\therefore Integer Linear Programing

This is the name given te L.P. pro'slems which have me extra constraint that some or ail variables have to be integer.

Examples

1. Capital Budgeting

A firm has n projects that it would like to undertake but because of budget limitations not all can be selected. In particular project \mathbf{j} Is expected to produce a revenue of c_{j} but requires an investment of $a_{i j}$ in time period i for i=l,....m. The capital available in time period i is h_{i} " The problem of minimising revenue subject to the budget constraints can be Formulated es follows: let $x_{y}=0$ or 1 correspond to not proceeding or respectively proceeding with project 1 then we have to

Maximise

$\sum_{j=2}^{n} e_{j} x_{j}$
subject to $\sum_{j=1} i_{1 y} x_{j} \leq b_{1}$

$$
0 \leqslant 2 \leqslant \quad x_{j} \text { integer } \quad j=1 \ldots n
$$

We consider here a simple problem of this type: a company has selected m possible sites for distribution of itsproducts in a certain area. There are n customers in the area and the transport cost of supplying the whole of customer $j^{\prime \prime}$ s requirements over the given planning period from potential site 1 is $c_{i j}$. Should site 1 be developedit will cost f_{i} to construct a depot there. Which sites should be selected to minimise the total construction plus transport cost?

To do this we introduce m variables $y_{1} \ldots \ldots y_{m}$ which can only take values O or 1 and correspond to a particular site being not developed or developed respectively. We next define $x_{i y}$ to be the fraction of customer $f^{\prime \prime}$ s requirements supplied from depot in a given solution. The problem can then be expressed.

Minimise $\sum_{i=1}^{m} \sum_{j=1}^{n} c_{i j} x_{i j}+\sum_{i=1}^{m} X_{i} y_{i}$
subject to $\sum_{i=1}^{m} x_{i y}-1 \quad . \quad j=2 \ldots . n$

$$
x_{i j} \leqslant y_{i} \quad i=1, \ldots m, i=1, \ldots n
$$

$$
x_{i j} \geqslant 0 \quad 0 \leqslant y_{1} \leqslant 1 \quad y \text { integer } \quad \begin{aligned}
& i=1 \cdot \cdot m \\
& i=1, \cdot n
\end{aligned}
$$

Note that if $y_{i}=0$ then $f_{i} y_{i}=0$ and there is ne. contribution to the total cost. Also $x_{i j} \leqslant y_{i}$ implies $x_{i j}=0$ For $j=1, \ldots n$ and se no goods are distributed from site i This corresponds exactly to no depot at site.

On the ether hand if $y_{i}=1$ then $f_{i} y_{i}=f_{i}$ which is the cost of constructing depot i. Also $x_{i j} \leqslant y_{i}$ becomes $x_{i j} \leqslant 1$ which holds any wry from the constraints **.
3. Set Covering

 Assume that each subset s_{j} has cost $c_{j}^{\prime ;} 0$ associated with it. We define the cost of a cover to be the a lm of the costs of the subsets included in the cover.

The problem of fiading a cover of minimum ecst is of particular practical significance. is an integer program it can be specififed as follows: define the $m \times n$ matrix $A=\left\|a_{i j}\right\|$ by

$$
\begin{aligned}
a_{i j} & =1 \text { iE } 1 E S_{j} \\
& =0 \text { otherwise }
\end{aligned}
$$

Let x_{j} be $0-1$ variables with $x_{j}=1(0)$ to mean set 5_{j} is included (respectively not included) in the cover. The problem is to
minimise $\sum_{j=1}^{n} c_{j} x_{j} \quad \sum_{j=1}^{n} \quad a_{i j} x_{j} \geq 1 \quad i=1, \ldots m$

The minequality constraints have the following significance: since $x_{j}=0$ or 1 and the coefficients $a_{i j}$ are also 0 or 1 we see that $\sum_{j=1}^{n} a_{i j} x_{j}$ can be zero only if $x_{j}=0$ for all j such that $a_{i j}=1$. In other words colly if no set S_{j} is chosen such that i $E S_{j}$. The inequalities are put in to aviod this.

As an example consider the following simplified airling crew scheduling problem. An airline has m scheduled flight-iegs per week in its current service. A flight-leg being a single flight flown by a single crew e.g. London - Paris Leaving Beathrow at 10.30 an. Let $\boldsymbol{S}_{\mathrm{j}} \mathrm{J}=1, \ldots, \mathrm{n}$ be the collection of all possible weekiy sets of Elight-legs that can be flown by a single crew: Such a subset.must take account of restrictions like a crew arriving in Paris at 11.30 am. cannot take a flight out of New York at 12.00 pm . and so if c_{j} is the cost of set s_{f} of flight-legs then the problem of minimising cost subject to covering all flight-legs is a set
covering problem. Note that if crews are not allowed to be passengers on a flig.if, ie. so that they can be flown to their next flight, then we have to make 15.1 an equality - the set partitioning problem.

General Terminology:
The most general problem called the mixed integer programming problem can be specified as
minimise $x_{0}=\underline{c} \cdot \underline{x}$
subject to

$$
\begin{array}{ll}
A_{\underline{x}}=\underline{b} \\
x_{1} \geqslant 0 & j_{1}=1, \cdots n
\end{array}
$$

x_{j} integer for $j \in I N$
where $I N$ is some subset of $N_{0}=\{0,1, \ldots \pi\}$.
When $I N=N_{0}$ we have what is called a pure integer peygeonoing felolain. Fer such a problem one generally was ell given quantities $c_{j}, a_{i j}, b_{i}$ integer. One has to be careful here. Consider for example

$$
\begin{aligned}
& \text { minimise } x_{0}=-\frac{1}{3} x_{1}-\frac{1}{2} x_{2} \\
& \text { subject to } \\
& \quad \begin{aligned}
& \frac{2}{3} x_{1}+\frac{1}{3} x_{2} \leqslant \frac{1}{3} \\
& \frac{1}{2} x_{1}-\frac{3}{2} x_{2} \leqslant \frac{3}{3} \\
& x_{1} x_{2} \geqslant 0 \text { and integer }
\end{aligned}
\end{aligned}
$$

As defined this is not a pure problem. Fir a start x_{0} will not necessarily be integer and neither will the slack variabiog II we want. to use an algorithm for. solving pure problems we must scale the objective and constraints to give
minimise $x_{c}=-2 x_{1}-3 x_{2}$
subject 10

$$
\begin{aligned}
2 x_{1}+x_{2}+x_{3} & =4 \\
3 x_{1}-7 x_{2} & =x_{4}
\end{aligned}=4
$$

A final class of problems ie the pure $0-1$ programining problem
maximise $x_{0}=\underline{c} \cdot \underline{x}$
subject to

$$
\begin{aligned}
& A \underline{x} \leqslant \underline{b} \\
& x_{j}=0,1 \quad \text { for } \quad 1=1, \cdots n .
\end{aligned}
$$

Further Uses of Integer Variables
(1) If a variable x can only take a finite number of values $p_{2} \ldots p_{m}$ we can replace x by the expression

$$
p_{2}^{\prime} w_{1}+\ldots+p_{m} w_{m}
$$

where

$$
w_{1}+\ldots+w_{m}=1
$$

and

$$
u_{i}=0 \text { or } 1
$$

$$
1=1, \ldots m
$$

For example x might be the output of a plant which can be small P_{1}. medium P_{2} or large p_{3}. The cost $c(x)$ of the plant could be represented by

$$
c_{1} w_{2}+c_{2} w_{2}+c_{3} w_{3}
$$

where n. is the cost of a small plant etc.
(2) In L.P. one generally consider all constraints to be holding simultaneously. . It is possible that the variable might have to satisfy one or other of a set of constraints
egg.
(a) $\quad 0 \leq x \leq M$

$$
0 \leq x \leq 1 \text { or } x \geq 2
$$

can be expressed

$$
\begin{aligned}
& x \leq 1+(M-1) \delta \\
& \dot{x} \geq 2+M(\delta-1) \\
& x \geq 0 \quad \delta=0 \text { or } 1
\end{aligned}
$$

$x \leq M$ is a notional upper bound to make this approach possible.
(b)

$$
\begin{aligned}
& x_{1}+x_{2} \leq 4 \\
& x_{1} \geq 1 \text { or } x_{2} \geq 1 \text { but not both } \geq 1 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

can be expressed

$$
\begin{aligned}
x_{1}+x_{2} & \leq 4 \\
x_{1} & \geq 8 \\
x_{2} & \geq 1-8 \\
x_{1} & \leq(1-\delta)+4 \delta \\
x_{2} & \leq \delta+4(1-\delta) \\
& 8=0 \text { or } 1
\end{aligned}
$$

Integer programing problems generally take much longer to solve then the corresponding linear program obtained by ignoring integrality.. It is wise therefore to consider the possibility of solving as a straight forward 2.P. and then rounding e.g. in the trim-loss problem. This is not always possible for example: if x_{1} is a 0 - 1 variable such that $x_{1}=0$ means do not build a plant and $x_{1}=1$ means build a plant then rounding $x_{1}=$ if is not very satisfactory.

A cutting plane algorithm for the pure problem

The rationale behind this approach is:-

1) Solve the continuous problem at an L.P. i.e. ignore integrality.
2) If by chance the optimal basic variables are all integer then the optimum solution has been found. Otherwise:-
3) Generate a cut i.e. a constraint which is satisfied by ail integer solutions to the problem but not by the current Lip. solution.
4) Add this new constraint and go to (1). The idea of such an approach is illustrated below:-

It is straight forward to show that if at any sage the current L.P. solution x is integer it is the optimal integer solution. Intis is because x is optimal over a region containing all feasible integer solutions.

The problem is to define cuts that ensure the convergence of the algorithm in a finite number of steps. The first finite algorithm was devised by R.E. Gomory.

It is based on the following construction: let

$$
=a_{1} x_{1}+\ldots+a_{n} x_{n}=b
$$

be an equation which is to be satisfied by non-negative integers $x_{2} \ldots \ldots x_{n}$ and let s be the set of possible solutions.

For a real number 5 we define [5.J it to be the largest integer ≤ 5. Thus $E=\lfloor\xi\rfloor+\varepsilon$ where $0 \leq \varepsilon<1$.

$$
\lfloor 63\rfloor=6 \quad\lfloor 3\rfloor=3 \quad\left\lfloor-4 \frac{1}{2}\right\rfloor=-5
$$

Now let $a_{j}=a_{j}+f_{j}$ and $b=b+f$ in (15.2) then we have

$$
\sum_{j=1}\left(\left\lfloor a_{j}\right\rfloor+\varepsilon_{j}\right] x_{j}=\lfloor b\rfloor+f
$$

and hence

Now for $x \in S$ the right hand side of 25.3 is clearly integer and so $\xi=\left\{f_{j} x_{j}-f\right.$ is integer for $x \in S$. Since $x \geq 0$ for $x \in S$ we also have $\xi:-f>-1$ and since ξ is integer we deduce that $E \geq 0$ and that

$$
\sum_{j=1}^{n} f_{j} x_{j} \geq f \quad \text { for } \times \varepsilon s
$$

Suppose now that one has solved the continuous problem in (1) of our cutting plane algorithm and the solution is not integer. Therefore there is a basic variable x_{i} with

$$
x_{i}+\sum_{j \in I} b_{i j} x_{j}=b_{i 0}
$$

where $b_{i o}$ is not integer.

Putting $\left.f_{i}=b_{i j}-L_{i j}\right\rfloor$ and $f=b_{i o}-\left\lfloor b_{i o}\right\rfloor$ and we deduce that

```
\(\sum_{j \leqslant 1} f_{j} x_{j} \geq f\)
juL
```

for all integer solutions to our problem.

Now $E>0$ since $b_{i o}$ is not integer and so (15.4 is not satisfied by the current I.P. solution since $x_{j}=0$ for j / I and so (15.4)is a cut.

Statement of the Algorithm

The initial continuous problem solved by the algorithm is the L.P. problem obtained by ingoing integrality.

Step 1
Solve current continuous problem.

Step 2

If the solution is integral it is the optimal integer solution, otherwise.

Step 3
Choose a basic variable x_{i} which is currently non-integer. construct the corresponding constraint. 15.4 and add it to the problem. Go to step 1.

We note that the tableau obtained after adding the cut is dual feasible and so the dual simplex algorithm is used to re-optimise.
= \times.
(15.5)

Maxumive $\quad x_{1}+4 x_{2}$
Suytit

$$
\begin{gathered}
2 x_{1}+4 x_{2} \leqslant 7 \\
10 x_{1}+3 x_{2} \leqslant 14 \\
x_{1}, x_{2} \geqslant 0
\end{gathered}
$$

x_{1}	$-x_{2}$	x_{3}	x_{4}	x_{5}	x_{6}

- \downarrow 'continnews selaxatien' solved by one pivot, solution nor-integer, add a cut.

x_{1}	1
x_{2}	$\frac{1}{2}$
x_{4}	$\frac{17}{2}$
$\xi^{(4)}$	$\frac{1}{2}$

x_{0}	-1
x_{2}	
x_{4}	10
x_{3}	2

$\psi 2^{\text {nd }}$ continuous' problem solved, but nen-integer, add a cut.

(4) Cut generated is $\frac{1}{2} x_{1}+\frac{1}{4} x_{3} \geqslant \frac{3}{4}$ or $\frac{1}{2} x_{1}+\frac{1}{4} x_{2}-x_{5}=\frac{3}{4}$
(All artificial ξ F. this, in order K. get a basic feasible solution to an augmented t of equations, gives $\quad \frac{1}{2} x_{1}+\frac{1}{4} x_{3}-x_{5}+\xi=\frac{3}{4}$.
(b) Chose a pivot that will reduce ξ
(piveting in eel. 1 is allowable, but the arithmetic is worse).
(c) Cut-enoratod is.... $\frac{1}{12} x_{4}+\frac{7}{10} x_{6}-x_{1}=\frac{1}{10}$.

One can show that the Gomory cuts $\sum f_{j} x_{j}>f$ when expressed in teras of the original non-basic variables have the form $\sum w_{j} x_{j} \leqslant$ w where the w_{j}, N are integer and the value of $\sum w_{y} x_{j}$ after solving the current continuous problem is $W+\varepsilon$ where $0<\varepsilon<1$ assuming the current solution mon-integer. Thus the cut is obtilned by moving a hyperplane parallel to itself to an extend wich cannot exciude an integer alution. It is worth noting that the plane can usually be moved further without excluding integer points thus generating deeper cuts. For a discussion on how this can be done see the referance given for integer programing.

Further Remarks

1) After adding a cut and carrying out one iteration of the dual simplexalgorithm the slack variable correoponding to this cut becomes nonbasic. If during a succeeding iteration this slack variable becomes basic then it may be discarded along with its current yow without affecting termination. This means that the tableau never has more than $n+1$ rows or $n+n$ columns.
2) A valid cut can be generated from any row containing a non-integral variable. One strategy is to choose the variable with the largest fractional part as this helps" to produce a "large" change in the objective value. It is interesting that findtness of the algorithm has not been proved for this strategy although finitness has been proved for the strategy of always choosing the "topmost" row the tableau with a : non-integer variable.
3) The behaviour of this algorithm has been erratic. It has for example worked well on set covering problems but in other cases the algorithm has to be terminated because of excessive use of computer time. This raises an important point, if the algorithm is stopped prematurely then one does not have a good sub-optimal solution to use. Thus in some sense the algorithm is urreliable.

It is useful to see what has happened graphically. We first express the cuts in terms of x_{1}, x_{2}.

Cut no. 1

$$
\frac{1}{2} x_{1}+\frac{1}{4} x_{3} \geq 3 / 4
$$

. since

$$
\begin{aligned}
& x_{3}=7-2 x_{1}-4 x_{2} \text { this becomes } \\
& x_{2} \leq 1
\end{aligned}
$$

Cut no. 2

After re-arranging, this becomes

$$
x_{1}+x_{2} \leq 2
$$

A is optimal solution ignoring integrality
8 is optimal solution after adding cut $C 1$
C is optimal integer solution found after adding $\mathbf{C 2}$.

The method to be described in this section constitutes the most successful method applied to date. The idea is quite general and has been applied to many other discrete optimisation problems, e.g. travelling salesman, job shop scheduling.

Let us assume we are.trying to solve the mixed integer problem 12.2. Let us call this problem P_{0}. The first step is to solve the 'continuous' L.P. problem obtained by ignoring the integrality constraints. If in the optimal solution, one or more of the integer variables turn out to be non-integer, we choose one such variable and use it to split the given problem P_{0} into two 'sub-problems' P_{1} and P_{2}. Suppose the variable chosen is y_{j} and it takes the non-integral value β_{j} in the continuous optimum. Then P_{1} and P_{2} are defined as follows:

$$
\begin{aligned}
& P_{1} \equiv P_{0} \text { with the added constraint } y_{j} \leq\left[\beta_{j}\right] \\
& P_{2} \equiv P_{0} \text { with the added constraint } y_{j} \geq\left[\beta_{j}\right]+1
\end{aligned}
$$

Now any solution to P_{0} is either a solution of P_{1} or P_{2} and so P_{0} can be solved by solving P_{1} and P_{2}. We continue by solving the L.P. problems associated with P_{1} and P_{2}. We then choose one of the problems and if necessary split it into two sub-problems as was done with P_{0}.

This process can be viewed as the construction of a binary tree of sub-problems whose terminal (pendant) nodes correspond to the problems that remain to be solved.

In an actual computation one keeps a list of the unsolved problems into which the main problem hes been split. One also keeps a note of the objective value MIN of the best integer solution found so far.

Step 0

Initially the list consist's of the initial problem P_{0}. Put MIN equal to either the value of some known integer solution, or if one is not given equal to some upper bound calculable from initial data, if neither possibility is possible put MIN $=\infty$.

Solve the L.P. problem associated with P_{0}. If the solution has integral values for all integer variables terminate, otherwise

Step 1

Remove a problem P from the list whose optimal continuous objective function value x_{0} is less than MIN. If there are no such problems terminate. The best integer solution found so far is optimal. If none have been found the problem is infeasible.

Step 2

Amongst the integer variables in problem P with non-integer values in the optimal continuous solution for P seiect one for branching. Let this variable be y_{p} and let its value in the continuous solution be B.

Step 3

Create two new problems P^{\prime} and $\mathrm{P}^{\prime \prime}$ by adding the extra restrictions $y_{p} \leq[B]$ and $y_{p} \geq[B]+1$ respectively. Solve the L.P. problems associated with P^{\prime} and $P^{\prime \prime}$ and add these problems to the list. . If a new and improved integer solution is found store it and update MIN. The new L.P. problems do not have to be solved from scratch but can be re-optimised using the dual algorithm (or parametrically altering the bound on y_{p}). If during the re-optimisation of either L.P. problem the value of the objective function exceeds MIN this problem may be abandoned. Go to step 1.

If one assumes that each integer variable in P_{0} has a finite upper bound (equal to some large number for notionally unbounded variable) then the algorithn. must terminate eventually, because as one proceeds further down the tree of problems the bounds on the variables become tighter and tighter, and these would eventually become exact if the L.P. solutions were never integer.

As an example we show a possible tree (Fig 1) for solving
Minimise $20-3 x_{1}-4 x_{2}$
Subject to

$$
\begin{align*}
& \frac{2}{5} x_{1}+x_{2} \leq 3 \\
& \frac{2}{5} x_{1}-\frac{2}{5} x_{2} \leq 1 \tag{17}
\end{align*}
$$

\cap and $x_{n} . x_{n}$ integer

CPTMUM

Fis 1

Reformulation of integer programing problems
Consider the problem
(15.6)

$$
\begin{array}{cl}
\underset{\text { maxine }}{\operatorname{man}} & x_{1}+4 x_{2} \\
\text { subject to } & x_{1} \leq 1 \\
& x_{1}, x_{2} \geq 0 \text { and integer }
\end{array}
$$

It's solution $x_{1}=, x_{2}=1$ is the same as that of problem (155). Indeed for any objective function these 2 problems will have the same solution because they have the same set of integer solutions. $-(0,0) ;(1,0),(0,1),(1,1)$

However problem (15.6) is much easier to sore - the continuous solution to (15.6) is always integer.

This illustrates on important point: for a given problem let us denote by IFR the set of integer solutions from which we are searching for the optimum. There are an infinite number of $L P$ problems whose integer solution sets are precisely LFR. For such an LP Let $C F R(L P) \geq$ IFR denote the set of continuous solutions
z_{0} the LP.
There will be a unique problem LP* such that all vertices (basic feasible solutions) of CFR (LP*) are members of IFR. Thus if we could always identify the corresponding $L P^{*}$ we could solve it using the simplex aforithm and we would know that its continuous solution would. also be the integer solution.

We cannot in general easily identify $2 P^{*}$. But suppose we have a formulation $L P_{1}$ for which the available algorithms are not proving sakis factory, a 'tighter' reformulation to $L P_{2}$ where $\operatorname{CFR}\left(L P_{1}\right) \supset C F R\left(L P_{2}\right) \supseteq I F R$ can sometimes dramatically improve things.

If you are lucky a reformulation can simply involve adding some extra easily identified constraints satisfied by points in IFR but not by all points in CFR(LP $\left.P_{1}\right)$.

Implicit Enumeration.
Simple $B_{2} B$ algorithm for pure $0-1$ problems:

Ex: minimise $z=\cdots_{7} x_{4}+3 x_{2}+2 x_{3}-x_{4}+2 x_{5}$ st.

$$
\begin{aligned}
& 4 x_{1}+2 x_{2}-x_{3}+2 x_{4}+x_{5} \geqslant 3 \\
& 4 x_{1}+2 x_{2}+4 x_{3}-x_{4}-2 x_{5} \geqslant 7 \\
& x_{3}=0_{0} 1
\end{aligned}
$$

r
Top Node: (1) Lower Bound: $-3 \quad x_{4}=x_{5}=1$ - NOTFEASIBZE TOUGH $x_{1}=x_{2}=x_{3}=0$
(ii) Freasblity: $x_{1}=x_{2}=x_{4}=x_{5}=1$ nailiceli) facts

$$
x_{1}=x_{2}-x_{3}=1
$$ $\rho(0,1)$.

Branch $\quad x_{1}=1$
or

$$
x_{1}=0
$$

$x_{1}=1$: mennise $7+3 x_{2}+2 x_{3}-x_{4}-2 x_{5}$
s.t.

$$
\begin{aligned}
& 2 x_{2}-x_{3}+2 x_{4}+x_{5} \geqslant-1 \\
& 2 x_{2}+4 x_{3}-x_{4}-2 x_{5} \geqslant 3
\end{aligned}
$$

LB: 4 Not feasible

$$
\begin{array}{ll}
x_{2}=x_{4}=x_{5}=1 & \text { (i) } \sqrt{ } \\
x_{2}=x_{3}=1 & \text { (ii) } V
\end{array}
$$

Branch and Bound

September 27, 2018

We consider the problem P_{0} :

$$
\text { Minimize } f(x) \text { subject to } x \in S_{0} \text {. }
$$

Here S_{0} is our set of feasible solutions and $f: S_{0} \rightarrow \mathbb{R}$.
As we proceed in Branch-and-Bound we create a set of sub-problems \mathcal{P}. A sub-problem $P \in \mathcal{P}$ is defined by the description of a subset $S_{P} \subseteq S_{0}$. We also keep a lower bound b_{P} where

$$
b_{P} \leq \min \left\{f(x): x \in S_{P}\right\} .
$$

At all times we act as if we have $x^{*} \in S_{0}$, some known feasible solution to P_{0} and $v^{*}=f\left(x^{*}\right)$. If we do not actually have a solution x^{*} then we let $v^{*}=-\infty$. We will have a procedure BOUND that computes b_{P} for a sub-problem P. In many cases, BOUND sometimes produces a solution $x_{P} \in S_{0}$ and sometimes determines that $S_{P}=\emptyset$.

We initialize $\mathcal{P}=\left\{P_{0}\right\}$.

Branch and Bound:

Step 1 If $\mathcal{P}=\emptyset$ then x^{*} solves the problem.
Step 2 Choose $P \in \mathcal{P} . \mathcal{P} \leftarrow \mathcal{P} \backslash\{P\}$.
Step 3 Bound: Run Bound (P) to compute b_{P}.
Step 4 If $S_{P}=\emptyset$ or $b_{P} \geq v^{*}$ then we consider P to be solved and go to Step 1 .
Step 5 If bound generates $x_{P} \in S_{0}$ and $f\left(x_{P}\right)<v^{*}$ then we update, $x^{*} \leftarrow x_{P}, v^{*} \leftarrow f\left(x_{P}\right)$.
Step 6 Branch: Split P into a number of subproblems $Q_{i}, i=1,2, \ldots, \ell$, where $S_{P}=$ $\bigcup_{i=1}^{\ell} S_{Q_{i}}$. And $S_{Q_{i}} \neq S_{P}$ is a strict subset for $i=1,2, \ldots, \ell$.

Step $7 \mathcal{P} \leftarrow \mathcal{P} \cup\left\{Q_{1}, Q_{2}, \ldots, Q_{\ell}\right\}$.

Assuming S_{0} is finite, this procedure will eventually terminate with $\mathcal{P}=\emptyset$. This is because the feasible sets S_{P} are getting smaller and smaller as we branch.

Most often the procedure BOUND has the following form: while it may be difficult to solve P directly, we may be able to find $T_{P} \supseteq S_{P}$ such that there is an efficient algorithm that determines whether or not $T_{P}=\emptyset$ and finds $\xi_{P} \in T_{P}$ that minimizes $f(\xi), \xi \in T_{P}$, if $T_{P} \neq \emptyset$. In this case, $b_{P}=f\left(\xi_{P}\right)$ and Step 5 is implemented if $\xi_{P} \in S_{0}$. We call the problem of minimizing $f(\xi), \xi \in T_{P}$, a relaxed problem.

Examples:

Ex. 1 Integer Linear Programming. Here S_{P} is the set of integer solutions and T_{P} is the set of solutions, if we ignore integrality. The procedure BOUND solves the linear program. If the solution ξ_{P} is not integral, we choose a variable x, whose value is $\zeta \notin \mathbb{Z}$ and form 2 sub-problems by adding $x \leq\lfloor z\rfloor$ to one and $x \geq\lceil z\rceil$ to the other.

Ex. 2 Traveling Salesperson Person Problem (TSP): Here S_{P} is the set of tours i.e. single directed cycles that cover all the vertices. We can take T_{P} to be the set of collections of vertex disjoint directed cycles that cover all the vertices. More precisely, to solve the TSP we must minimise $\sum_{i=1}^{n} C(I, \pi(i))$ as π ranges over all cyclic permutations. Our relaxation is to minimise $\sum_{i=1}^{n} C(I, \pi(i))$ as π ranges over all permutations, i.e. the assignment problem. We branch as follows. Suppose that the assignment solution consists of cycles $C_{1}, C_{2}, \ldots, C_{k}, k \geq 2$. Choose a cycle, C_{1} say. Suppose that $C_{1}=\left(v_{1}, v_{2}, \ldots, v_{r}\right)$ as a sequence of vertices. Then in Q_{1} we disallow $\pi\left(v_{1}\right)=v_{2}$, in Q_{2} we insist that $\pi\left(v_{1}\right)=v_{2}$, but that $\pi\left(v_{2}\right) \neq v_{3}$, in Q_{3} we insist that $\pi\left(v_{1}\right)=v_{2}$, $\pi\left(v_{2}\right)=v_{3}$, but that $\pi\left(v_{3}\right) \neq v_{4}$ and so on.

Ex. 3 Implicit Enumeration: Here the problem is

$$
\text { Minimize } \sum_{j=1}^{n} c_{j} x_{j} \text { subject to } \sum_{j=1}^{n} a_{i, j} x_{j} \geq b_{i}, i \in[m], \quad x_{j} \in\{0,1\}, j \in[n] \text {. }
$$

A sub-problem is assciated with two sets $I, O \subseteq[n]$. This the sub-problem $P_{I, O}$ where we add the constraints $x_{j}=1, j \in I, x_{j}=0, j \in O$. We also check to see if $x_{j}=1, j \in I, x_{j}=0, j \notin I$ gives an improved feasible solution. As a bound $b_{I, O}$ we use $\sum_{j \notin O} \max \left\{c_{j}, 0\right\}$. To test feasibility we check that $\sum_{j \notin O} \max \left\{a_{i, j}, 0\right\} \geq b_{i}, i \in[m]$. To branch, we split $P_{I, O}$ into $P_{I \cup\{j\}, O}$ and $P_{I, O \cup\{j\}}$ for some $j \notin I \cup O$.

