ON THE VALUE OF A RANDOM MINIMUM SPANNING TREE PROBLEM

A.M. FRIEZE
Dept. of Computer Science and Statistics, Queen Mary College, Mile End Road, London EI 4NS, England

Received 23 February 1983
Revised 13 April 1984

Abstract

Suppose we are given a complete graph on n vertices in which the lengths of the edges are independent identically distributed non-negative random variables. Suppose that their common distribution function F is differentiable at zero and $D=F^{\prime}(0)>0$ and each edge length has a finite mean and variance. Let L_{n} be the random variable whose value is the length of the minimum spanning tree in such a graph. Then we will prove the following: $\lim _{n \rightarrow \infty} E\left(L_{n}\right)=\zeta(3) / D$ where $\zeta(3)=\sum_{k=1}^{\infty} 1 / k^{3}=1.202 \ldots$, and for any $\left.\varepsilon>0 \lim _{n \rightarrow \infty} \operatorname{Pr}\left(\left|L_{n}-\zeta(3) / D\right|\right)>\varepsilon\right)=0$.

Introduction

Suppose we are given a complete graph on n vertices in which the lengths of the edges are independent identically distributed non-negative random variables. Suppose that their common distribution function F is diff arentiable at zero and that $D=F^{\prime}(0)>0$. Let X denote a random variable with this distribution.

Let L_{n} be the random variable whose value is the length of the minimum spanning tree in such a graph. Then using an overbar to denute expectations, as we will do where convenient throughout the paper, we will prove the following:

Theorem. If X has finite mean, then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \bar{L}_{n}=\zeta(3) / D \quad \text { where } \zeta(3)=\sum_{k=1}^{\infty} 1 / k^{3}=1.202 \ldots \tag{1a}
\end{equation*}
$$

If X has finite variance, then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \operatorname{Pr}\left(\left|L_{n}-\zeta(3) / D\right|>\varepsilon\right)=0 \tag{1b}
\end{equation*}
$$

The work in this paper was stimulated by Walkup's result [6] that the expected value of a random assignment problem with independent uniform [0,1] lengths is
bounded above by 3. An earlier result, based or Walkup's method, that $L_{n} \leq 2(1+\log n / n)$ when the distribution in question is uniform [0,1], was obtained by Fenner and Frieze [2].

See also Steele [5] for the case where n points are scattered in a Euclidean space and Lueker [4] for similar results on problems with normal distributions (in the main).

The uniform case

We first prove the result for the case where X is a uniform [0,1] variable and then extend the result to the general case.

Let $N=\binom{n}{2}, V_{n}=\{1,2, \ldots, n\}$ and suppose that the edges $E_{n}=\left\{u_{1}, u_{2}, \ldots, u_{N}\right\}$ of our complete graph are numbered so that $l\left(u_{i}\right) \leq l\left(u_{i+1}\right), i=1,2, \ldots$ where $l(u)$ is the length of edge u. It follows that

$$
\begin{equation*}
E\left(l\left(u_{i}\right)\right)=i /(N+1), \quad i=1,2, \ldots, N . \tag{2}
\end{equation*}
$$

For any positive integer $M \leq N$ let G_{M} denote the graph defined by u_{1}, \ldots, u_{M}. Clearly G_{M} is a random graph on n vertices and M edges in the sense of Erdös and Rényi [1]. If M is positive but non-integral, then G_{M} denotes $G_{\Gamma M 7}$.

Suppose that the minimum length tree is constructed using the Greedy Algorithm of Kruskal [3]. Let $F_{0}=\emptyset, F_{1}=\left\{u_{1}\right\}, F_{2}, \ldots, F_{n-1}$ be the sequence of edge sets of the successive forests produced. Here $\left|F_{i}\right|=i$ and F_{n-1} is the set of edges in the minimum spanning tree.

Next define $T_{i}=\max \left(j: u_{j} \in F_{i}\right)$. It follows from (2) that

$$
\begin{equation*}
\bar{L}_{n}=\sum_{i=1}^{n-1} \bar{T}_{i} /(N+1) \tag{3}
\end{equation*}
$$

We now introduce the function

$$
f(a)=\frac{1}{2 a} \sum_{t=1}^{\infty} t^{t-2}\left(2 a \mathrm{e}^{-2 a}\right)^{t} / t!, \quad a>0
$$

and let $f(0)=0$.
We summarize some of its salient properties: it follows from Erdös and Rényi [1, eq. 6.6] that for $a>0$

$$
\begin{equation*}
f(a)=\left(x-x^{2} / 2\right) / 2 a \quad \text { where } x=x(a) \text { is the unique value satisfying } \tag{4}
\end{equation*}
$$

$$
\text { (i) } 0<x<1 \text {, } \text { (ii) } x \mathrm{e}^{-x}=2 a \mathrm{e}^{-2 a} \text {. }
$$

Thus $x=2 a$ and $f(a)=1-a$ for $a<1 / 2$. Note also that f is strictly monotonic decreasing from 1 down to 0 as a increases from 0 to ∞. This function is needed because of the following lemma (proved later in outline) on random graphs. Throughout the proof c_{1}, c_{2}, \ldots denote positive constants.

Lemma 1. If $1 \leq M \leq 2 n \log n$, then

$$
\begin{align*}
& \operatorname{Pr}\left(G_{M} \text { has more than } n f(M / n)+3 n^{4 / 5} \text { components }\right) \leq c_{1} n^{-1 / 6} \tag{5a}\\
& \operatorname{Pr}\left(G_{M} \text { has fewer than } n f(M / n)-n^{4 / 5} \text { components }\right) \leq c_{1} n^{-1 / 6} \tag{5b}
\end{align*}
$$

We shall also prove later
Lemma 2. $\operatorname{Pr}\left(G_{2 n \log n}\right.$ is not connected $) \leq c_{2} n^{-3}$.
We can obtain some bounds on \bar{T}_{k}. For $0<z<1$ we define $a(z)=f^{-1}(1-z)$. We shall now be able to prove that for $1 \leq k \leq m=\left\lceil n-3 n^{4 / 5}\right\rceil$ that $\left|T_{k}-n a(k / n)\right|$ is 'small enough'.

So let $b_{k}=a\left(k / n+3 n^{-1 / 5}\right)$, which is well defined for $k \leq m$. Now clearly

$$
\begin{equation*}
\tilde{T}_{k} \leq n b_{k}+2 n \log n \operatorname{Pr}\left(n b_{k}<T_{k} \leq 2 n \log n\right)+N \operatorname{Pr}\left(T_{k}>2 n \log n\right) \tag{6}
\end{equation*}
$$

But for any $M \leq N$

$$
\begin{equation*}
T_{k}>M \text { if and only if } G_{M} \text { has more than } n-k \text { components. } \tag{7}
\end{equation*}
$$

Thus using (5a) and (7) we obtain

$$
\begin{equation*}
\operatorname{Pr}\left(T_{k}>n b_{k}\right) \leq c_{1} n^{-1 / 6} \tag{8}
\end{equation*}
$$

on noting that $n-k=n f\left(b_{k}\right)+3 n^{4 / 5}$.
Now Lemma 2 implies

$$
\begin{equation*}
\operatorname{Pr}\left(T_{k}>2 n \log n\right) \leq c_{2} n^{-3} \tag{9}
\end{equation*}
$$

Thus from (6), (8) and (9) we obtain

$$
\begin{equation*}
\bar{T}_{k} \leq n b_{k}+2 c_{1} n^{5 / 6} \log n+c_{2} / 2 n \quad \text { for } 1 \leq k \leq m \tag{10}
\end{equation*}
$$

Now for $k>m$, we have (crudely)

$$
\begin{align*}
\bar{T}_{k} & \leq 2 n \log n+N \operatorname{Pr}\left(T_{k}>2 n \log n\right) \tag{11}\\
& \leq 2 n \log n+c_{2} / n .
\end{align*}
$$

Now from (3), (10) and (11) we obtain

$$
\begin{equation*}
\bar{L}_{n} \leq\left(\left(n \sum_{k=1}^{m} a\left(k / n+3 n^{-1 / 5}\right)\right) /(N+1)\right)+u_{n} \tag{12}
\end{equation*}
$$

where

$$
\begin{aligned}
u_{n} & =\left(n\left(2 c_{1} n^{5 / 6} \log n+c_{2} / 2 n\right)+3 n^{4 / 5}\left(2 n \log n+c_{2} / n\right)\right) /(N+1) \\
& =\mathrm{O}\left(n^{-1 / 6} \log n\right) .
\end{aligned}
$$

Now as $a(z)$ is monotonic increasing we have

$$
\sum_{k=1}^{m} a\left(k / n+3 n^{-1 / 5}\right) \leq n I \quad \text { where } I=\int_{0}^{1} a(z) \mathrm{d} z
$$

It follows immediately from (12) that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sup \bar{L}_{n} \leq 2 I \tag{13}
\end{equation*}
$$

To get a lower bound for \bar{T}_{k} we define $b_{k}^{\prime}=a\left(k / n-n^{-1 / 5}\right)$ for $k \geq n / 2$ and note that

$$
\begin{align*}
\bar{T}_{k} & \geq n b_{k}^{\prime} \operatorname{Pr}\left(T_{k} \geq n b_{k}^{\prime}\right) \tag{14}\\
& \geq n b_{k}^{\prime}\left(1-c_{1} n^{-1 / 6}\right) \quad \text { using (5b) and (7). }
\end{align*}
$$

Now clearly $\bar{T}_{k} \geq k=n a(k / n)$ for $k \leq n / 2$ and hence from (3) and (14) we have

$$
\bar{L}_{n} \geq(n /(N+1))\left(\sum_{k=1}^{\lfloor n / 2\rfloor} a(k / n)+\sum_{k>n / 2}^{m} a\left(k / n-n^{-1 / 5}\right)\right)\left(1-c_{1} n^{-1 / 6}\right)
$$

from which we deduce $\lim _{n \rightarrow \infty} \inf \tilde{L}_{n} \geq 2 I$ and in conjunction with (13) we have

$$
\lim _{n \rightarrow \infty} \bar{L}_{n}=2 \int_{0}^{1} a(z) \mathrm{d} z=-2 \int_{0}^{\infty} a f^{\prime}(a) \mathrm{d} a=2 \int_{0}^{\infty} f(a) \mathrm{d} a
$$

(on integrating by parts and using $a f(a)=\left(x-x^{2} / 2\right) / 2$ where x is as in (4))

$$
=2 \sum_{k=1}^{\infty}\left(k^{k-2} / k!\right) \int_{0}^{\infty}(2 a)^{k-1} \mathrm{e}^{-2 a k} \mathrm{~d} a=\sum_{k=1}^{\infty} 1 / k^{3}
$$

which proves (1a) for the case in which the edge weights are uniform on $[0,1]$.
We next prove (1b) by showing that $\operatorname{Var}\left(L_{n}\right) \rightarrow 0$ and $n \rightarrow \infty$ and deducing our result from the Chebycheff inequality.

We first state a result that can be readily verified by simple integration: let $X_{(p)}$ denote the p th smallest out of N independent uniform [0,1] random variables. Then

$$
\begin{equation*}
E\left(X_{(p)} X_{(q)}\right)=p(q+1) /((N+1)(N+2)), \quad 1 \leq p \leq q \leq N \tag{15}
\end{equation*}
$$

Next let $s_{k}, k=1, \ldots, n-1$ denote the length of the k th edge chosen by the Greedy Algorithm. Thus s_{k} is the T_{k} th smallest out of N independent uniform $[0,1]$ random variables.

Therefore if $1 \leq k \leq l \leq n-1$

$$
\begin{aligned}
E\left(s_{k} s_{l}\right) & =\sum_{p=k}^{N} \sum_{q=p}^{N} E\left(s_{k} s_{l} \mid T_{k}=p, T_{l}=q\right) \operatorname{Pr}\left(T_{k}=p, T_{l}=q\right) \\
& =\sum_{p=k}^{N} \sum_{q=p}^{N}(p(q+1) /((N+1)(N+2))) \operatorname{Pr}\left(T_{k}=p, T_{l}=q\right) \\
& \left.=\left(E\left(T_{k} T_{l}\right)+E\left(T_{k}\right)\right) /(N+1)(N+2)\right) .
\end{aligned}
$$

To show that $\operatorname{Var}\left(L_{n}\right) \rightarrow 0$, all we have to prove is that

$$
\begin{equation*}
\sum_{k=1}^{n-1} \sum_{l=1}^{n-1} E\left(T_{k} T_{l}\right) \leq(1+o(1)) \sum_{k=1}^{n-1} \sum_{l=1}^{n-1} \bar{T}_{k} \bar{T}_{l} . \tag{16}
\end{equation*}
$$

This is straightforward. For example we have that for $1 \leq k \leq l \leq m$

$$
\begin{align*}
E\left(T_{k} T_{l}\right) \leq & 2 b_{k}^{\prime} n^{2} \log n \operatorname{Pr}\left(T_{k}<b_{k}^{\prime} n \text { and } T_{l} \leq 2 n \log n\right) \\
& +2 b_{l}^{\prime} n^{2} \log n \operatorname{Pr}\left(T_{k} \leq 2 n \log n \text { and } T_{l}<b_{l}^{\prime} n\right) \\
& +4 n^{2}(\log n)^{2} \operatorname{Pr}\left(b_{k} n<T_{k} \leq 2 n \log n \text { and } b_{l} n<T_{l} \leq 2 n \log n\right) \\
& +N^{2} \operatorname{Pr}\left(T_{k}<2 n \log n\right)+b_{k} b_{l} n^{2} . \\
\leq & \bar{T}_{k} \bar{T}_{l}+c_{3} n^{11 / 6}(\log n)^{2} \tag{17}
\end{align*}
$$

after some simple approximations. The contributions when k or $l>m$ to the left hand side of (16) can be shown to be small and (16) follows easily.

We obtain (1b) immediately from the Chebycheff inequality.

Extension to the general case

We now extend our results to the case where the edge weights are independently and identically distributed as a non-negative random variable X with probability functions F, i.e., $\operatorname{Pr}(X \leq x)=F(x)$ for $x \geq 0$. Suppose also that

$$
\mu=E(X)<\infty \quad \text { and } \quad v=E\left(X^{2}\right)<\infty .
$$

Suppose now that F is differentiable at $x=0$ and $D=F^{\prime}(0)>0$. For a given small $\varepsilon>0$ there exists $h=h(\varepsilon)>0$ such that

$$
F(x) \geq(D-\varepsilon) x \quad \text { for } 0 \leq x \leq h
$$

Suppose now that we define a new random variable X_{ε} with probability function F_{ε} where

$$
\begin{align*}
F_{\varepsilon}(x) & =(D-\varepsilon) x & & \text { if } 0 \leq x \leq h, \tag{18}\\
& =F(x) & & \text { if } h<x .
\end{align*}
$$

Assuming for the present that the edge lengths are now independent random variables distributed like X_{ε}, then were $L_{n, \varepsilon}$ denotes the random variable which is the length of the minimum spanning tree in the graph produced,

$$
\begin{equation*}
\widetilde{L}_{n} \leq \bar{L}_{n, \varepsilon} . \tag{19}
\end{equation*}
$$

Let $T_{n, \varepsilon}$ denote the minimum spanning tree in the graph and let $E_{n, \varepsilon}=\left\{e \in E_{n}\right.$: $l(e) \leq h\}$. For $S \subseteq E_{n}$,

$$
l(S)=\sum_{e \in S} l(e) .
$$

Now clearly

$$
\begin{equation*}
L_{n, \varepsilon}=l\left(T_{n, \varepsilon} \cap E_{n, \varepsilon}\right)+l\left(T_{n, \varepsilon} \cap\left(E_{n}-E_{n, \varepsilon}\right)\right) . \tag{20}
\end{equation*}
$$

To deal with $l\left(T_{n, \varepsilon} \cap E_{n, \varepsilon}\right)$ we consider the problem in which edge weights for $e \notin E_{n, \varepsilon}$ are uniformly randomly generated between h and $1 /(D-\varepsilon)$. Let $\tilde{T}_{n, \varepsilon}$ be the minimum spanning tree in this graph. Clearly

$$
\begin{equation*}
l\left(\tilde{T}_{n, \varepsilon}\right) \geq l\left(T_{n, \varepsilon} \cap E_{n, \varepsilon}\right) \tag{21}
\end{equation*}
$$

and in this problem the edge weights are uniformly distributed in $[0,1 /(D-\varepsilon)]$. Scaling the uniform $[0,1]$ case leads to

$$
\begin{align*}
& \lim _{n \rightarrow \infty} E\left(l\left(\tilde{T}_{n, \varepsilon}\right)\right)=\zeta(3) /(D-\varepsilon), \tag{22a}\\
& \lim _{n \rightarrow \infty} \operatorname{Var}\left(l\left(\tilde{T}_{n, \varepsilon}\right)\right)=0 \tag{22b}
\end{align*}
$$

To deal with $L=l\left(T_{n, \varepsilon} \cap\left(E_{n}-E_{n, \varepsilon}\right)\right)$ define the events

$$
A: \quad-\left|E_{n, \varepsilon}\right| \geq(D-\varepsilon) N h / 2,
$$

B : the graph $\left(V_{n}, E_{n, \varepsilon}\right)$ is connected.
Now

$$
\begin{equation*}
E(L)=E(L \mid A \cap B) \operatorname{Pr}(A \cap B)+\sum_{Z \in \Omega} E\left(L \mid E_{n, \varepsilon}=Z\right) \operatorname{Pr}\left(E_{n, \varepsilon}=Z\right) \tag{23}
\end{equation*}
$$

where

$$
\Omega=\left\{Z \subseteq E_{n}:|Z|<(D-\varepsilon) N h / 2 \text { or }\left(V_{n}, Z\right) \text { is not connected }\right\}
$$

Now if B occurs, then $T_{n, \varepsilon} \subseteq E_{n, \varepsilon}$ and so $E(L \mid A \cap B)=0$. Also, for large n

$$
\begin{equation*}
\operatorname{Pr}(\bar{A} \cup \bar{B}) \leq \operatorname{Pr}(\bar{A})+\operatorname{Pr}(\bar{B}) \leq c_{4} n \mathrm{e}^{-(D-\varepsilon) n h} . \tag{24}
\end{equation*}
$$

Here $\operatorname{Pr}(A) \leq \mathrm{e}^{-(D-\varepsilon) N h / 8}$ follows from the Chernoff Inequalities for the Binomial Series and $\operatorname{Pr}(B)=\mathrm{O}\left(n \mathrm{e}^{-(D-\varepsilon) n h}\right)$ can be proved in the same way as Lemma 2.

Now let S_{n} denote the tree $\{\{1, k\}: k=2, \ldots, n\}$. Clearly for $Z \in \Omega$

$$
\begin{aligned}
E\left(L \mid E_{n, \varepsilon}=Z\right) & \leq E\left(l\left(S_{n}\right) \mid E_{n, \varepsilon}=Z\right) \\
& =(n-1) E\left(l(1,2) \mid E_{n, \varepsilon}=Z\right) \\
& \leq(n-1) E(l(1,2) \mid l(1,2) \geq h) \\
& \leq(n-1) \mu / \operatorname{Pr}(X \geq h) .
\end{aligned}
$$

Combining this with (23) and (24) gives

$$
\begin{equation*}
E(L) \leq c_{4} n^{2} \mu \mathrm{e}^{-(D-\varepsilon) n h} / \operatorname{Pr}(X \geq h) . \tag{25a}
\end{equation*}
$$

A similar argument yields

$$
\begin{equation*}
E\left(L^{2}\right) \leq c_{4}\left(n^{3} \mu^{2}+n^{2} v\right) \mathrm{e}^{-(D-\varepsilon) n h} / \operatorname{Pr}(X \geq h) \tag{25b}
\end{equation*}
$$

It now follows from (19), (20), (21), (22a), and (25a) that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sup E\left(L_{n}\right) \leq \zeta(3) /(D-\varepsilon) \quad \text { for all (small) } \varepsilon>0 \tag{26}
\end{equation*}
$$

Now from (20) and (21)

$$
E\left(L_{n, \varepsilon}^{2}\right) \leq E\left(l\left(\tilde{T}_{n, \varepsilon}\right)^{2}\right)+2(n-1) h E(L)+E\left(L^{2}\right)
$$

Thus from $E\left(L_{n}^{2}\right) \leq E\left(L_{n, \varepsilon}^{2}\right)$ and (22) and (25) we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sup E\left(L_{n}^{2}\right) \leq(\zeta(3) /(D-\varepsilon))^{2} \quad \text { for all (small) } \varepsilon>0 \tag{27}
\end{equation*}
$$

On the other hand there exists $0 \leq \hat{h}=\hat{h}(\varepsilon) \leq(D+\varepsilon)^{-1}$ such that

$$
F(x) \leq(D+\varepsilon) x \quad \text { for } 0 \leq x \leq h .
$$

We now define a new random variable \hat{X}_{ε} with probability function \hat{F}_{ε} where

$$
\begin{aligned}
\hat{F}_{\varepsilon}(x) & =(D+\varepsilon) x & & \text { if } 0 \leq x \leq \hat{h}, \\
& =\max ((D+\varepsilon) h, F(x)) & & \text { if } \hat{h} \leq x .
\end{aligned}
$$

If edge lengths are now independent random variables distributed like \hat{X}_{ε}, and $\hat{L}_{n, \varepsilon}$ denotes the length of the minimum spanning tree, then clearly

$$
E\left(L_{n}\right) \geq E\left(\hat{L_{n, \varepsilon}}\right), \quad \text { etc. }
$$

A similar analysis to that for (26) and (27), then yields

$$
\begin{array}{ll}
\lim _{n \rightarrow \infty} \inf E\left(L_{n}\right) \geq \zeta(3) /(D+\varepsilon) & \text { for all } \varepsilon>0, \\
\lim _{n \rightarrow \infty} \inf E\left(L_{n}^{2}\right) \geq(\zeta(3) /(D+\varepsilon))^{2} & \text { for all } \varepsilon>0 . \tag{29}
\end{array}
$$

Combining (26), (27), (28) and (29) yields the main result of the paper.

Proof sketches for Lemmas 1 and 2

It remains to prove Lemmas 1 and 2. To do this we have to look at the number of components in the random graph G_{M}. This question was analysed in detail in the classic paper of Erdös and Rényi [1] and it was this that made us suspect that an asymptotically accurate value for \bar{L}_{n} could be obtained. In their paper they compute the expected number of components in the graph $G_{c n}$ for c fixed and n tending to infinity. We however need to estimate the probabilities that the number of components differs from the expected number by a given amount where c may depend on n. Rather than try the reader's patience by repeating the calculations of Erdös and Renyi we just indicate the main steps of the argument.

Proof of Lemma 1. For $M \leq n / 4$ the expected number of cycles in G_{M} is bounded by a constant and as the number of components lies between $n-M$ and $n-M+C$, where C is the number of cycles, using the Markov inequality on C suffices in this case.

The following lemma is useful in calculations for $M>n / 4$:
Lemma 3. Suppose $n / 4<M \leq 2 n \log n$ and $1 \leq p \leq 2 n^{1 / 5}$ and $1 \leq q \leq\binom{ p}{2}$. If

$$
u=u(p, q)=\binom{\binom{n-p}{2}}{M-q} /\binom{\binom{n}{2}}{M}
$$

then

$$
\left(1-c_{5}((p+q) \log n)^{2} / n\right) v \leq u \leq\left(1+c_{5}((p+q) \log n)^{2} / n\right) v
$$

where $v=\mathrm{e}^{-2 M p / n}\left(2 M / n^{2}\right)^{q}$.

The proof of this lemma is omitted.
Most of the components in G_{M} are isolated trees with fewer than $n^{1 / 5}$ vertices and so the following results are useful and can be proved easily with the aid of Lemma 3.

Lemma 4. (a) Let t_{k} be the number of components of G_{M} which are trees with k vertices. Then if $k \leq n^{1 / 5}$

$$
I_{k}=(n / 2 a)\left(k^{k-2} / k!\right)\left(2 a \mathrm{e}^{-2 a}\right)^{k}\left(1+\theta(k \log n)^{2} / n\right)
$$

where $a=M / n$ and $|\theta| \leq c_{6}$.
(b) If $\sum_{k=1}^{\left\lfloor n^{1 / 5}\right\rfloor} t_{k}$, then

$$
\operatorname{Var}(T) \leq \bar{T}+c_{6}(\bar{T} \log n)^{2} n^{-3 / 5}
$$

The number of small components which are not trees is likely to be small:
Lemma 6. Let P be the number of components of G_{M} which are not trees and have no more than $n^{1 / 5}$ vertices. Then $\bar{P} \leq c_{7} n^{1 / 5}$.
(The proof of this lemma can be based on the following crude estimate: the number of connected labeled graphs with k vertices and $l \geq k$ edges is no more than $k^{k-2}\binom{k}{2}^{l-k+1}$.)

To prove Lemma 1 we note next: If G_{M} has more than $n f(M / n)+3 n^{4 / 5}$ components, then
G_{M} has more than $n f(M / n)+n^{4 / 5}$ comporents which are trees and have no more than $n^{1 / 5}$ vertices
G_{M} has more than $n^{4 / 5}$ components which are not trees, but have no more than $n^{1 / 5}$ vertices
or

$$
\begin{equation*}
G_{M} \text { has more than } n^{4 / 5} \text { components which have } \tag{31c}
\end{equation*}
$$ at least $n^{1 / 5}$ vertices - which is clearly impossible.

Lemma 6 and the Markov inequality deal with (31b), Lemmas 4 and 5 and the Chebycheff inequality deal with (31a).

Similarly we can use Lemmas 4 and 5 and the Chebycheff inequality to show that G_{M} usually has at least $n f(M / n)-n^{4 / 5}$ isolated trees.

Proof of Lemma 2. If now $M=2 n \log n$ and $S \subset\{1,2, \ldots, n\}$ and $|S|=k \leq n / 2$, then $\operatorname{Pr}\left(\right.$ there are no edges in G_{M} joining S and \bar{S})

$$
=p_{k}=\binom{\binom{n}{2}-k(n-k)}{M} /\binom{\binom{n}{2}}{M} .
$$

Thus

$$
\varrho=\operatorname{Pr}\left(G_{M} \text { is not connected }\right) \leq \sum_{k=1}^{\lfloor n / 2\rfloor}\binom{n}{k} p_{k} .
$$

But

$$
\binom{n}{k+1} p_{k+1} /\binom{n}{k} p_{k} \leq((n-k) /(k+1)) \mathrm{e}^{-4(n-2 k-1) \log n / n}
$$

from which $\varrho=\mathrm{O}\left(n p_{1}\right)=\mathrm{O}\left(n^{-3}\right)$.

Acknowledgement

I would like to thank Colin McDiarmid for some very useful conversations and a referee for a careful report.

References

[1] P. Erdös and A. Rényi, On the evolution of random graphs, Publ. Math. Inst. Hungarian Acad. Sci. 5A (1960) 17-60.
[2] T.I. Fenner and A.M. Frieze, On the connectivity of random m-orientable graphs and digraphs, Combinatorica 2 (1982).
[3] J.B. Kruskal, On the shortest spanning subtree of a graph and the travelling salesman problem, Proc. Amer. Math. Soc. 7 (1956) 48-50.
[4] G.S. Lueker, Optimisation problems on graphs with independent random edge weights, SIAM J. Comput. 10 (1981) 338-351.
[5] J.M. Steele, Growth rates of minimal spanning trees of multivariate sample, Stanford Univ., Dept. of Statistics, Research Report (1981).
[6] D.W. Walkup, On the expected value of a random assignment problem, SIAM J. Comput. 8 (1979) 440-442.

