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Suppose we are given a complete graph on n vertices in which the lengths o f  the edges are in- 
dependent identically distributed non-negative random variables. Suppose that  their common  

distribution function F is differentiable at zero and D = F ' ( 0 ) >  0 and each edge length has a finite 
mean  and variance. Let L n be the random variable whose value is the length of  the minimum 
spanning tree in such a graph. Then we will prove the following: lim n ~ ~ E(Ln)= ( (3) /D where 

(( 3)= ~ = 1  1/k3= 1.202 .... and for any e > 0  limn~o~ Pr(lLn-((3)/Dl)>e)=O. 

Introduction 

Suppose we are given a complete graph on n vertices in which the lengths of  the 
edges are independent identically distributed non-negative random variables. Sup- 
pose that their common distribution function F is diff.~rentiable at zero and that 
D = F ' ( 0 ) >  0. Let X denote a random variable with this distribution. 

Let L n be the random variable whose value is the length of the minimum spann- 
ing tree in such a graph. Then using an overbar to denote expectations, as we will 
do where convenient throughout the paper, we will prove the following: 

Theorem. I f  X has finite mean, then 

lim £ n = ( ( 3 ) / D  where ((3)= ~ l / k  3= 1.202 ....  (la) 
n~oo k = l  

I f  X has finite variance, then 

l im  Pr(IL. - ((3)/DI > e) = 0. [] ( lb) 

The work in this paper was stimulated by Walkup ' s  result [6] that the expected 
value of  a random assignment problem with independent uniform [0,1] lengths is 
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bounded above by 3. An earlier result, based or, Walkup ' s  method, that 
Ln_< 2(1 + log n/n)  when the distribution in question is uniform [0,1], was obtained 
by Fenner and Frieze [2]. 

See also Steele [5] for the case where n points are scattered in a Euclidean space 
and Lueker [4] for similar results on problems with normal  distributions (in the 
main). 

The  u n i f o r m  case 

We first prove the result for the case where X is a uniform [0,1] variable and then 
extend the result to the general case. 

Let N=(~) ,  Vn= {1,2 . . . . .  n} and suppose that the edges En= {u l, u 2 . . . . .  UN} of  
our complete graph are numbered so that I(ui)<_ l(ui+ 1), i = 1, 2 . . . .  where l(u) is the 
length of edge u. It follows that 

E(l(ui) )=i / (N+ 1), i=  1,2 . . . . .  N. (2) 

For any positive integer M<_N let G M denote the graph defined by u 1 . . . . .  u M. 
Clearly GM is a random graph on n vertices and M edges in the sense of  Erd6s and 
R6nyi [1]. If  M is positive but non-integral, then G M denotes GrM1. 

Suppose that the minimum length tree is constructed using the Greedy Algorithm 
of  Kruskal [3]. Let F0=0,  F 1 = {ul}, F2 . . . . .  Fn_ 1 be the sequence of  edge sets of  the 
successive forests produced. Here IF/] = i  and Fn_l is the set of  edges in the 
minimum spanning tree. 

Next define T/= max(j :  uj e Fi). It follows f rom (2) that 

n - I  

Ln= ~ Ti/(N+ 1). (3) 
i - I  

We now introduce the function 

1 ~ tt-Z(2ae-Za)t/t!, a > 0  
f (a) = 2at=, 

and let f (0)  = 0. 
We summarize some of its salient properties: it follows f rom Erd6s and R6nyi [1, 

eq. 6.6] that for a > 0  

f (a) = ( x -x2 /2 ) /2a  where x = x(a) is the unique value satisfying (4) 
(i) 0 < x <  1, (ii) xe-X=2ae -2a. 

Thus x=2a  and f ( a ) = l - a  for a < l / 2 .  Note also that f is strictly monotonic 
decreasing from 1 down to 0 as a increases f rom 0 to oo. This function is needed 
because of the following lemma (proved later in outline) on random graphs. 
Throughout  the p roof  cl, c2 . . . .  denote positive constants. 
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Lemma 1. I f  1 <_M<2n log n, then 

Pr(GM has more than n f (M/n )+  3n 4/5 components)<cln -1/6, (5a) 

Pr(GM has fewer than n f ( M / n ) - n  4/5 components)<cln -1/6. (5b) 

We shall also prove later 

Lemma 2. Pr(G2nlog n is not connected)<c2 n-3. [] 

We can obtain some bounds on Tk. For 0 < z <  1 we define a ( z ) = f - l ( 1  - z ) .  We 
shall now be able to prove that for l<k<_m= Fn-3n4/Sq that ]Tk-na(k/n)[ is 

'small  enough' .  
So let bk=a(k/n  + 3n-1/5), which is well defined for k_< m. Now clearly 

Tk<_nbk+2nlognPr(nbk<Tk<_2nlogn)+NPr(Tk>2nlogn).  (6) 

But for any M < N  

T k > M  if and only if 

Thus using (5a) and (7) we obtain 

Pr(Tk > nbk) <- cl n -  1/6 

on noting that n - k = nf(bk) + 3n 4/5. 

Now Lemma 2 implies 

P r (T  k > 2n log n) < c2n- 3. 

Thus f rom (6), (8) and (9) we obtain 

Tk < nbk + 2c~ n 5/6 log n + c2/2n 

Now for k >  m, we have (crudely) 

Tk <2n logn+ NPr(Tk> 2nlogn) 

< 2n log n + c2/n. 

Now from (3), (10) and (11) we obtain 

GM has more than n - k  components.  (7) 

(8) 

(9) 

for 1 < k < m .  (10) 

£n< ( (n  ~=l a(k /n + 3n-1/5)) / ( N  + l )) + un 

where 

u n = (n(2cln 5/6 log n + c2/2n ) + 3n4/5(2n log n + c2/n))/(N+ 1) 

= O(n - 1/6 log n). 

Now as a(z) is monotonic increasing we have 

( l l )  

(12) 
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i 1  ~ a(k/n + 3n- 1/5) < nI where I =  a(z) dz. 
k=l 0 

It follows immediately from (12) that 

Jim sup/S n _< 2I. (13) 

To get a lower bound for Tk we define b~ = a ( k / n -  n-1/5) for k>_ n/2 and note that 

- -  ~ t ~ t 

- nbk) Tk_nbkPr(T k (14) 

>--nb'k(1-Cll1-1/6) using (5b) and (7). 

Now clearly Tk>_k=na(k/n) for k<_n/2 and hence from (3) and (14) we have 

•n>_(n/(N+ 1)) ~ a(k/n)+ a ( k / n - n  -1/5) (1 - c l n  -1/6) 
k= 1 k>n/2 

from which we deduce l imn-~  inf/Sn>2I and in conjunction with (13) we have 

lirn L n = 2 a(z) dz = - 2 f(a) da 
0 0 

(on integrating by parts and using af(a)= (x -x2 /2 ) /2  where x is as in (4)) 

=2  ~ (kk-2/k!) (2a)k-'e-2akda = ~ 1/k 3 
k = l  0 k = l  

which proves (la) for the case in which the edge weights are uniform on [0,1]. 
We next prove (lb) by showing that Var(Ln)~ 0 and n ~ ~ and deducing our 

result from the Chebycheff inequality. 
We first state a result that can be readily verified by simple integration: let X~o) 

denote the pth smallest out of Nindependent uniform [0,1] random variables. Then 

E(X(p)X(q)) = p ( q +  1)/((N+ I)(N+ 2)), 1 <_p<_q<_N. (15) 

Next let s k, k =  1 . . . . .  n - 1  denote the length of the kth edge chosen by the 
Greedy Algorithm. Thus s k is the Tkth smallest out of N independent uniform [0,1] 
random variables. 

Therefore if 1 <.k<l<_n - 1 

N N 

E(skst)= ~ ~ E(SkSt] Tk=P, Tt=q)Pr(Tk=P, Tl=q) 
p=k q=p 

N N 
= ~ ~ (p(q+ 1)/((N+ 1)(N+2)))Pr(Tk=p, Tl=q) 

p=k q=p 

= (E(TkTt) + E(Tk))/(N+ 1)(N+ 2)). 

To show that Var(Ln)~ 0, all we have to prove is that 
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n - I  n - I  n - I  n - 1  

~ E(TkTt)<__(l +o(1)) ~ ~ TkT t. (16) 
k = l  l = 1  k = l  I=1  

This is straightforward. For example we have that for 1 ___ k<_l<_m 

E(TkTl)<_2b'knzlognPr(Tk <b'k n and Tl_<2nlogn) 

+ 2b~nZlognPr(Tk <.2nlogn and Tt<b'tn) 

+ 4nZ (log n )Z Pr( bkn < Tk <_ 2n log n and btn < Tt_<2nlogn) 

+ N 2 Pr (T  k < 2n log n) + bkbtn 2. 

<_ Tk T l + ¢3 nil~6 (log n) 2 (17) 

after some simple approximations.  The contributions when k or l>m to the left 

hand side of  (16) can be shown to be small and (16) follows easily. 
We obtain (lb) immediately f rom the Chebycheff  inequality. 

Extens ion to the general case 

We now extend our results to the case where the edge weights are independently 
and identically distributed as a non-negative random variable X with probabili ty 
functions F, i.e., P r ( X < x ) = F ( x )  for x_>0. Suppose also that 

IJ = E(X) < co and v = E ( X  2) < oo. 

Suppose now that F is differentiable at x = 0  and D = F ' ( 0 ) > 0 .  For a given small 

e > 0  there exists h=h(e)>O such that 

F(x)>_(D-e)x for O<_x<_h 

Suppose now that we define a new random variable X~ with probabili ty function F c 

where 

F~(x)=(D-e)x  if O<_x<_h, 

= F ( x )  if h<x.  

Assuming for the present that the edge lengths are now 

(18) 

independent random 

variables distributed like Xe, then were Ln, e denotes the random variable which is 
the length of  the minimum spanning tree in the graph produced, 

£n<£n,~. (19) 

Let Tn, e denote the minimum spanning tree in the graph and let En,~= {eeEn: 
l(e)<h}. For Sc_E n, 

I(S)= ~ l(e). 
e E S  
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Now clearly 

L,,,~ = l( Tn, eO En, c) + I( T,,,~ O (E,, - En, e) ). (20) 

TO deal with l(Tn,~OEn, e) we consider the problem in which edge weights for 
e qEn, E are uniformly randomly generated between h and 1 / ( D - e ) .  Let 7~n,e be the 
minimum spanning tree in this graph. Clearly 

l(Tn, e)>l(Tn, EOE,,,e) (21) 

and in this problem the edge weights are uniformly distributed in [ 0 , 1 / (D -  e)]. Scal- 
ing the uniform [0,1] case leads to 

lina E(l(7~n, ~)) = ((3)/(D - e), (22a) 

l im Var(l(7~n,,)) = 0. (22b) 

To deal with L = I(Tn, eO(E n -E~,~)) define the events 

A: - [E., ~ I >__ (D - e )Nh /2, 

B: the graph (Vn, E~,e) is connected. 

Now 

where 

E ( L ) = E ( L I A N B ) P r ( A N B ) +  ~ E(LIEn, e=Z)Pr(En, E=Z) (23) 
ZeO 

f2= {ZC_En:lZ[ < ( D - e ) N h / 2  or (V n, Z) is not connected}. 

Now if B occurs, then Tn,~C_En, ~ and so E ( L I A G B ) = O .  Also, for large n 

Pr(A U B) < Pr(_A) + Pr(B) < c4ne- (D- ~)nh. (24) 

Here Pr (A)<  e-W-e)Nh/8 follows from the Chernoff  Inequalities for the Binomial 
Series and Pr(B)=O(ne -(D-e)nh) can be proved in the same way as Lemma 2. 

Now let Sn denote the tree {{1,k}:k=2,  . . . ,n} .  Clearly for Zeg2 

E(L [ E~,~ = Z) <_ E(I(S~) [E n, ~ = Z) 

= (n - 1)E(/(1, 2)IE~,~ = Z) 

_ (n - 1)E(I(1, 2) [ l(1, 2) >_ h) 

< (n - 1)p/Pr(X___ h). 

Combining this with (23) and (24) gives 

E(L) <_ c 4 n  2/ge - ( O -  , ) .h /Pr (X_ > h). (25a) 

A similar argument yields 
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E(L 2) _< £'4(//3//2 + rt 2 v)e -(o-e)nh/pr(X>_ h). (25b) 

It now follows from (19), (20), (21), (22a), and (25a) that 

l imsupE(Ln)<_((3)/(D-e ) for all (small) e > 0 .  (26) 

Now from (20) and (21) 

E( L 2, c) <- E(l( Tn, c) 2) + 2(n - 1)hE(L) + E(L 2). 

2 < 2 Thus from E(L,)-E(Ln,  e) and (22) and (25) we have 

lirn sup E(L 2) <_ ( ( ( 3 ) / ( D -  e)) 2 for all (small) e > 0. (27) 

On the other hand there exists 0<_ h=/~(e)_< (/9+ e)-1 such that 

F(x)<_(D+e)x for 0_<x___/~. 

We now define a new random variable ~'~ with probability function P~ where 

P~(x)=(D+e)x if 0__x_/~, 

=max((D+e)h,F(x)) if/~_<x. 

If  edge lengths are now independent random variables distributed like X~, and/in, e 
denotes the length of the minimum spanning tree, then clearly 

E(Ln)>_E(I~n,E), etc. 

A similar analysis to that for (26) and (27), then yields 

liminfE(Ln)>_((3)/(D+e) for all e > 0 ,  (28) 

l iminfE(L2)>(~(3)/(V+e)) 2 .  _ for all e > 0 .  (29) 

Combining (26), (27), (28) and (29) yields the main result of the paper. 

Proof  sketches for Lemmas 1 and 2 

It remains to prove Lemmas 1 and 2. To do this we have to look at the number 
of  components in the random graph Gin. This question was analysed in detail in 
the classic paper of  Erd6s and R6nyi [1] and it was this that made us suspect that 
an asymptotically accurate value for L n could be obtained. In their paper they com- 
pute the expected number of  components in the graph G¢. for c fixed and n tending 
to infinity. We however need to estimate the probabilities that the number of  com- 
ponents differs from the expected number by a given amount  where c may depend 
on n. Rather than try the reader's patience by repeating the calculations of  Erd6s 
and Renyi we just indicate the main steps of  the argument. 
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P r o o f  of  Lemma 1. For M<_ n/4 the expected number of  cycles in GM is bounded 
by a constant and as the number of  components lies between n - M  and n - M +  C, 
where C is the number of  cycles, using the Markov inequality on C suffices in this 

case. 
The following lemma is useful in calculations for M> n / 4 :  

Lemma 3. Suppose n / 4 < M < 2 n l o g n  and 1 < p < 2 n  1/5 and 1 <q<(~).  I f  

u = u ( p , q ' = (  (~42P__)q)/((~M) ) 

then 

where o = e- 2Mp/n(2M/n2)q. 

(1 - c 5 ((/7 + q)log n)2/n ) o < u _< (1 + c 5 ((p + q)log n)2/n) o 

[] 

The proof  of this lemma is omitted. 
Most of the components in GM are isolated trees with fewer than n 1/5 vertices 

and so the following results are useful and can be proved easily with the aid of Lem- 

ma 3. 

Lemma 4. (a) Let  t k be the number o f  components o f  GM which are trees with k 
vertices. Then i f  k <_ n 1/5 

t k = (n/2a)(kk-2/k!)(2ae-2a)k(1 + 0(klog n)2/n) 

where a = M / n  and 101 < c 6. 
(b) I f  ~=~i ,j t k, then 

Var(T) < 7"+c6(7"logn)2n -3/5 . [] 

The number of  small components which are not trees is likely to be small: 

Lemma 6. Let P be the number o f  components o f  G M which are not trees and have 
no more than n 1/5 vertices. Then P<_c7 nil5. [] 

(The proof of this lemma can be based on the following crude estimate: the number 
of  connected labeled graphs with k vertices and l>__k edges is no more than 

kk-2(~)l-k+l.) 
To prove Lemma 1 we note next: I f  GM has more than n f ( M/ n ) +  3n 4/5 com- 

ponents, then 

GM has more than n f ( M / n ) +  n 4/5 comporents  which (31a) 
are trees and have no more than n 1/5 vertices 

o r  
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G M has more  t han  n 4/5 componen t s  which are not  

trees, bu t  have no  more  than  n ~/5 vertices 

(31b) 

or 

GM has more  than  n 4/5 componen ts  which have (31c) 

at least n 1/5 vertices - which is clearly impossible.  

L e m m a  6 and  the Markov  inequal i ty  deal with (31b), Lemmas  4 and 5 and  the 

Chebycheff  inequal i ty  deal with (3 la) .  

Similarly we can use Lemmas  4 and  5 and  the Chebycheff  inequal i ty  to show that  

G M usually has at least n f ( M / n ) - H  4/5 isolated trees. [] 

Proof of Lemma 2. If  now M =  2n log n and  SC { 1, 2, . . . .  n} and  ISI = k <  n / 2 ,  then 

Pr(there are no edges in G M jo in ing  S and  S) 

Thus  

But 

= Pr(GM is no t  connected) < 
Lnl2J 

(73&. 
k = l  

k +  1 Pk+l k P k < - ( ( n - k ) / ( k +  1))e-4(n-2k-1}l°gn/n 

f rom which p = O ( n p l ) = O ( n -  3). [] 
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