

Dynamic Programming: replacement of a machine

A company uses a machine to manufacture a single product over the next N
periods. The demand in period n is known to be dn and the maximum amount
of stock that can be held at one time is H . The cost of producing an amount
x depends on the current age of the machine. It costs c(x, t) to produce an
amount x using a machine of age t. A machine of age T has to be scrapped.
Assume that we start in period 0 with a new machine. A new machine costs A
to buy. Here is how we formulate the problem: Let fn(t, h) denote the minimum
cost of meeting demand in periods n, n + 1, . . . , N if we start period n with a
machine of age t and h units in stock. Then

fn(t, h) = min















min
0≤x≤H−h+dn

x≥dn−h

{c(x, t) + fn+1(t + 1, x + h − dn)} Keep old machine

min
0≤x≤H−h+dn

x≥dn−h

{A + c(x, 0) + fn+1(1, x + h − dn)} Replace machine

The above recurrence is computed for n = N, N − 1, . . . , 1, t = 0, 1, . . . , T − 1
and h = 0, 1, . . . , H. If t = T then we let

fn(T, h) = A + fn(0, h).

1

Minimal triangulation of a convex polygon

Let P be a convex polgon with vertices X1, X2, . . . , Xn. We want to triangulate
it in such a way as to minimise the sum of the lengths of the chords used.

X1X1

X2X2
X3X3

X4X4

X5X5

X6X6

X7X7

X8X8

Let m∗

k,l be the length of the minimum length triangulation of the polygon
defined by Xk, Xk+1, . . . , Xl, Xk. Then

m∗

k,l = min
k<j<l

{m∗

k,j + m∗

j,l + |Xk − Xj | + |Xj − Xl|} (1)

where |Xk − Xj | is the length of the edge Xk, Xj etc.
Here m∗

k,l = 0 if l = k + 1 and we use the recurrence (1) to compute what we
want i.e. m∗

1,n.

3

Probabilistic shortest path

Now consider the mountain range problem where at pass i ∈ Pr, 0 ≤ r ≤ N (Pr

denotes the set of passes in range r) you have to choose a decision d ∈ Di,r and
then you have probability ρd(r, i, j, t), j ∈ Pr+1, t ≥ o of arriving at pass j with
the journey taking time t. The first problem is to minimise the expected time
to reach the final destination F . So if fr(i) denotes the minimum expected time
to reach F from i ∈ Pr , we have

fr(i) = min
d∈Di,r















∑

t≥0
j∈Pr+1

ρd(r, i, j, t)(t + fr+1(j))















.

To guarantee that we reach F we should put PN+1 = {F}.

We can also consider the alternative problem. We can ignore costs and try to
maximise the probability that we arrive at F within time T . Then if gr(i, t), i ∈
Pr, 0 ≤ t ≤ T denotes the maximum probability of reaching F by time T ,

gr(i, t) = max
d∈Di,r







∑

τ≥0

ρd(r, i, j, τ)gr+1(j, t + τ)







.

As a boundary condition we have

gN+1(F, t) =

{

1 t ≤ T

0 t > T

4

Dynamic Programming: probabilistic production problem

A company needs to meet demand for its single product over the next N periods.
The cost of producing an amount x is c(x) in any period. The demand is a
random variable and let us assume that

Pr(dn = d) = pn,d d ≥ 0.

The company can store up to amount H at any time. The company will try to
meet the demand, but if it is too large then there is a penalty cost of π for any
demand left unsatisfied. The company wishes to minimises the expected cost of
production. Assume first that the company has to make its period n production
decision before it knows dn. Let fn(h) denote the minimum expected cost of
production in periods n, n + 1, . . . , N if we start period n with h units in stock.
Then, if ξ+ = max{0, ξ},

fn(h) = min
x≥0

{c(x)+
∑

d≥0

pn,d(fn+1(min{(x+h−d)+, H})+π max{0, d−(h+x)}).}.

As an alternative criterion, suppose one has to minimise expected cost subject
to having at least a 90% chance of meeting demand in every period. Then we
let fn(h) be the minimum cost of operating under these criteria for a given n
and h.

fn(h) = min
x≥αh

{c(x) +
∑

d≥0

pn,d(fn+1(min{(x + h − d)+, H}) + π(d − (h + x))+)}

where αh = minα :
∑

d>α+h pn,d ≤ .1.

If the company can make its period n production decision after it knows dn then
we have

fn(h) =
∑

d≥0

pn,d min
x≥(d−h)+

x≤H+d−h

{c(x) + fn+1(h + x − d)}.

2

A problem with an infinite time horizon

A system can be in one of a set V of possible states. For each v ∈ V one can
choose any w ∈ V and move to w at a cost of c(v, w). The system is to run
forever and it is requiredto minimise the discounted cost of running the system,
assuming that the discount factor is α. A policy is a function π : V → V . So if
|V | = n then there are nn distinct policies to choose from.
Example

Costs





2 1 3
4 3 2
1 3 2



 α = 1/2.

Let π be a policy and let yv be the discounted cost of this policy, starting at
v ∈ V . Then

yv = c(v, π(w)) + αyπ(v) v ∈ V. (1)

Example Let π(1) = π(2) = π(3) = 1. Then

y1 = 2 +
1

2
y1

y2 = 4 +
1

2
y1

y3 = 1 +
1

2
y1.

So
y1 = 4, y2 = 6, y3 = 3.

Problem: Find the policy π∗ which minimises yv simultaneously for all v ∈ V .

Theorem 1 Optimality Criterion

π∗ is optimal iff its values y∗

v satisfy

y∗

v = min
w∈V
{c(v, w) + αy∗

w} ∀v ∈ V. (2)

Proof Suppose that (2) does not hold for some π.

yu > c(u, λ(u)) + αyλ(u) u ∈ U

yv = min
w∈V
{c(v, w) + αyw} u /∈ U

Define π̃ by π̃(u) = λ(u) for u ∈ U and π̃(v) = π(v) for v /∈ U . Then for u ∈ U ,

yu > c(u, λ(u)) + αyλ(u)

ỹu = c(u, λ(u)) + αỹλ(u)

So if ξv = yv − ỹv for v ∈ V then

ξu > αξπ̃(u) u ∈ U. (3)

1

Also, for v /∈ U

yv = c(v, π(v)) + αyπ(v)

ỹv = c(v, π(v)) + αỹπ(v)

and so
ξv = αξπ̃(v) v /∈ U. (4)

It follows from (3), (4) that

ξv ≥ αtξπ̃t(v) ∀v /∈ U, t ≥ 1

ξu > αtξπ̃t(u) ∀u ∈ U, t ≥ 1

Letting t→∞ we see that

ξv ≥ 0 ∀v and ξu > 0 ∀u ∈ U.

Thus π̃ is strictly better than Π i.e. if (2) does not hald, then we can improve
the current policy.
Conversely, if (2) holds and π̂ is any other policy and ηv = ŷv − y∗

v then

ŷv = c(v, π̂(v)) + αŷπ̂(v)

y∗

v ≤ c(v, π̂(v)) + αy∗

π̂(v)

and so
ηv ≥ αηπ̂(v) ≥ · · · ≥ αtηπ̂t(v) for t ≥ 1

which implies that ηv ≥ 0 for v ∈ V .
Policy Improvement Algorithm

1. Choose arbitrary initial policy π.
2. Compute y as in (1).
3. If (2) holds – current π is optimal, stop.
4. If (2) doesn’t hold then
5. compute λ by

yλ(v) = minw{c(v, w) + αyw}.
6. π ← λ.
7. goto 2.

In our example with π = (1, 1, 1). First compute λ = (1, 3, 1). Re-compute
y = (39

28 , 11
14 , 95

56). Now λ = π i.e. (1) holds and we are done.

2

Let us introduce some probability: Suppose now that for each i ∈ V there is a
set Xi of possible decisions. Suppose that if the system is in state i and decision
x ∈ Xi is taken then

• The expected cost of the immediate step is c(x, i).

• The next state is j with probability P (x, i, j)

A policy π specifies a decision π(i) ∈ Xi for each i ∈ V .
First let us evaluate this policy.
Let yi denote the expected discounted cost of pursuing policy π indefinitely,
starting from i ∈ V . Then

yi = c(π(i), i) + α
∑

j∈V

P (π(i), i, j)yj

or

y = cπ + αPπy or y = (I − αPπ)−1cπ =

∞
∑

t=0

(αPπ)tcπ

where Pπ(i, j) = P (π(i), i, j) and cπ(i) = c(π(i), i).
So policy π can be evaluated.

Theorem 2 Optimality criterion:

c(π(i), i) + α
∑

j∈V

P (π(i); i, j)yj = min
x∈Xi







c(x, i) + α
∑

j∈V

P (x, i, j)yj







(5)

π is optimal iff (5) holds.

Proof Suppose first that (5) does not hold. Define a new policy π̂ by

c(π̂(i), i) + α
∑

j∈V

P (π̂(i), i, j)yj = min
x∈Xi







c(x, i) + α
∑

j∈V

P (x, i, j)yj







We have

yi ≥ c(π̂(i), i) + α
∑

j∈V

P (π̂(i), i, j)yj (6)

ŷi = c(π̂(i), i) + α
∑

j∈V

P (π̂(i), i, j)ŷj

and so
(I − αPπ̂)(y − ŷ) ≥ 0

and then since (I − αPπ̂)−1 has only non-negative entries:

(I − αPπ̂)−1(I − αPπ̂)(y − ŷ) ≥ 0 or y − ŷ ≥ 0

3

But ŷ 6= y since there is strict inequality in (6) for at least one i and π̂ is strictly
better than π.
Conversely, if (5) holds and π̂ is any other policy, we get that

yi ≤ c(π̂(i), i) + α
∑

j∈V

P (π̂(i), i, j)yj

ŷi = c(π̂(i), i) + α
∑

j∈V

P (π̂(i), i, j)ŷj

and so
(I − αPπ̂)(y − ŷ) ≤ 0

and then since (I − αPπ̂)−1 has only non-negative entries:

(I − αPπ̂)−1(I − αPπ̂)(y − ŷ) ≤ 0 or y − ŷ ≤ 0

2

4

A taxi driver’s territory comprises 3 towns A,B,C. If he is in town A he has 3
altrenatives:

1. He can cruise in the hope of picking up a passenger by being hailed.

2. He can drive to the nearest cab stand and wait in line.

3. He can pull over and wait for a radio call.

In town C he has the same 3 alternatives, but in town B he only has alternatives
1 and 2.
The transition probabilities and the rewards for being in the various states and
making the various transitions are as follows:
A:

P =





.5 .25 .25
.0625 .75 .1875

.25 .125 .625



 R =





10 4 8
8 2 4
4 6 4





B:

P =

[

.5 0 .5
.0625 .875 .0625

]

R =

[

14 0 18
8 16 8

]

C:

P =





.25 .25 .5
.125 .75 .125
.75 .0625 .1875



 R =





10 2 8
6 4 2
4 0 8





He wishes to find the policy which maximises his long run average gain per
period.

5

Traveling SalesPerson via Dynamic programming:
We are given a matrix of costs c(i, j), 1 ≤ i, j ≤ n. The problem is to find a
permutation π of [n] = {1, 2, . . . , n} that minimises

TSP (π) = c1,π(1) + c(π(1), π2(1)) + ·+ c(πn)(1), 1).

This represents the total cost of a “tour through [n] in the order 1, π(1), π2(1), . . . , πn(1), 1.

There are (n − 1)! distinct tours (each tour, as a set of directed edges of ~Kn,
arises from n distinct permutations.)
With DP we can solve the problem in O(n22n) time. For 1 ∈ S ⊆ [n] and x ∈ S,
let f(x, S) denote the minimum cost of a path that begins at 1, ends at x and
visits each vertex in S exactly once. Then, f(x, S) = 0 for S = {1} and

f(x, S) = min{f(x, S \ {x}) + c(z, x) : z ∈ S \ {x}}.

There are
(
n−1
k−1

)
choices for |S| = k and given S there are k − 1 choices for x

and then k − 2 choices for y. So, to compute f(x, [n]) for all 1 6= x ∈ [n] takes
time

n∑
k=2

(k − 1)(k − 2)

(
n− 1

k − 1

)
=

n∑
k=3

(k − 1)(k − 2)

(
n− 1

k − 1

)
=

(n− 1)(n− 2)

n∑
k=3

(
n− 3

k − 3

)
= (n− 1)(n− 2)2n−3.

To finish we compute min{f(x, [n]) + c(x, 1) : x 6= 1).

1

