 + γ1) logd−1 log n + 2K from F , where K is a large
constant and k∗ is given in Lemma 3. Then by Lemma 6

|R \ S| ≤
n

(d− 1)K logγ1(n)
.

We have used (d − 1)K to “soak up” the hidden constant in the statement of Lemma 6. The
requirement 1 − βk ≥ 2d2 logn/n in Lemma 6 can be assumed. Indeed, if it fails then at most
O(logn) vertices are at M -distance greater than ∆ from F .

If K is sufficiently large then Lemma 9 implies that

|R \ S| ≤ ρk0/2. (38)

Every vertex v ∈ S has a path of length l ≤ ∆ to a free vertex. The probability that the random

walk follows this path is
(

1
d−1

)l
≥
(

1
d−1

)∆
. This is a lower bound on the probability the algorithm
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finds a free vertex within ∆ steps, starting from v ∈ S. We now split the random walk into rounds,
and each round into two phases.

The first phase starts when the round starts and ends when the random walk reaches a vertex
of S or after k0 steps (possibly the first phase is empty). Then, the second phase starts and ends
either when the random walk reaches a free vertex or after ∆ steps, finishing this round. We omit
the second phase if the first phase fails to reach S. The length of the first phase is at most k0
and the second phase takes at most ∆ steps. The following claim is immediate from our previous
discussion. (It is here that we use (38)).

Claim 10 Starting from a vertex v /∈ S the expected number of rounds until the random walk is in
S is at most O(logγ1 n).

Proof Indeed the probability that a random walk of length k0 passes through S is at least
ρk0−|R\S|

(d−1)k0
= Ω(log−γ1 n). �

By Claim 10 we have a Ω(log−γ1 n) chance of reaching S at the end of the first phase. When

we start the second phase we have at least a
(

1
d−1

)∆
probability of reaching a free vertex, thus

ending the random walk. Then the number of rounds until we reach a free vertex is dominated by

a geometric distribution with parameter Ω

(

(

1
d−1

)∆
log−γ1 n

)

and thus the expected number of

rounds is O((d − 1)∆ logγ1 n). Since both Lemma 6 and Claim 10 apply regardless of the starting
vertex, this shows that the expected number of steps until we reach a free vertex is at most

O
(

k0 log
γ1 n(d− 1)∆

)

= O
(

(logn) (logγ1 n)(d− 1)(γ0+γ1) logd−1 logn+O(1)
)

= O
(

log1+γ0+2γ1 n
)

.

There is still the matter of Assumption (25). This is easily dealt with. If we find v ∈ Rk ∩ F
then we are of course delighted. So, we could just add a dummy tree extending 2(k0−k) levels from
v where each vertex in the last level is in F . The conclusion of Claim 10 will remain unchanged.
This completes the proof of Theorem 1.

7 Conclusion

We have demonstrated that for sufficiently large d with high probability the graph structure of the
resulting cuckoo graph is such that, regardless of the starting vertex, the random-walk insertion
method will reach a free vertex in polylogarithmic time with high probability. Obvious directions
for improvement include reducing the value of d for which this type of result holds, and reducing the
exponent in the time bound. The ultimate goal here would be to prove the random walk approach
or a similarly simple approach could achieve logarithmic insertion time with high probability and
constant expected insertion time. See [7] for subsequent results that move forward in these direc-
tions. A further open direction would be to expand the result to cuckoo hashing variants where
more than one item can be stored in a location.

Ideally, we would hope to prove a logarithmic time bound that holds with high probability for
the random-walk insertion algorithm. Such a result would require a greater understanding of the
cuckoo graph that would allow one to improve over our two-phase analysis.

Acknowledgement: We thank the referees for their help in improving the presentation in this
paper.
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