817. Two Person Zero Sum Gaines

We discuss here an application of linear programing to the theory of games. This theory is an attempt to provide an analysis of situations involving conflict and competition.

Game 1
: there are two players A and B
and to play the game they each choose a number 1,2,3 or 4 without the other's knowledge and then they both simultaneously announce their numbers. if A calls i and B calls i then B pays A an out. $a_{i j}$ - the payeff-girenin the matrix below. (if $a_{i j}<c$ this is equalent to A paying B - $a_{i j}$).

B

$$
A \quad\left[\begin{array}{rrrr}
2 & 4 & 2 & 1 \\
-2 & 5 & 1 & -1 \\
1 & -5 & 3 & 0 \\
6 & 2 & -3 & -2
\end{array}\right]
$$

This is a two person zero sur, game, zero sum because the algebraic sum of the players'winnings is aloogszero.

Game 2 (Penalty Kicks)
Suppose A and B play the following game of SOCCET. A plays in goal and B takes penalty kicks. B can kick the ball into the left hand comer. the Right hand corner or into the Middle of the goal. A can Dive to his Right or Dive to his left ox stay where he is. If A correctly guesses where B will kick the ball he will make a save.

The payoff loo A is given by the following matrix:
$\begin{array}{llll}B & R & L\end{array}$
DR 2 -1 -2
(
DI $\begin{array}{lll}-1 & 2 & -2\end{array}$
$\begin{array}{llll}5 & -1 & -1 & 1\end{array}$

We shall be considering $m \times n$ generalisations of game 1 and other games like game 2 which can be reduced to this form.

Thus there is given some $m \times n$ payoff matrix $\left\|a_{i j}\right\|$. In a play of the game. A chooses $i \in M=\{1,2, \cdots m\}$ and B chooses $j \in N=\{1,2, \cdots n\}$. These choices are made independently without either player knowing what the other has chosen. They then announce their choices and B pays $a_{i j}$ t. A.
M, N will be referred to as the sets of tactics for
C A, B respectively.
A match is an unending sequence of plays. A^{\prime} s objective is to maximise his average winnings from the match and B^{\prime} s objective is to minimise his average losses.

A strategy for the match is some rule for selecting the tactic for the next play.

Let. S_{A}, S_{B} be sets of strategies for A, B respecting We shall initially consider the case where $S_{A}=\{(1), \ldots(m)\}$ and $S_{B}=\{(1), \ldots(n)\}$ where (t) is the pure strategy. of using tactic t in each play. We shall subsequentlybe enlarging S_{A} and S_{B} and we therefore introduce near notation to allow for this possibility.

Thus for each $u \in S_{A}$ and $v \in S_{B}$ let. $\operatorname{PAY}(u, v)$
C. denote the average payment of $B t_{0} A . S_{A}$ and S_{B} will always be such that 'overage poyment' is meaning ft? Thus if $u=(i)$ and $v=(j)$ then PAY $(u, v)=a_{i j}$.

Stable Solutions
$\left(u_{0}, v_{0}\right) \in S_{A} \times S_{B}$ is a stable solution if (17.1) $\operatorname{PAY}\left(u, v_{0}\right) \leq \operatorname{PAY}\left(u_{0}, v_{0}\right) \leq \operatorname{PAY}\left(u_{0}, v\right)$.
if (17.1) holds then neither A nor B has any incentive to change strategy if each assumes his opponent is not going to change his.

The subsequent anolysis is concerned with find ing a stable solution.

Thinking of S_{A} as the row indices and S_{B} as the (column indices of some matrix we define

$$
\operatorname{POWMIN}(u)=\min _{v e S_{B}} \operatorname{PAY}(u, v) \text {. for } u \in S_{A}
$$

and

$$
\operatorname{coLmAX}(v)=\max _{u \in S_{A}} \operatorname{PAY}(u, v) \quad \text { for } v \in S_{B}
$$

Suppose now that A chooses \hat{u}. We ass ume that after some finite time B will be able to deduce this. B will then choose his strategy v to minise PAY (\hat{u}, v). Thus if A chooses u then he can expect his average winnings to be ROWMIN(u).
similarly if B chooses v he con expect his
average Losses to be COLMAX (v).
Thus if $P_{A}=\operatorname{ROWMIN}\left(u_{0}\right)=\max _{u \in S_{A}} \operatorname{ROWMIN}(u)$ and $P_{B}=\operatorname{COLMAX}\left(v_{0}\right)=\min _{v \in S_{B}} \operatorname{COLMAX}(v)$ then A can by choosing u_{0} ensure his winnings average P_{A} and B by choosing ϑ_{0} can ensure his losses average P_{B}. If $P_{A}=P_{B}$ this seems to 'solve' the game but is $P_{R}=P_{B}$ always?

Theorem 17.1
(a) $\quad P_{A} \leq P_{B}$
(b) $\quad S_{A} \times S_{B}$ contains a stable solution if and only if $P_{A}=P_{B}$ Proof
(a)
(17.2) $\quad P_{A}=\operatorname{ROWMIN}\left(u_{0}\right) \leq \operatorname{PAY}\left(u_{0}, v_{0}\right) \leq \operatorname{COLMAX}\left(v_{0}\right)=P_{B}$
(b)

Suppose first that (\hat{u}, \hat{v}) is stable. Then from (17.1) we have

$$
\operatorname{CoLmAX}(\hat{v})=P A Y(\hat{u}, \hat{v})=\operatorname{ROWMIN}(\hat{u})
$$

and hence.

$$
P_{B} \leq \operatorname{COLMAX}(\hat{v})=\operatorname{ROWMIN}(\hat{u}) \leq P_{A}
$$

which from (a) implies $P_{A}=P_{B}$.
Conversely if $P_{A}=P_{B}$ then from (17.2) we deduce that $\operatorname{ROWMIN}\left(u_{0}\right)=\operatorname{PAY}\left(u_{0}, v_{0}\right)=\operatorname{COLMAX}\left(v_{0}\right)$ which implies (17.1).

We now consider specifically the case $S_{A}=\{(1), \ldots(m)\}$ E and $S_{B}=\{(1), \ldots(n)\}$.

For game 1 we have $P_{A}=P_{B}=1=a_{14}$ and hence A plays (1) and B plays (4) sores the game: A can guararire to win at last 1 and B can guarantee to lose ot most 1 on average.

The matrix of this game is said to hove a saddle point ($i_{e,}, j_{0}$) which means (io), (is) satisfies (17.1).

For a game whose matrix does not have saddle point things are more complex. Consider for example game 2. $P_{A}=-1$ and $P_{B}=1$. It follows from theorem 17.1 that no pair of pure strategies solves the game. A knows he can average at least -1 by playing (3) and B knows he need lose no more than 1 on average by playing (3). But note that if A plays (3) then B has an incentive to play (1) or (2). But if B plays (1) A will play (1) and so on.
Mixed Strategics
To break this seeming deadlock we allow the players. to choose mixed strategies. A mixed strategy for A is a vector of probabilities ($P_{1}, \cdots P_{m}$) where $P_{i} \geq 0$ for ie N and $P_{1}+\cdots+P_{m}=1$. A then chooses tactic with probability P_{i} for $i \in M_{i . e}$ before each ploy A carries out a statisticri experiment that has an outcome $i \in M$ with probability P_{i} A then play's the corresponding tactic. Similarly B^{\prime} s mixed strategies are vectors $\left(q_{1}, \cdots q_{n}\right)$ satisfying $q_{j} \geq 0$. for ic N and $q_{1}+\cdots+q_{n}=1$.

Pure strategies can be represented os vectors will. a single non-zero component equal to 1.

We now 'enlarge' $S_{A}, S_{B} t_{0}$
(17.3) $\quad S_{A}=\left\{\underline{P} \in \mathbb{R}^{m}: \underline{p} \geq 0\right.$ and $\left.p_{1}+\cdots+p_{m}=1\right\}$

$$
S_{B}=\left\{\underline{q} \in \mathbb{R}^{n}: q \geq 0 \text { and } q_{i} \cdots+q_{n}=1\right\}
$$

For $\underline{p} \in S_{A}, \underline{q} \in S_{B}$ it is straight forward to show the!

$$
\operatorname{PAY}(p, q)=\sum_{i \in M} \sum_{j \in N} a_{i j} p_{i} q_{j}
$$

We now show using the duality theory of linear programming that $S_{A} \times S_{B}$ as defined in (17.9) contains a stable solution.

We shall first show how to compute P_{A}. Let $c_{j}(\underline{p})=\sum_{u \in M} a_{i} P_{i}$,
(then
(17.4) $\quad P_{A}=\max _{p \in S_{A}}\left(\min _{q \in S_{B}} \sum_{j=1}^{n} c_{j}(q) q_{j}\right)$

Lemma 17.2

$$
\text { (17.5) } \min _{q_{\in} \in S_{B}}\left(\sum_{j=1}^{n} \xi_{j} q_{j}\right)=\min \left(\xi_{i} \ldots \xi_{n}\right)
$$

Proof
Let $\xi_{p}=\min \left(\xi_{i} \ldots \xi_{n}\right)$ and Let $L=$ LHS of (17.5). Putting $\hat{q}_{j}=0$ for $j \neq t$ and $\hat{q}_{b}=1$ we have $\hat{q}_{i} \in Q$ and $\sum_{j=7}^{m} \xi_{j} \hat{q}_{j}=\xi_{t}$.
Thus $L \leq \xi_{t}$. However for any $q \in Q$ we have

$$
\sum_{j=1}^{n} \xi_{j} q_{s} \leq \sum_{j=1}^{n} \xi_{i} q_{j}=\xi_{r} \sum_{j=1}^{n} q_{j}=\xi_{i} \quad \quad \text { QED } \quad \text {) }
$$

It follows from the lemma and (17.4) that

$$
\begin{aligned}
& P_{A}= \max _{\underline{p} \in S_{A}}\left(\min \left(c_{1}(\underline{p}), \ldots c_{n}(\underline{p})\right)\right) \\
&= \max \min \left(c_{1}(\underline{p}), \ldots c_{n}(\underline{p})\right) \\
& \operatorname{sub} b_{j} \text { ct to } \\
& p_{1}+\cdots+p_{m}=1 \\
& p_{1}, \cdots p_{m} \geq 0
\end{aligned}
$$

(17.6) $=\max Y$

$$
\begin{aligned}
& \xi \sum_{i=1}^{m} a_{i j} p_{i} \\
& p_{1}+\cdots+p_{m}=1 \\
& p_{1, \cdots} p_{m} \geq 0
\end{aligned}
$$

'
where $\angle P(17.6)$ is derived as in $\oint A$ of the ORS nates.
Using similar arguments we con show that (1.7)

$$
\begin{gathered}
P_{B}=\min D \\
D \geq \sum_{j=1}^{n} a_{i j} q_{s} \\
q_{1}+\cdots+q_{n}=1 \\
q_{1 i} \cdots q_{n} \geq 0
\end{gathered} \quad i=1, \cdots m
$$

We note next that (17.6) and (17.7) are a pair of dual linear programs. They are both feasible and hence $P_{A}=P_{B}$ and stable solut ions cist. In fact if P^{0} solves $07.6)$ and \underline{q}^{0} solves (17.7) then ($\underline{Q}^{0}, \underline{q}^{0}$) is stable as $\operatorname{PAY}\left(\underline{p}^{0}, q^{0}\right)=P_{A}=P_{B}$.

We describe next a simple transformation which reduce the LP problems by one row and one variable.

Consider first (17.6). We assume that $a_{i j}>0$. If not we can first add a quantity λ to each $a_{i j}$ so that $a_{i j}+\lambda>\infty$. one can see that for any u, v PAY (u, v) is also increased by λ and so this has no effect on the strategies.

We can now assume that $\xi>0$ in the optimum solution to (17.6). We can the rewrite (M.6) as

$$
\text { minimise } \quad 1 / \xi=\left(\frac{p_{1}}{\xi}\right)+\cdots+\left(\frac{p_{m}}{\xi}\right)
$$

$$
\text { subject to } \quad \sum_{i=1}^{m} a_{i j}\left(\frac{p_{i}}{\xi}\right) \geq 1 \quad j=1, \cdots n
$$

(17.8)

$$
\begin{aligned}
& \left(\frac{P_{1}}{\xi}\right)+\cdots+\left(\frac{P_{m}}{\xi}\right)=\frac{1}{\xi} \\
& \left(\frac{P_{1}}{\xi}\right), \cdots\left(\frac{\rho_{m}}{\xi}\right) \geq 0
\end{aligned}
$$

Letting $x_{i}=p_{i} / \xi$ for $i=1 \ldots \mathrm{~m}$ this becomes
(1..9) minimise $x_{1}+\cdots+x_{m}$

$$
\begin{aligned}
\text { subject to } \quad \sum_{i=1}^{m} a_{i j} x_{i} & \geq 1 \quad \text { j }=b \cdots m \\
x_{1,} \cdots x_{m} & \geq 0
\end{aligned}
$$

where equation (17.8) is redundant.
The optimal strategy $\underline{\rho}^{\circ}$ can be recovered from on optimal solution x^{0} to (17. 9) as follows:
let $\xi=1 /\left(x_{1}^{0}+\cdots+x_{m}^{0}\right)$ and then $P_{i}^{0}=x_{i}^{0} E$ for $i=1 \cdots \cdots$. The equivalent transformation for (17.7) gives
(17.1) maximise $y_{1}+\cdots+y_{n}$
subject to

$$
\begin{array}{ll}
\sum_{j=1}^{n} a_{i j} y_{j} \leq 1 \\
y_{1}, \cdots y_{n} \geq 0
\end{array} \quad i=b \cdots m
$$

which dual to (17.9)
We now use the above theory to save game 2.

We first add 3 to each element of the matrix (17.9) or (17.10)

Problem (IY.iO) Is

$$
\begin{array}{ll}
& y_{1}+y_{2}+y_{3} \\
\text { andmise } \\
& 5 y_{1}+2 y_{2}+y_{3} \leq 1 \\
& 2 y_{1}+5 y_{2}+y_{3} \leq 1 \\
2 y_{1}+2 y_{2}+4 y_{3} \leq 1 \\
& \\
& y_{1}, y_{2} \cdot y_{3} \geq 0
\end{array}
$$

The optimal solution can be found to be $y_{1}=\frac{1}{8} y_{2}=\frac{1}{8} y_{3}=\frac{1}{8}$ and $y_{2}+y_{2}+y_{3}=3 / 8$ implying that $n=\beta_{3}$ and $q_{1}=q_{2}=q_{3}=1 / 3$. The solution to (17.9) is $x_{1}=1 / 12 \quad x_{2}=1 / 2, \quad x_{3}=5 / 24$ implying that $5=8 / 3$ and $p_{1}=1 / 7 \quad p_{2}=1 / 7$ and $p_{3}=5 / 7$. Since we added 3 to each element initially we see that the actual value of the game to A

$$
\text { is } 8 / 3-3=-7 / 3
$$

Dominated Strategies
In the matrix game below

$$
\left[\begin{array}{rrrr}
2 & 3 & -3 & -2 \\
3 & 2 & 3 & 3 \\
2 & 3 & 2 & -1
\end{array}\right]
$$

we see that strategy (3) is better for A than strategy (1) for any choice of strategy by B and consequently strategy (i) can be ignored by A and the game reduced to

$$
\left[\begin{array}{rrrr}
3 & 2 & 3 & 3 \\
2 & 3 & 2 & -1
\end{array}\right]
$$

We see now that strategy (4)is better than either of strategies
(1), (3)for B for either of $A^{\prime} s$ strategies. Thus column 2,3 can be deleted to reduce the game to

$$
\left[\begin{array}{rr}
2 & 3 \\
3 & -1
\end{array}\right]
$$

We have used the idea of dominated strategies to reduce the size of the game to be considered. Thus

Strategy (1) dominates strategy', ') for the row player A if

$$
a_{i j} 2 a_{1 \prime j} \text { for ail } j \text {. }
$$

Strategy (j) dominates strategy (J^{\prime}) for the colum player B^{\prime} if

$$
a_{i j} \leqslant a_{i j} \text { for all } 1
$$

Thus strategies (' $^{\prime \prime}$ (' $^{\prime}$) above can be ignored. Successive applications of these rules can reduce the size of a game significantly.

Rondem Payoffs
We finally note that the above analysis goes through unchanged if A, B having selected tactics i, , the payoff t. A is a random variable whose expected value is $a_{i j}$

Simple Aspects of games

1 Dominance

If $A(i, j) \geq A\left(i, j^{\prime}\right)$ for all i then player B will never use strategy j. It is preferable for her/him to use strategy j^{\prime} instead. So, column j can be removed from the matrix A.

Similarly, if $A(i, j) \leq A\left(i^{\prime}, j\right)$ for all j then player A will never use strategy i. It is preferable for her/him to use strategy i^{\prime} instead. So, row i can be removed from the matrix A.

Repeated use of this idea can reduce a game substantially.

2 Latin Square Game

Suupose that every row sum is equal to $R>0$ and every column sum is equal to $C>0$ where $m R=n C$. Then both players can choose uniformly. Consider the two LP's that solve the game:

$$
\begin{align*}
& A \text { Minimize } \sum_{i=1}^{m} x_{i} \text { subject to } \sum_{i=1}^{m} a_{i, j} x_{i} \geq 1 \text { for all } j, \sum_{i=1}^{m} x_{i}=1 . \tag{1}\\
& B \text { Maximize } \sum_{j=1}^{n} y_{j} \text { subject to } \sum_{j=1}^{n} a_{i, j} j_{j} \leq 1 \text { for all } i, \sum_{j=1}^{n} y_{j}=1 . \tag{2}
\end{align*}
$$

Putting $x_{i}=1 / C$ and $y_{j}=1 / R$ gives two feasible solutions with the same objective value.

3 Non-singular games

Suppose that A is non-singular and that $\mathbf{1}^{T} A^{-1} \mathbf{1} \neq 0$. Then the value of the game is $V=\frac{1}{\mathbf{1}^{T} A^{-1} \mathbf{1}}$. Then, $x^{T}=\frac{\mathbf{1}^{T} A^{-1}}{V}$ and $y=\frac{A^{-1} \mathbf{1}}{V}$ solve (1), (2) respectively.

4 Symmetric games

A game is symmetric if $A^{T}=-A$ i.e if A is anti-symmetric. Then the game has value 0 . If A and B both use strategy p then because $p^{T} A p=0$ for antsymmetric A, we see that $P A Y(p, p)=0$. This implies that $0 \geq P_{A}=P_{B} \geq 0$.

Appendix 2: Existence of Equilibria in Finite Games

We give a proof of Nash's Theorem based on the celebrated Fixed Point Theorem of L. E. J. Brouwer. Given a set C and a mapping T of C into itself, a point $z \in C$ is said to be a fixed point of T, if $T(z)=\boldsymbol{z}$.

Brouwer's Fixed Point Theorem. Let C be a nonempty, compact, convex set in a finite dimensional Euclidean space, and let T be a continuous map of C into itself. Then there exists a point $\boldsymbol{z} \in C$ such that $T(\boldsymbol{z})=\boldsymbol{z}$.

The proof is not easy. You might look at the paper of K. Kuga (1974), "Brower's fixed point Theorem: An Alternate Proof", SIAM Journal of Mathematical Analysis, 5, 893-897. Or you might also try Parthasarathy and Raghavan (1971), Chapter 1.

Now consider a finite n-person game with the notation of Section III.2.1. The pure strategy sets are denoted by X_{1}, \ldots, X_{n}, with X_{k} consisting of $m_{k} \geq 1$ elements, say $X_{k}=\left\{1, \ldots, m_{k}\right\}$. The space of mixed strategies of Player k is given by X_{k}^{*},

$$
\begin{equation*}
X_{k}^{*}=\left\{p_{k}=\left(p_{k, 1}, \ldots, p_{k, m_{k}}\right): p_{k, i} \geq 0 \text { for } i=1, \ldots, m_{k}, \text { and } \sum_{i=1}^{m_{k}} p_{k, i}=1\right\} \tag{1}
\end{equation*}
$$

For a given joint pure strategy selection, $x=\left(i_{1}, \ldots, i_{n}\right)$ with $i_{j} \in X_{j}$ for all j, the payoff, or utility, to Player k is denoted by $u_{k}\left(\left(i_{1}, \ldots, i_{n}\right)\right.$ for $k=1, \ldots, n$. For a given joint mixed strategy selection, $\left(p_{1}, \ldots, p_{n}\right)$ with $p_{j} \in X_{j}^{*}$ for $j=1, \ldots, n$, the corresponding expected payoff to Player k is given by $g_{k}\left(p_{1}, \ldots, p_{n}\right)$,

$$
\begin{equation*}
g_{k}\left(p_{1}, \ldots, p_{n}\right)=\sum_{i_{1}=1}^{m_{1}} \cdots \sum_{i_{n}=1}^{m_{n}} p_{1, i_{1}} \cdots p_{n, i_{n}} u_{k}\left(i_{1}, \ldots, i_{n}\right) \tag{2}
\end{equation*}
$$

Let us use the notation $g_{k}\left(p_{1}, \ldots, p_{n} \mid i\right)$ to denote the expected payoff to Player k if Player k changes strategy from p_{k} to the pure strategy $i \in X_{k}$,

$$
\begin{equation*}
g_{k}\left(\boldsymbol{p}_{1}, \ldots, \boldsymbol{p}_{n} \mid i\right)=g_{k}\left(\boldsymbol{p}_{1}, \ldots, \boldsymbol{p}_{k-1}, \boldsymbol{\delta}_{i}, \boldsymbol{p}_{k+1}, \ldots, \boldsymbol{p}_{n}\right) \tag{3}
\end{equation*}
$$

where δ_{i} represents the probability distribution giving probability 1 to the point i. Note that $g_{k}\left(p_{1}, \ldots, p_{n}\right)$ can be reconstructed from the $g_{k}\left(p_{1}, \ldots, p_{n} \mid i\right)$ by ${ }^{\cdot}$

$$
\begin{equation*}
g_{k}\left(p_{1}, \ldots, p_{n}\right)=\sum_{i=1}^{m_{k}} p_{k, i} g_{k}\left(p_{1}, \ldots, p_{n} \mid i\right) \tag{4}
\end{equation*}
$$

A vector of mixed strategies, $\left(p_{1}, \ldots, p_{n}\right)$, is a strategic equilibrium if for all $k=$ $1, \ldots, n$, and all $i \in X_{k}$,

$$
\begin{equation*}
g_{k}\left(p_{1}, \ldots, p_{n} \mid i\right) \leq g_{k}\left(p_{1}, \ldots, p_{n}\right) \tag{5}
\end{equation*}
$$

$$
A-4
$$

librium.

Proof. For each k, X_{k}^{*} is a compact convex subset of m_{k} dimensional Euclidean space, and so the product, $C=X_{1}^{*} \times \cdots \times X_{n}^{*}$, is a compact convex subset of a Euclidean space of dimension $\sum_{i=1}^{n} m_{i}$. For $z=\left(p_{1}, \ldots, p_{n}\right) \in C$, define the mapping $T(z)$ of C into C by

$$
\begin{equation*}
T(z)=z^{\prime}=\left(p_{1}^{\prime}, \ldots, p_{n}^{\prime}\right) \tag{6}
\end{equation*}
$$

where

$$
\begin{equation*}
\boldsymbol{p}_{k, i}^{\prime}=\frac{p_{k, i}+\max \left(0, g_{k}\left(\boldsymbol{p}_{1}, \ldots, \boldsymbol{p}_{n} \mid i\right)-g_{k}\left(\boldsymbol{p}_{1}, \ldots, \boldsymbol{p}_{n}\right)\right)}{1+\sum_{j=1}^{m_{k}} \max \left(0, g_{k}\left(\boldsymbol{p}_{1}, \ldots, \boldsymbol{p}_{n} \mid j\right)-g_{k}\left(\boldsymbol{p}_{1}, \ldots, \boldsymbol{p}_{n}\right)\right)} \tag{7}
\end{equation*}
$$

Note that $p_{k, i} \geq 0$, and the denominator is chosen so that $\sum_{i=1}^{m_{k}} p_{k, i}^{\prime}=1$. Thus $z^{\prime} \in$ C. Moreover the function $f(z)$ is continuous since each $g_{k}\left(p_{1}, \ldots, p_{n}\right)$ is continuous. Therefore, by the Brouwer Fixed Point Theorem, there is a point, $\boldsymbol{z}^{\prime}=\left(\boldsymbol{q}_{1}, \ldots, \boldsymbol{q}_{n}\right) \in C$ such that $T\left(z^{\prime}\right)=z^{\prime}$. Thus from (7)

$$
\begin{equation*}
q_{k, i}=\frac{q_{k, i}+\max \left(0, g_{k}\left(z^{\prime} \mid i\right)-g_{k}\left(z^{\prime}\right)\right)}{1+\sum_{j=1}^{m_{k}} \max \left(0, g_{k}\left(\boldsymbol{z}^{\prime} \mid j\right)-g_{k}\left(z^{\prime}\right)\right)} \tag{8}
\end{equation*}
$$

for all $k=1, \ldots, n$ and $i=1, \ldots, m_{n}$. Since from (4) $g_{k}\left(z^{\prime}\right)$ is an average of the numbers $g_{k}\left(z^{\prime} \mid i\right)$, we must have $g_{k}\left(z^{\prime} \mid i\right) \leq g_{k}\left(z^{\prime}\right)$ for at least one i for which $q_{k, i}>0$, so that $\max \left(0, g_{k}\left(z^{\prime} \mid i\right)-g_{k}\left(z^{\prime}\right)\right)=0$ for that i. But then (8) implies that $\sum_{j=1}^{m_{k}} \max \left(0, g_{k}\left(z^{\prime} \mid j\right)-\right.$ $\left.g_{k}\left(z^{\prime}\right)\right)=0$, so that $g_{k}\left(z^{\prime} \mid i\right) \leq g_{k}\left(z^{\prime}\right)$ for all k and i. From (5) this shows that $z^{\prime}=$ $\left(q_{1}, \ldots, \boldsymbol{q}_{n}\right)$ is a strategic equilibrium.

Remark. From the definition of $T(\boldsymbol{z})$, we see that $\boldsymbol{z}=\left(p_{1}, \ldots, p_{n}\right)$ is a strategic equilibrium if and only if \boldsymbol{z} is a fixed point of T. In other words, the set of strategic equilibria is given by $\{z: T(z)=z\}$. If we could solve the equation $T(z)=\boldsymbol{z}$ we could find the equilibria. Unfortunately, the equation is not easily solved. The method of iteration does not ordinarily work because T is not a contraction map.

