












































Branch and Bound

September 27, 2018

We consider the problem P0:

Minimize f(x) subject to x ∈ S0.

Here S0 is our set of feasible solutions and f : S0 → R.

As we proceed in Branch-and-Bound we create a set of sub-problems P . A sub-problem
P ∈ P is defined by the description of a subset SP ⊆ S0. We also keep a lower bound bP
where

bP ≤ min {f(x) : x ∈ SP} .

At all times we act as if we have x∗ ∈ S0, some known feasible solution to P0 and v∗ = f(x∗).
If we do not actually have a solution x∗ then we let v∗ = −∞. We will have a procedure
bound that computes bP for a sub-problem P . In many cases, bound sometimes produces
a solution xP ∈ S0 and sometimes determines that SP = ∅.

We initialize P = {P0}.

Branch and Bound:

Step 1 If P = ∅ then x∗ solves the problem.

Step 2 Choose P ∈ P . P ← P \ {P}.

Step 3 Bound: Run bound(P ) to compute bP .

Step 4 If SP = ∅ or bP ≥ v∗ then we consider P to be solved and go to Step 1.

Step 5 If bound generates xP ∈ S0 and f(xP ) < v∗ then we update, x∗ ← xP , v
∗ ← f(xP ).

Step 6 Branch: Split P into a number of subproblems Qi, i = 1, 2, . . . , `, where SP =⋃`
i=1 SQi

. And SQi
6= SP is a strict subset for i = 1, 2, . . . , `.

Step 7 P ← P ∪ {Q1, Q2, . . . , Q`}.

1



Assuming S0 is finite, this procedure will eventually terminate with P = ∅. This is because
the feasible sets SP are getting smaller and smaller as we branch.

Most often the procedure bound has the following form: while it may be difficult to solve
P directly, we may be able to find TP ⊇ SP such that there is an efficient algorithm that
determines whether or not TP = ∅ and finds ξP ∈ TP that minimizes f(ξ), ξ ∈ TP , if TP 6= ∅.
In this case, bP = f(ξP ) and Step 5 is implemented if ξP ∈ S0. We call the problem of
minimizing f(ξ), ξ ∈ TP , a relaxed problem.

Examples:

Ex. 1 Integer Linear Programming. Here SP is the set of integer solutions and TP is the set
of solutions, if we ignore integrality. The procedure bound solves the linear program.
If the solution ξP is not integral, we choose a variable x, whose value is ζ /∈ Z and
form 2 sub-problems by adding x ≤ bzc to one and x ≥ dze to the other.

Ex. 2 Traveling Salesperson Person Problem (TSP): Here SP is the set of tours i.e. single
directed cycles that cover all the vertices. We can take TP to be the set of collections
of vertex disjoint directed cycles that cover all the vertices. More precisely, to solve
the TSP we must minimise

∑n
i=1C(I, π(i)) as π ranges over all cyclic permutations.

Our relaxation is to minimise
∑n

i=1C(I, π(i)) as π ranges over all permutations,
i.e. the assignment problem. We branch as follows. Suppose that the assignment
solution consists of cycles C1, C2, . . . , Ck, k ≥ 2. Choose a cycle, C1 say. Suppose that
C1 = (v1, v2, . . . , vr) as a sequence of vertices. Then in Q1 we disallow π(v1) = v2, in
Q2 we insist that π(v1) = v2, but that π(v2) 6= v3, in Q3 we insist that π(v1) = v2,
π(v2) = v3, but that π(v3) 6= v4 and so on.

Ex. 3 Implicit Enumeration: Here the problem is

Minimize
n∑

j=1

cjxj subject to
n∑

j=1

ai,jxj ≥ bi, i ∈ [m], xj ∈ {0, 1} , j ∈ [n].

A sub-problem is assciated with two sets I, O ⊆ [n]. This the sub-problem PI,O

where we add the constraints xj = 1, j ∈ I, xj = 0, j ∈ O. We also check to see if
xj = 1, j ∈ I, xj = 0, j /∈ I gives an improved feasible solution. As a bound bI,O we use∑

j /∈O max {cj, 0}. To test feasibility we check that
∑

j /∈O max {ai,j, 0} ≥ bi, i ∈ [m].
To branch, we split PI,O into PI∪{j},O and PI,O∪{j} for some j /∈ I ∪O.

2


