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DPL.1

Dynamic Prggggﬁmihg

Cynamic programming is an approach to solving problems
rather than a technique for solving a particular problem. The
approach can be appliad.tn”i wide range of problems, although

in many cases it leads to impractical algorithnms.

The problem to be tackled is fbrmulatéd as' making a
sequence of decisinns;. Having made cne deeision, the problem
of choosing the remaining daciq}cns is often a similar but
'smaller' version of tﬁe criginal ﬁrublem. This can lead to a
'functional equation’' for fiﬁding the best initial decision and

each subsequent decisien.

" §1 A production problem

As a sinmple example we consider the follewing problem:
4 company estimates the demand dj-fnr 6ne of its products over
the next n ﬁeriads. < costs the company c¢(x) to manufacture
x units in any one pericd. 4All demand must be met in the period
in which. it occurs but stncké.may be built up to provide for
deﬁand in future periocds. The maximum stock +hat ean be held
at any time is H. How much should be produced in each period
to minimise the total cost of production. To make the problem
self-contained we have to say something about initial and final
storks., Suppose then that there is an initial stoek of iD and

that any stock left over at the end of period n-is worthless.

The problem then is to decide how much to produce in period

1, how much to produce in period 2 etc. Suppose we decide to




produce an amount X, in period 1, then at the beginning of
pericd 2 we will have a sta;k_léésl of iy + x; - d; and the
problem of minimising the prnduétinn cost over the next n-l1
parieds. - We can write this down mathematically. Define the .
quantity ff(i} to be the minimum cost of meetipé demaﬁd'in.
periods r,r +'1,...n given that one has i units in stock at the

beginning of peried r.

Focussing temporarily on pericd 1, we can ask the question,
if we decide teo produce an amount %q in period: 1, what is the
minimum preducticn cost obtainable over the whole n periods?

This minimum cost is clearly .

¢1.1l) . clixl} + fziiIGI +xy - dl}

The first term is the cost of period'l and the second term

in the minimum cost over pericds 2,3,...n given that we produced

_xl.

L ]

The next question is what is the best value of x, to take.
The answer must be, the value of x, +hat minimises (1.1}, This
will give us the minimum production cost for pericds 1,2,...0

starting with a stock i, i.e. fltin}. We have thus proved that

(1.2) fl{ia} = min {:txl} + fztlu +x, - dl})
1
A similar argument about the decision to be taken at the
beginning of perioed r given that the stock level is currently i

shows that in general

WL
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(1.3)  £,00) = min (e(x,) + £, (1 + x 4,0
*»

The range over which the 'dacision variable' x, is to be
minimised depends on our assumptions about the: problem.  Firstly
we must have x_ > O and since we must produce enough to meet the
demand d_, we must have i + X, 2 &r' The maximum stock level is

H and consequently we must have f +x_ - d_ < H. Thus x_ is to

r r

be chosen in the range
(l.4%) max (0, d-i) ¢ x, £ E+d, - i.

Now the arguzent that produced (1.3)only read holds true for
r ¢ n~-1, basically because we have not defined £  ,(i). Examining
our assumption about final stocks we can see that this is

equivalent to

(1.5) : fn(i] = min (cfznji
' *n

This can he'pu‘t into the framework of (L.3)by d.efiniﬁg
fn+1(il = 0. Equations 1.3 and 1.5 give us a means of solving
our problem. We first calculate £ (i) for i = 0,1,2,...H. We
thsn use (1.3) to caleulate £ _,(i) for i = 0,1,2,...H, and then
f,-p(1) and so on until we reach f,(i). If the production
quantities x need not he-integral then we have to approximate by
dividing the range [0,H] into a suitable number of points -
depending on the accuracy required and computer storage anc t;me

available,.

Let us solve the above problem when n = U, dj = 3 in all

periods, the maximum stock level H = & and c(x) = lax-xi.




DP 1.4

So that we can keep track of the aptimal-pmduatian policy
we make a note of the value of x, mlnlmlsmng the R.H.S nf[l*S}
for each i. Denote this value by x, (3. :

Stage 1 - caleulation of !#

By definition £, (i) = min (18x-x’[max(0,3-1)¢ x < 7-i)
£,(0) = 45, x,(0) = 3; fu(1}1= 3z, ;ntli = 2; futi} =87
x,(2) = 13 £,(3) = 0, :HIEJ = 03 futH] = 0,_xufu3 =

Stage 2 = caleulation of 2'3

In this case 1.3 beccmes.

£40i) = min (18x-x" + £,¢i + x = 3)[max(0,3 = 1)< x € 7 = i)
£(0) = min(s5 + £,(0), 55 + £,(1), 65 + £,(2), 72 + £,(3),
77 + £,(4)) = 72 ' L

and xatﬁ) =

Continuing this we build up the table

i £, x (1) £,(0)  x,(0) fzfil x,(1)  £,(1) x,(i)

O uE 3 72 ] OGS Sy 142 7
3 32 2 65 5 104 216 135 %6
V1Al Al 56 4 89 1 126 <5
a0 0 45 EOZ3ha 72 0 109 o
50 0 32 0/2 65 0 104 0/2

Suppose for example that the initial stock level in peried 1
is 0., We see from the table that the minimum total production

cost is 142, The coptimal producticn pelicy is found as follows:




ulfn} = 7 i,e. given a stock level of 0 at the beginning of
period 1 the optimum producticn for pearied 1 is 7. Producing

7 in pericd 1 means ué start period 2 with a stock level H.

From the table X,(4) = 0 i.e. given a stock level of 4 at the
beginning of period 2 the optimum production for period 2 is O.
This means we start peried 3 with stock level 1. Now x,(1) = 5,
so we produce 5 units in peried 3 and therefore start periﬂd L
with initial stock 3. As xutz} = 0 we produce nothiag in this
period, Thus the optimal pelicy starting period 1 with zero

stock is

We may in a similar manner use the table to find the optimum

policy for all pessible initial stock levels.

In the method above we have worked backwards from periocd n in
caleulating the optimum poliecy. This is called the backward

formulation of the problem.

T+ is also possible to solve the problem working forwards

from period 1, giving us a forward formulaticn.

Tn the backward formulation model we nad to be explicit on
what happened to the final stock, in the forward formulation we
have to fix the initial stock at some value. For simplicity

assume the initial stock is zero. .

New let us define the quantity g (i) to be the minimum cost
of meeting demand in perieds 1,2,...r given that the stock level

at the end of period r is i. Then arguing in a similar manner to

DPL5
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the béckward formulation we get

(1.6) g (i) = etd + 4;)

(1.7) EL(L) = min{c{xr) + gr_lti s = xr)I
+ sa xr E 3 - = .
where X, in 1.7 panges over
max (0,1 + ::!r-H} <x,gi+d,
Starting with g, as defined in(Q.6)we use (1.7) iteratively

to calculate g_ and we can thus calculate an optimum for any

value of the final stock.
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Dynamic Programming: replacement of a machine

A company uses a machine to manufacture a single product over the next N
periods. The demand in period n is known to be d,, and the maximum amount
of stock that can be held at one time is H. The cost of producing an amount
x depends on the current age of the machine. It costs ¢(x,t) to produce an
amount z using a machine of age t. A machine of age 7' has to be scrapped.
Assume that we start in period 0 with a new machine. A new machine costs A
to buy. Here is how we formulate the problem: Let f, (¢, k) denote the minimum
cost of meeting demand in periods n,n + 1,..., N if we start period n with a
machine of age ¢ and h units in stock. Then

nggrg@wrdn{c(:r, t)+ for1(t+ 1,2 +h—d,)} Keep old machine
fault,h) = min g T2 .
ogngEIE}wdn{A +c(x,0) + for1(l,z+h —d,)} Replace machine
@>d,—h

The above recurrence is computed for n = NN —1,...,1,t=0,1,..., 7 -1

and h =0,1,...,H. If t =T then we let

)

fn(Tu h) =A+ fn(ovh)'
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Minimal triangulation of a convex polygon

Let P be a convex polgon with vertices X1, Xo, ..., X,. We want to triangulate
it in such a way as to minimise the sum of the lengths of the chords used.

X, X3

X, X3

Xy

Xs

X5

Xs

Let mj;, be the length of the minimum length triangulation of the polygon
defined by Xk, Xk+1, ce 7X[,Xk. Then

mi = min {mi; +mj; + X — X1+ X - X} 1)

where | X}, — X| is the length of the edge X, X, etc.
Here mj, = 0if I = k 4+ 1 and we use the recurrence (1) to compute what we
want i.e. mj .



Probabilistic shortest path

Now consider the mountain range problem where at passi € P.,0 <r < N (P,
denotes the set of passes in range r) you have to choose a decision d € D; , and
then you have probability pq(r,i,j,t),j € Pry1,t > o of arriving at pass j with
the journey taking time t. The first problem is to minimise the expected time
to reach the final destination F'. So if f,.(i) denotes the minimum expected time
to reach F' from i € P,, we have

fr(z): min Z pd(r7i7j7t)(t+fr+l(j))

deD;
i,r >0
JEP 41

To guarantee that we reach F' we should put Py41 = {F'}.

We can also consider the alternative problem. We can ignore costs and try to
maximise the probability that we arrive at F' within time 7. Then if g,.(i,t),i €
P,,0 <t <T denotes the maximum probability of reaching F' by time T,

gr(ist) = max ¢ > pa(rinJ, T)gr41 (ot +7)
B )

As a boundary condition we have

1 t<T

F.t) =
gn+1(F 1) {O t>T



Dynamic Programming: probabilistic production problem

A company needs to meet demand for its single product over the next N periods.
The cost of producing an amount = is ¢(z) in any period. The demand is a
random variable and let us assume that

Pr(dn = d) = Pn,d d>0.

The company can store up to amount H at any time. The company will try to
meet the demand, but if it is too large then there is a penalty cost of 7 for any
demand left unsatisfied. The company wishes to minimises the expected cost of
production. Assume first that the company has to make its period n production
decision before it knows d,,. Let f,(h) denote the minimum expected cost of
production in periods n,n+1,..., N if we start period n with h units in stock.
Then, if &7 = max{0, £},

fu(h) = Imrl;%l{c(.%')—l—z Pr.a( froe1(min{(z+h—d)", H})+m max{0,d—(h+x)}).}.
= d>0

As an alternative criterion, suppose one has to minimise expected cost subject
to having at least a 90% chance of meeting demand in every period. Then we
let f,,(h) be the minimum cost of operating under these criteria for a given n
and h.

fa(h) = min{c(z) + Y ppalforr(min{(z +h = d)*, HY) + 7(d = (b +2))*)}

c2ah d>0

where oy = ming : Y0 o0 Prnd < -1

If the company can make its period n production decision after it knows d,, then
we have
fa(h) = pna min_{c(@)+ fari(h+z—d)}.
w>(d—h)"
x<H+d—h



A problem with an infinite time horizon

A system can be in one of a set V' of possible states. For each v € V one can
choose any w € V and move to w at a cost of ¢(v,w). The system is to run
forever and it is requiredto minimise the discounted cost of running the system,
assuming that the discount factor is . A policy is a function 7 : V' — V. So if
|V| = n then there are n™ distinct policies to choose from.

Example

2 1 3
Costs | 4 3 2 a=1/2.
1 3 2
Let 7 be a policy and let y, be the discounted cost of this policy, starting at
v € V. Then

yo = c(v,m(w)) + Yrr)y  vEV. (1)
Example Let (1) = 7(2) = 7(3) = 1. Then

1
Y1 = 2+§y1

1
Yo = 4+§y1

1
ys = 1+§y1-

So
y1 =4, y2 =6, y3 = 3.

Problem: Find the policy 7* which minimises ¥, simultaneously for all v € V.

Theorem 1 Optimality Criterion

*

7 is optimal iff its values y); satisfy
Yy = mir‘}{c(v, w) + ayy,} Yv e V. (2)
we
Proof Suppose that (2) does not hold for some .

Yu > cu, Mu)) + ayxw) uwelU
Yp = meie{c(v,w) + ayy } ugU

Define 7 by 7(u) = A(u) for u € U and 7(v) = w(v) for v ¢ U. Then for u € U,

Yu > C(uu )‘(U’)) + AYX(u)
gu = C(’U,, A(u)) + ag}\(u)
So if &, =y, — Yy for v € V then

Eu > O‘ffr(u) u e U. (3)



Also, for v ¢ U

Yo = C(U, W(U)) + AYr(v)
g'U = C(U, W(U)) + agﬂ(v)
and so
g'u = O‘ffr(v) v ¢ U. (4)

It follows from (3), (4) that

& > atfﬁt(v) Yo ¢ Ut >1
& > Oftgﬁ-t(u) VueUt>1

Letting t — oo we see that
& >0Vvand & >0VueU.

Thus 7 is strictly better than II i.e. if (2) does not hald, then we can improve
the current policy.
Conversely, if (2) holds and 7 is any other policy and 7, = g, — y; then

y’u = C(U7 ﬁ'(’U)) + a?gﬁ'(v)
Yo < (v, 7(v)) + oy,

and so
T = Qlagy) = o = &'pey  fort >1

which implies that n, > 0 for v € V.
Policy Improvement Algorithm

1. Choose arbitrary initial policy 7.
2. Compute y as in (1).
3. If (2) holds — current 7 is optimal, stop.
4. 1If (2) doesn’t hold then
5. compute A by
Ya(v) = Ming {c(v,w) + ayw}.
6. T A
7. goto 2.

In our example with 7= = (1,1,1). First compute A = (1,3,1). Re-compute

y=(33,13,2). Now A = i.c. (1) holds and we are done.



Let us introduce some probability: Suppose now that for each i € V' there is a
set X; of possible decisions. Suppose that if the system is in state ¢ and decision
r € X; is taken then

e The expected cost of the immediate step is ¢(z, 7).
e The next state is j with probability P(x,%, j)

A policy 7 specifies a decision 7 (i) € X; for each i € V.

First let us evaluate this policy.

Let y; denote the expected discounted cost of pursuing policy 7 indefinitely,
starting from i € V.. Then

Yi = c(ﬂ—(i)v Z) +a Z P(ﬂ—(z)v ivj)yj

JEV
or .
y=cr+aPyory=(I—aP;) e, = Z(aPF)tcw
t=0

where Py (i,7) = P(m(i),4,7) and ¢ (i) = e(m(i), 7).
So policy 7 can be evaluated.

Theorem 2 Optimality criterion:

c(m(i),i) +a > P(r(i);i,j)y; = min | c(z,i) +a > P(x,i, §)y; (5)
JEV ¢ jeV

7 is optimal iff (5) holds.

Proof Suppose first that (5) does not hold. Define a new policy & by

c(m(i),1) + o Z P(7(4),i,7)y; = min { c(x,) + « Z P(x,1,7)y;

reX;

jev eV
We have
yi > c(®(i),i) +a Y P(r(i),i,§)y; (6)
jev
9 = co(7(i),i) + Z P(7(i),4,5)9;
jev
and so

(I —aP:)(y—9) =0

and then since (I — aP;)~! has only non-negative entries:

(I —aP;) '(I—aP:)(y—9)>0ory—4>0



But § # y since there is strict inequality in (6) for at least one ¢ and 7 is strictly
better than .
Conversely, if (5) holds and 7 is any other policy, we get that

yi < c(#(i),i)+a Y P(#3),i,5)y
gi = (&), i) +a ) P(F(i)d, )9

and so
(I —aP:)(y—9) <0

and then since (I — aP;)~! has only non-negative entries:

(I—aP;) Y(I—aP:)(y—9) <0ory—3<0



A taxi driver’s territory comprises 3 towns A,B,C. If he is in town A he has 3
altrenatives:

1. He can cruise in the hope of picking up a passenger by being hailed.
2. He can drive to the nearest cab stand and wait in line.
3. He can pull over and wait for a radio call.

In town C he has the same 3 alternatives, but in town B he only has alternatives
1 and 2.

The transition probabilities and the rewards for being in the various states and
making the various transitions are as follows:

A:
b5 .25 .25 10 4 8
P=] .0625 .75 1875 | R= 8 2 4
25 125 625 4 6 4
B:
) 0 .5 14 0 18
P= .0625 .875 .0625 } f= [ 8 16 8 }
C:
.25 .25 .5 10 2 8
P= .125 75 125 R = 6 4 2
75 .0625 1875 4 0 8

He wishes to find the policy which maximises his long run average gain per
period.



Traveling SalesPerson via Dynamic programming:
We are given a matrix of costs ¢(4,5),1 < 4,7 < n. The problem is to find a
permutation 7 of [n] = {1,2,...,n} that minimises

TSP(r) = ¢1 p1y + c(m(1), 7*(1)) + - + ¢(x")(1), 1).

This represents the total cost of a “tour through [n] in the order 1, 7(1), 72(1), ..., 7"(1), 1.
There are (n — 1)! distinct tours (each tour, as a set of directed edges of K,

arises from n distinct permutations.)

With DP we can solve the problem in O(n?2") time. For 1 € S C [n] and z € S,

let f(x,S) denote the minimum cost of a path that begins at 1, ends at « and

visits each vertex in S exactly once. Then, f(z,5) =0 for S = {1} and

f(x,S) =min{f(z,5\ {z}) + c(z,z) : 2 € S\ {x}}.

There are (7~1) choices for [S| = k and given S there are k — 1 choices for x
and then k — 2 choices for y. So, to compute f(z,[n]) for all 1 # x € [n] takes
time

ké(k-l)(k-Q)(Zj) zé(k—l)(k—m(Z:D -

n

(n—1)(n-2)Y <Z B g) = (n—1)(n — 2)2"3.

k=3

To finish we compute min{ f(z, [n]) + ¢(z,1) :  # 1).



