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Abstract. LetΦ be a uniformly distributed randomk-SAT formula withn variables andm clauses. We
present a polynomial time algorithm that finds a satisfying assignment ofΦ with high probability for
constraint densitiesm/n < (1− εk)2k ln(k)/k, whereεk → 0. Previously no efficient algorithm was
known to find satisfying assignments with a non-vanishing probability beyondm/n = 1.817 · 2k/k
[Frieze and Suen, J. of Algorithms 1996].

1 Introduction

1.1 Solving randomk-SAT

Thek-SAT problem is well known to be NP-hard fork ≥ 3. This indicates that no algorithm can solve
all possible inputs efficiently. Therefore, there has been a significant amount of research onheuristicsfor
k-SAT, i.e., algorithms that solve “most” inputs efficiently(where the meaning of “most” varies). While
some heuristics fork-SAT are very sophisticated, virtually all of them are basedon (at least) one of the
following basic paradigms.

Pure literal rule. If a variablex occurs only positively (resp. negatively) in the formula, set it to true (resp.
false). Simplify the formula by substituting the newly assigned value forx and repeat.

Unit clause propagation. If there is a clause that contains only a single literal (“unit clause”), then set the
underlying variable so as to satisfy this clause. Then simplify the formula and repeat.

Walksat. Initially pick a random assignment. Then repeat the following. While there is an unsatisfied
clause, pick one at random, pick a variable occurring in the chosen clause randomly, and flip its value.

Backtracking. Assign a variablex, simplify the formula, and recurse. If the recursion fails to find a satis-
fying assignment, assignx the opposite value and recurse.

Heuristics based on these paradigms can be surprisingly successful on certain types of inputs (e.g.,
[10, 16]). However, it remains remarkably simple to generate formulas that seem to elude all known algo-
rithms/heuristics. Indeed, the simplest conceivable typeof randominstance does the trick: letΦ denote a
k-SAT formula over the variable setV = {x1, . . . , xn} that is obtained by choosingm clauses uniformly
at random and independently from the set of all(2n)k possible clauses. Then for a large regime of con-
straint densitiesm/n satisfying assignments are known to exist due to non-constructive arguments, but no
algorithm is known to find one in sub-exponential time with a non-vanishing probability.

To be precise, keepingk fixed and lettingm = ⌈rn⌉ for a fixedr > 0, we say thatΦ has some property
with high probability(“w.h.p.”) if the probability that the property holds tendsto one asn → ∞. Via the
(non-algorithmic) second moment method and the sharp threshold theorem [3, 4, 14] it can be shown that
Φ has a satisfying assignment w.h.p. ifm/n < (1 − εk)2

k ln 2. Hereεk is independent ofn but tends to0
for largek. On the other hand, a first moment argument shows that no satisfying assignment exists w.h.p.
if m/n > 2k ln 2. In summary, the threshold forΦ being satisfiable is asymptotically2k ln 2.

Yet for densitiesm/n beyonde · 2k/k no algorithm has been known to find a satisfying assignment in
polynomial time with a probability that remains bounded away from 0 for largen – neither on the basis of
a rigorous analysis, nor on the basis of experimental or other evidence. In fact, many algorithms, including
Pure Literal, Unit Clause, and DPLL are known to either fail or exhibit an exponential running time beyond
c ·2k/k for certain constantsc < e. There is experimental evidence that the same is true of Walksat. Indeed,
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devising an algorithm to solve random formulas with a non-vanishing probability for densitiesm/n up to
2kω(k)/k for any (howsoever slowly growing)ω(k) → ∞ has been a prominent open problem [3, 4, 8,
22], which the following theorem resolves.

Theorem 1. There exist a sequenceεk → 0 and a polynomial time algorithmFix such thatFix applied
to a random formulaΦ withm/n ≤ (1 − εk)2

k ln(k)/k outputs a satisfying assignment w.h.p.

Fix is a combinatorial, local-search type algorithm. It can be implemented to run in timeO((n+m)3/2).
The recent paper [2] provides evidence that beyond densitym/n = 2k ln(k)/k the problem of finding

a satisfying assignment becomes conceptually significantly more difficult (to say the least). To explain this,
we need to discuss a concept that originates in statistical physics.

1.2 A digression: replica symmetry breaking

For the last decade randomk-SAT has been studied by statistical physicists using sophisticated, insightful,
but mathematically highly non-rigorous techniques from the theory of spin glasses. Their results suggest
that below the threshold density2k ln 2 for the existence of satisfying assignments various other phase
transitions take place that affect the performance of algorithms.

To us the most important one is thedynamic replica symmetry breaking(dRSB) transition. LetS(Φ) ⊂
{0, 1}V be the set of all satisfying assignments of the random formula Φ. We turnS(Φ) into a graph by
consideringσ, τ ∈ S(Φ) adjacent if their Hamming distance equals one. Very roughlyspeaking, according
to the dRSB hypothesis there is a densityrRSB such that form/n < rRSB the correlations that shape the
setS(Φ) are purely local, whereas for densitiesm/n > rRSB long range correlations occur. Furthermore,
rRSB ∼ 2k ln(k)/k ask gets large.

Confirming and elaborating on this hypothesis, we recently established a good part of the dRSB phe-
nomenon rigorously [2]. In particular, we proved that thereis a sequenceεk → 0 such that form/n > (1+
εk)2

k ln(k)/k the values that the solutionsσ ∈ S(Φ) assign to the variables are mutually heavily correlated
in the following sense. Let us call a variablex frozenin a satisfying assignmentσ if any satisfying assign-
mentτ such thatσ(x) 6= τ(x) is at Hamming distanceΩ(n) from σ. Then form/n > (1 + εk)2

k ln(k)/k
in all but ao(1)-fraction of all solutionsσ ∈ S(Φ) all but anεk-fraction of the variables are frozen w.h.p.,
whereεk → 0.

This suggests that on random formulas with densitym/n > (1+εk)2
k ln(k)/k local search algorithms

are unlikely to succeed. For think of thefactor graph, whose vertices are the variables and the clauses, and
where a variable is adjacent to all clauses in which it occurs. Then a local search algorithm assigns a value
to a variablex on the basis of the values of the variables that have distanceO(1) from x in the factor
graph. But in the random formulaΦ with m/n > (1 + εk)2

k ln(k)/k assigning one variablex is likely
to impose constraints on the values that can be assigned to variables at distanceΩ(lnn) from x. A local
search algorithm is unable to catch these constraints. Unfortunately, virtually all knownk-SAT algorithms
are local.

The above discussion applies to “large” values ofk (say,k ≥ 10). In fact, non-rigorous arguments as
well as experimental evidence [5] suggest that the picture is quite different and rather more complicated for
“small” k (say,k = 3). In this case the various phenomena that occur at (or very near) the point2k ln(k)/k
for k ≥ 10 appear to happen at vastly different points in the satisfiable regime. To keep matters as simple
as possible we focus on “large”k in this paper. In particular, no attempt has been made to derive explicit
bounds on the numbersεk in Theorem 1 for “small”k (however, the analysis showsεk = O(ln ln k/ lnk)).
Indeed,Fix is designed so as to allow for as easy an analysis as possible for generalk rather than to excel
for smallk. Nevertheless, it would be interesting to see how the ideas behindFix can be used to obtain an
improved algorithm for smallk as well.1

In summary, the dRSB picture leads to the question whetherFixmarks the end of the algorithmic road
for randomk-SAT, up to the precise value ofεk?

1 It is worth mentioning that a naive implementation ofFix succeeded on most (pseudo-)random sample instances
with n = 30, 000 andm/n = 0.6 · 2k ln(k)/k for 3 ≤ k ≤ 12. The constant increased to0.65 for k = 17 (with
n = 1, 000). At this pointFix outperformed the algorithm SCB from Frieze and Suen [15].
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1.3 Related work

Quite a few papers deal with efficient algorithms for randomk-SAT, contributing either rigorous results,
non-rigorous evidence based on physics arguments, or experimental evidence. Table 1 summarizes the part
of this work that is most relevant to us. The best rigorous result (prior to this work) is due to Frieze and
Suen [15]. They proved that “SCB” succeeds for densitiesηk2

k/k, whereηk increases to1.817 ask → ∞.
SCB can be considered a (restricted) DPLL-algorithm. It combines the shortest clause rule, which is a
generalization of Unit Clause, with (very limited) backtracking. Conversely, there is a constantc > 0 such
that DPLL-type algorithms exhibit an exponential running time w.h.p. for densities beyondc · 2k/k for
largek [1].

Algorithm Densitym/n < · · · Success probabilityRef., year
Pure Literal o(1) ask → ∞ w.h.p. [19], 2006

Walksat, rigorous 1

6
· 2k/k2 w.h.p. [9], 2009

Walksat, non-rigorous 2k/k w.h.p. [23], 2003

Unit Clause 1

2

“

k−1

k−2

”k−2

· 2
k

k
Ω(1) [7], 1990

Shortest Clause 1

8

“

k−1

k−3

”k−3
k−1

k−2
· 2

k

k
w.h.p. [8], 1992

SC+backtracking ∼ 1.817 · 2
k

k
w.h.p. [15], 1996

BP+decimation e · 2k/k w.h.p. [22], 2007
(non-rigorous)

Table 1.Algorithms for randomk-SAT

The term “success probability” refers to the probability with which the algorithm finds a satisfying
assignment of a random formula. For all algorithms except Unit Clause this is1 − o(1) asn → ∞. For
Unit Clause it converges to a number strictly between0 and1.

Montanari, Ricci-Tersenghi, and Semerjian [22] provide evidence that Belief Propagation guided deci-
mation may succeed up to densitye ·2k/k w.h.p. This algorithm is based on a very different paradigm than
the others mentioned in Table 1. The basic idea is to run a message passing algorithm (“Belief Propaga-
tion”) to compute for each variable the marginal probability that this variable takes the value true/false in
a uniformly random satisfying assignment. Then, the decimation step selects a variable randomly, assigns
it the value true/false with the corresponding marginal probability, and simplifies the formula. Ideally, re-
peating this procedure will yield a satisfying assignment,provided that Belief Propagation keeps yielding
the correct marginals. Proving (or disproving) this remains a major open problem.

Survey Propagation is a modification of Belief Propagation that aims to approximate the marginal
probabilities induced by a particular non-uniform probability distribution on the set of certain generalized
assignments [6, 21]. It can be combined with a decimation procedure as well to obtain a heuristic forfinding
a satisfying assignment. However, there is no evidence thatSurvey Propagation guided decimation finds
satisfying assignments beyonde · 2k/k for generalk w.h.p.

In summary, various algorithms are known/appear to succeedwith either high or a non-vanishing prob-
ability for densitiesc · 2k/k, where the constantc depends on the particulars of the algorithm. But there
has been no prior evidence (either rigorous results, non-rigorous arguments, or experiments) that some
algorithm succeeds for densitiesm/n = 2kω(k)/k with ω(k) → ∞.

The discussion so far concerns the case of generalk. In addition, a large number of papers deal with
the casek = 3. Flaxman [13] provides a survey. Currently the best rigorously analyzed algorithm for
random 3-SAT is known to succeed up tom/n = 3.52 [17, 20]. This is also the best known lower bound
on the 3-SAT threshold. The best current upper bound is4.506 [11], and non-rigorous arguments suggest
the threshold to be≈ 4.267 [6]. As mentioned in Section 1.2, there is non-rigorous evidence that the
structure of the set of all satisfying assignment evolves differently in random 3-SAT than in randomk-SAT
for “large” k. This may be why experiments suggest that Survey Propagation guided decimation for 3-SAT
succeeds for densitiesm/n up to4.2, i.e., close to the conjectured 3-SAT threshold [6].
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1.4 Techniques and outline

Remember thefactor graphrepresentation of a formulaΦ: the vertices are the variables and the clauses,
and each clause is adjacent to all the variables that appear in it. In terms of the factor graph it is easy to
point out the key difference betweenFix and, say, Unit Clause.

The execution of Unit Clause can be described as follows. Initially all variables are unassigned. In
each step the algorithm checks for aunit clauseC, i.e., a clauseC that has precisely one unassigned
variablex left while the previously assigned variables do not alreadysatisfyC. If there is a unit clauseC,
the algorithm assignsx so as to satisfy it. If not, the algorithm just assigns a random value to a random
unassigned variable.

C

x

C

x

D

y

Fig. 1. depth one vs. depth three

In terms of the factor graph, every step of Unit Clause merelyinspects thefirst neighborhoodof each
clauseC to decide whetherC is a unit clause. Clauses or variables that have distance twoor more have no
immediate impact (cf. Figure 1). Thus, one could call Unit Clause a “depth one” algorithm. In this sense
most other rigorously analyzed algorithms (e.g., ShortestClause, Walksat) are depth one as well.

Fix is depth three. Initially it sets all variables to true. To obtain a satisfying assignment, in the first
phase the algorithm passes over all initially unsatisfied (i.e., all-negative) clauses. For each such clauseC,
Fix inspects all variablesx in that clause, all clausesD that these variables occur in, and all variablesy
that occur in those (cf. Figure 1). Based on this information, the algorithm selects a variablex fromC that
gets set to false so as to satisfyC. More precisely,Fix aims to choosex so that setting it to false does
not generate any new unsatisfied clauses. The second and the third phase may reassign (very few) variables
once more. We will describe the algorithm precisely in Section 3.

In summary, the main reason whyFix outperforms Unit Clause etc. is that it bases its decisions on the
third neighborhoods in the factor graph, rather than just the first. This entails that the analysis ofFix is
significantly more involved than that of, say, Unit Clause. The analysis is based on a blend of probabilistic
methods (e.g., martingales) and combinatorial arguments.We can employ themethod of deferred decisions
to a certain extent: in the analysis we “pretend” that the algorithm exposes the literals of the random input
formula only when it becomes strictly necessary, so that theunexposed ones remain “random”. However,
the picture is not as clean as in the analysis of, say, Unit Clause. In particular, analyzingFix via the
method of differential equations seems prohibitive, at least for general clause lengthsk. Section 3 contains
an outline of the analysis, the details of which are carried out in Section 4–6. Before we come to this, we
summarize a few preliminaries in Section 2.

Finally, one might ask whether an even stronger algorithm can be obtained by increasing the depth to
some numberd > 3. But in the light of the dRSB picture this seems unlikely, at least for generalk.

2 Preliminaries and notation

In this section we introduce some notation and present a few basic facts. Although most of them (or closely
related ones) are well known, we present some of the proofs for the sake of completeness.



5

2.1 Balls and bins

Consider a balls and bins experiment whereµ distinguishable balls are thrown independently and uniformly
at random inton bins. Thus, the probability of each distribution of balls into bins equalsn−µ.

Lemma 2. LetZ(µ, n) be the number of empty bins. Letλ = n exp(−µ/n). ThenP [Z(µ, n) ≤ λ/2] ≤
O(

√
µ) · exp(−λ/8) asn→ ∞.

The proof is based on the followingChernoff boundon the tails of a binomially distributed random variable
X with meanλ (see [18, pages 26–28]): for anyt > 0

P(X ≥ λ+ t) ≤ exp

(

− t2

2(λ+ t/3)

)

and P(X ≤ λ− t) ≤ exp

(

− t2

2λ

)

. (1)

Proof of Lemma 2.LetXi be the number of balls in bini. In addition, let(Yi)1≤i≤n be a family of mutually
independent Poisson variables with meanµ/n, and letY =

∑n
i=1 Yi. ThenY has a Poisson distribution

with meanµ. Therefore, Stirling’s formula showsP [Y = µ] = Θ(µ−1/2). Furthermore, theconditional
joint distribution ofY1, . . . , Yn given thatY = µ coincides with the joint distribution ofX1, . . . , Xn (see,
e.g., [12, Section 2.6]). As a consequence,

P [Z(µ, n) ≤ λ/2] = P [|{i ∈ [n] : Yi = 0}| < λ/2|Y = µ]

≤ P [|{i ∈ [n] : Yi = 0}| < λ/2]

P [Y = µ]
= O(

√
µ) · P [|{i ∈ [n] : Yi = 0}| < λ/2] . (2)

Finally, sinceY1, . . . , Yn are mutually independent andP [Yi = 0] = λ/n for all 1 ≤ i ≤ n, the number of
indicesi ∈ [n] such thatYi = 0 is binomially distributed with meanλ. Thus, the assertion follows from (2)
and the Chernoff bound (1). ⊓⊔

2.2 Randomk-SAT formulas

Throughout the paper we letV = Vn = {x1, . . . , xn} be a set of propositional variables. IfZ ⊂ V , then
Z̄ = {x̄ : x ∈ Z} contains the corresponding set of negative literals. Moreover, if l is a literal, then|l|
signifies the underlying propositional variable. Ifµ is an integer, let[µ] = {1, 2, . . . , µ}.

We letΩk(n,m) be the set of allk-SAT formulas with variables fromV = {x1, . . . , xn} that contain
preciselym clauses. More precisely, we consider each formula an ordered m-tuple of clauses and each
clause an orderedk-tuples of literals, allowing both literals to occur repeatedly in one clause and clauses to
occur repeatedly in the formula. Thus,|Ωk(n,m)| = (2n)km. LetΣk(n,m) be the power set ofΩk(n,m),
and letP = Pk(n,m) be the uniform probability measure.

Throughout the paper we denote a uniformly random element ofΩk(n,m) by Φ. In addition, we use
Φ to denote specific (i.e., non-random) elements ofΩk(n,m). If Φ ∈ Ωk(n,m), thenΦi denotes theith
clause ofΦ, andΦij denotes thejth literal ofΦi.

Lemma 3. For anyδ > 0 and anyk ≥ 3 there isn0 > 0 such that for alln > n0 the following is true.
Suppose thatm ≥ δn and thatXi : Ωk(n,m) → {0, 1} is a random variable for eachi ∈ [m]. Let
µ =

⌈

ln2 n
⌉

. For a setM ⊂ [m] let EM signify the event thatXi = 1 for all i ∈ M. If there is a number
λ ≥ δ such that for anyM ⊂ [m] of sizeµ we have

P [EM] ≤ λµ, then P

[

m
∑

i=1

Xi ≥ (1 + δ)λm

]

< n−10.

Proof. Let X be the number of setsM ⊂ [m] of sizeµ such thatXi = 1 for all i ∈ M. Then

E [X ] =
∑

M⊂[m]:|M|=µ
P [∀i ∈ M : Xi = 1] ≤

(

m

µ

)

λµ.
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If
∑m

i=1Xi ≥ L = ⌈(1 + δ)λm⌉, thenX ≥
(

L
µ

)

. Consequently, by Markov’s inequality

P

[

m
∑

i=1

Xi ≥ L

]

≤ P

[

X ≥
(

L

µ

)]

≤ E [X ]
(

L
µ

) ≤
(

m
µ

)

λµ
(

L
µ

) ≤
(

λm

L− µ

)µ

≤
(

λm

(1 + δ)λm− µ

)µ

.

Sinceλm ≥ δ2n we see that(1 + δ)λm − µ ≥ (1 + δ/2)λm for sufficiently largen. Hence, for large
enoughn we haveP [

∑m
i=1Xi ≥ L] ≤ (1 + δ/2)−µ < n−10, as desired. ⊓⊔

Although we allow variables to appear repeatedly in the sameclause, the following lemma shows that
this occurs very rarely w.h.p.

Lemma 4. Suppose thatm = O(n). Then w.h.p. there are at mostlnn indicesi ∈ [m] such that one of
the following is true.

1. There are1 ≤ j1 < j2 ≤ k such that|Φij1 | = |Φij2 |.
2. There isi′ 6= i and indicesj1 6= j2, j′1 6= j′2 such that|Φij1 | = |Φi′j′

1
| and|Φij2 | = |Φi′j′

2
|.

Furthermore, w.h.p. no variable occurs in more thanln2 n clauses.

Proof. LetX be the number of such indicesi for which 1. holds. For eachi ∈ [m] and any pair1 ≤ j1 <
j2 ≤ k the probability that|Φij1 | = |Φij2 | is 1/n, because each of the two variables is chosen uniformly at
random. Hence, by the union bound for anyi the probability that there arej1 < j2 such that|Φij1 | = |Φij2 |
is at most

(

k
2

)

/n. Consequently,E [X ] ≤ m
(

k
2

)

/n = O(1) asn → ∞, and thusX ≤ 1
2 lnn w.h.p. by

Markov’s inequality.
Let Y be the number ofi ∈ [m] for which 2. is true. For any giveni, i′, j1, j′1, j2, j

′
2 the probability

that |Φij1 | = |Φi′j′
1
| and|Φij2 | = |Φi′j′

2
| is 1/n2. Furthermore, there arem2 ways to choosei, i′ and then

(k(k− 1))2 ways to choosej1, j′1, j2, j
′
2. Hence,E [Y ] ≤ m2k4n−2 = O(1) asn→ ∞. Thus,Y ≤ 1

2 lnn
w.h.p. by Markov’s inequality.

Finally, for any variablex the number of indicesi ∈ [m] such thatx occurs inΦi has a binomial
distributionBin(m, 1− (1− 1/n)k). Since the meanm · (1− (1− 1/n)k) isO(1), the Chernoff bound (1)
implies that the probability thatx occurs in more thanln2 n clauses iso(1/n). Hence, by the union bound
there is no variable with this property w.h.p. ⊓⊔

Recall that afiltration is a sequence(Ft)0≤t≤τ of σ-algebrasFt ⊂ Σk(n,m) such thatFt ⊂ Ft+1

for all 0 ≤ t < τ . For a random variableX : Ωk(n,m) → R we let E [X |Ft] denote theconditional
expectation. Thus,E [X |Ft] : Ωk(n,m) → R is a Ft-measurable random variable such that for any
A ∈ Ft we have

∑

Φ∈A
E [X |Ft] (Φ) =

∑

Φ∈A
X(Φ).

Also remember thatP [·|Ft] assigns a probability measureP [·|Ft] (Φ) to anyΦ ∈ Ωk(n,m), namely

P [·|Ft] (Φ) : A ∈ Σk(n,m) 7→ E [1A|Ft] (Φ),

where1A(ϕ) = 1 if ϕ ∈ A and1A(ϕ) = 0 otherwise.

Lemma 5. Let (Ft)0≤t≤τ be a filtration and let(Xt)1≤t≤τ be a sequence of non-negative random vari-
ables such that eachXt isFt-measurable. Assume that there are numbersξt ≥ 0 such thatE [Xt|Ft−1] ≤
ξt for all 1 ≤ t ≤ τ . ThenE[

∏

1≤t≤τ Xt|F0] ≤
∏

1≤t≤τ ξt.

Proof. For1 ≤ s ≤ τ we letYs =
∏s
t=1Xt. Let s > 1. SinceYs−1 isFs−1-measurable, we obtain

E [Ys|F0] = E [Ys−1Xs|F0] = E [E [Ys−1Xs|Fs−1] |F0] = E [Ys−1E [Xs|Fs−1] |F0] ≤ ξsE [Ys−1|F0] ,

whence the assertion follows by induction. ⊓⊔

We also need the following tail bound (“Azuma-Hoeffding”, e.g. [18, p. 37]).
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Lemma 6. Let (Mt)0≤t≤τ be a martingale with respect to a filtration(Ft)0≤t≤τ such thatM0 = 0.
Suppose that there exist numbersct such that|Mt −Mt−1| ≤ ct for all 1 ≤ t ≤ τ . Then for anyλ > 0 we
haveP [|Mτ | > λ] ≤ exp

[

−λ2/(2
∑τ
t=1 c

2
t )
]

.

Finally, we need the following bound on the number of clausesthat have “few” positive literals in total
but contain at least one variable (either positively or negatively) from a “small” set.

Lemma 7. Suppose thatk ≥ 3 andm/n ≤ 2kk−1 ln k. Let1 ≤ l ≤
√
k and setδ = 0.01 · k−4l. For a set

Z ⊂ V letXZ be the number of indicesi ∈ [m] such thatΦi is a clause with preciselyl positive literals
that contains a variable fromZ. Thenmax {XZ : |Z| ≤ δn} ≤

√
δn w.h.p.

Proof. Let µ = ⌈
√
δn⌉. We use a first moment argument. Clearly we just need to consider setsZ of size

⌊δn⌋. Thus, there are at most
(

n
δn

)

ways to chooseZ. OnceZ is fixed, there are at most
(

m
µ

)

ways to choose
a setI ⊂ [m] of sizeµ. For eachi ∈ I the probability thatΦi contains a variable fromZ and has precisely
l positive literals is at most21−kk

(

k
l

)

δ. Hence, by the union bound

P [max {XZ : |Z| ≤ δn} ≥ µ] ≤
(

n

δn

)(

m

µ

)[

21−kk

(

k

l

)

δ

]µ

≤
( e

δ

)δn
(

2ekm
(

k
l

)

δ

2kµ

)µ

≤
( e

δ

)δn
(

2e ln(k)
(

k
l

)

δn

µ

)µ

[asm ≤ 2kk−1 ln k]

≤
( e

δ

)δn (

4e ln(k) · kl ·
√
δ
)µ

[becauseµ = ⌈
√
δn⌉]

≤
( e

δ

)δn

δ
√
δn/8 [usingδ = 0.01 · k−4l]

= exp

[

n
√
δ

(√
δ(1 − ln δ) +

1

8
ln δ

)]

.

The last expression iso(1), because
√
δ(1 − ln δ) + 1

8 ln δ is negative asδ < 0.01. ⊓⊔

3 The algorithm Fix

In this section we present the algorithmFix. To establish Theorem 1 we will prove the following: for any
0 < ε < 0.1 there isk0 = k0(ε) > 10 such that for allk ≥ k0 the algorithmFix outputs a satisfying
assignment w.h.p. when applied toΦ with m = ⌊n · (1 − ε)2kk−1 ln k⌋. Thus, we assume thatk exceeds
some large enough numberk0 depending onε only. In addition, we assume throughout thatn > n0 for
some large enoughn0 = n0(ε, k). We set

ω = (1 − ε) ln k andk1 = ⌈k/2⌉.
Let Φ ∈ Ωk(n,m) be ak-SAT instance. When applied toΦ the algorithm basically tries to “fix” the

all-true assignment by setting “a few” variablesZ ⊂ V to false so as to satisfy all clauses. Obviously, the
setZ will have to contain one variable from each clause consisting of negative literals only. The key issue
is to pick “the right” variables. To this end, the algorithm goes over the all-negative clauses in the natural
order. If the present all-negative clauseΦi does not contain a variable fromZ yet,Fix (tries to) identify a
“safe” variable inΦi, which it then adds toZ. Here “safe” means that setting the variable to false does not
create new unsatisfied clauses. More precisely, we say that aclauseΦi is Z-uniqueif Φi contains exactly
one positive literal fromV \Z and no literal fromZ̄. Moreover,x ∈ V \Z isZ-unsafeif it occurs positively
in aZ-unique clause, andZ-safeif this is not the case. Then in order to fix an all-negative clauseΦi we
preferZ-safe variables.

To implement this idea,Fix proceeds in three phases. Phase 1 performs the operation described in the
previous paragraph: try to identify aZ-safe variable in each all-negative clause. Of course, it may happen
that an all-negative clause does not contain aZ-safe variable. In this caseFix just picks the variable
in positionk1. Consequently, the assignment constructed in the first phase may not satisfyall clauses.
However, we will prove that the number of unsatisfied clausesis very small, and the purpose of Phases 2
and 3 is to deal with them. Before we come to this, let us describe Phase 1 precisely.
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Algorithm 8. Fix(Φ)
Input: A k-SAT formulaΦ. Output:Either a satisfying assignment or “fail”.

1a. Let Z = ∅.
1b. For i = 1, . . . , m do
1c. If Φi is all-negative and contains no variable from Z

1d. If there is 1 ≤ j < k1 such that |Φij | is Z-safe, then pick the least such j and add |Φij | to Z.
1e. Otherwise add |Φi k1

| to Z.

The following proposition, which we will prove in Section 4,summarizes the analysis of Phase 1. LetσZ
be the assignment that sets all variables inV \ Z to true and all variables inZ to false.

Proposition 9. At the end of the first phase ofFix(Φ) the following statements are true w.h.p.

1. We have|Z| ≤ 4nk−1 lnω.
2. At most(1 + ε/3)ωn clauses areZ-unique.
3. At mostexp(−kε/8)n clauses are unsatisfied underσZ .

Sincek ≥ k0(ε) is “large”, we should think ofexp(−kε/8) as tiny. In particular,exp(−kε/8) ≪ ω/k. As
the probability that a random clause is all-negative is2−k, under the all-true assignment(1+o(1))2−km ∼
ωn/k clauses are unsatisfied w.h.p. Hence, the outcomeσZ of Phase 1 is already a lot better than the all-true
assignment w.h.p.

Step 1d only considers indices1 ≤ j ≤ k1. This is just for technical reasons, namely to maintain a
certain degree of stochastic independence to facilitate (the analysis of) Phase 2.

Phase 2 deals with the clauses that are unsatisfied underσZ . The general plan is similar to Phase 1: we
(try to) identify a setZ ′ of “safe” variables that can be used to satisfy theσZ -unsatisfied clauses without
“endangering” further clauses. More precisely, we say thata clauseΦi is (Z,Z ′)-endangeredif there is
no 1 ≤ j ≤ k such that the literalΦij is true underσZ and |Φij | ∈ V \ Z ′. Roughly speaking,Φi is
(Z,Z ′)-endangered if it relies on one of the variables inZ ′ to be satisfied. CallΦi (Z,Z ′)-secureif it is
not (Z,Z ′)-endangered. Phase 2 will construct a setZ ′ such that for all1 ≤ i ≤ m one of the following is
true:

– Φi is (Z,Z ′)-secure.
– There are at least three indices1 ≤ j ≤ k such that|Φij | ∈ Z ′.

To achieve this, we say that a variablex is (Z,Z ′)-unsafeif x ∈ Z∪Z ′ or there are indices(i, l) ∈ [m]×[k]
such that the following two conditions hold:

a. For allj 6= l we haveΦij ∈ Z ∪ Z ′ ∪ V \ Z.
b. Φil = x.

(In words,x occurs positively inΦi, and all other literals ofΦi are either positive but inZ ∪Z ′ or negative
but not inZ.) Otherwise we callx (Z,Z ′)-safe. In the course of the process,Fix greedily tries to add as
few (Z,Z ′)-unsafe variables toZ ′ as possible.

2a. Let Q consist of all i ∈ [m] such that Φi is unsatisfied under σZ . Let Z′ = ∅.
2b. While Q 6= ∅

2c. Let i = min Q.
2d. If there are indices k1 < j1 < j2 < j3 ≤ k − 5 such that |Φijl

| is (Z, Z′)-safe for l = 1, 2, 3,
pick the lexicographically first such sequence j1, j2, j3 and add |Φij1 |, |Φij2 |, |Φij3 | to Z′.

2e. else
let k − 5 < j1 < j2 < j3 ≤ k be the lexicographically first sequence such that |Φijl

| 6∈ Z′

and add |Φijl
| to Z′ (l = 1, 2, 3).

2f. Let Q be the set of all (Z, Z′)-endangered clauses that contain less than 3 variables from Z′.

Note that the While-loop gets executed at mostn/3 times, becauseZ ′ gains three new elements in each
iteration. Actually we prove in Section 5 below that the finalsetZ ′ is fairly small w.h.p.

Proposition 10. The setZ ′ obtained in Phase 2 ofFix(Φ) has size|Z ′| ≤ nk−12 w.h.p.
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After completing Phase 2,Fix is going to set the variables inV \(Z∪Z ′) to true and the variables inZ\
Z ′ to false. This will satisfy all(Z,Z ′)-secure clauses. In order to satisfy the(Z,Z ′)-endangered clauses as
well,Fix needs to set the variables inZ ′ appropriately. To this end, we set up a bipartite graphG(Φ,Z, Z ′)
whose vertex set consists of the(Z,Z ′)-endangered clauses and the setZ ′. Each(Z,Z ′)-endangered clause
is adjacent to the variables fromZ ′ that occur in it. If there is a matchingM in G(Φ,Z, Z ′) that covers all
(Z,Z ′)-endangered clauses, we construct an assignmentσZ,Z′,M as follows: for each variablex ∈ V let

σZ,Z′,M (x) =







false ifx ∈ Z \ Z ′

false if{Φi, x} ∈M for some1 ≤ i ≤ m andx occurs negatively inΦi,
true otherwise.

To be precise, Phase 3 proceeds as follows.

3. If G(Φ, Z, Z′) has a matching that covers all (Z, Z′)-endangered clauses, then compute an (arbitrary)
such matching M and output σZ,Z′,M . If not, output “fail”.

The (bipartite) matching computation can be performed inO((n + m)3/2) time via the Hopcroft-Karp
algorithm. In Section 6 we will show that the matching existsw.h.p.

Proposition 11. W.h.p.G(Φ, Z, Z ′) has a matching that covers all(Z,Z ′)-endangered clauses.

Proof of Theorem 1.Fix is clearly a deterministic polynomial time algorithm. It remains to show that
Fix(Φ) outputs a satisfying assignment w.h.p. By Proposition 11 Phase 3 will find a matchingM that
covers all(Z,Z ′)-endangered clauses w.h.p., and thus the output will be the assignmentσ = σZ,Z′,M

w.h.p. Assume that this is the case. Thenσ sets all variables inZ\Z ′ to false and all variables inV \(Z∪Z ′)
to true, thereby satisfying all(Z,Z ′)-secure clauses. Furthermore, for each(Z,Z ′)-endangered clauseΦi

there is an edge{Φi, |Φij |} in M . If Φij is negative, thenσ(|Φij |) = false, and if ifΦij is positive, then
σ(Φij) = true. In either caseσ satisfiesΦi. ⊓⊔

4 Proof of Proposition 9

Throughout this section we let0 < ε < 0.1 and assume thatk ≥ k0 for a sufficiently largek0 = k0(ε)
depending onε only. Moreover, we assume thatm = ⌊n · (1 − ε)2kk−1 ln k⌋ and thatn > n0 for some
large enoughn0 = n0(ε, k). Letω = (1 − ε) ln k andk1 = ⌈k/2⌉.

4.1 Outline

Before we proceed to the analysis, it is worthwhile giving a brief intuitive explanation as to why Phase 1
“works”. Namely, let us just consider thefirst all-negative clauseΦi of the random input formula. With-
out loss of generality we may assume thati = 1. Given thatΦ1 is all-negative, thek-tuple of variables
(|Φ1j |)1≤j≤k ∈ V k is uniformly distributed. Furthermore, at this pointZ = ∅. Hence, a variablex is
Z-unsafe iff it occurs as the unique positive literal in some clause. The expected number of clauses with
exactly one positive literal isk2−km ∼ ωn asn → ∞. Thus, for each variablex the expected number of
clauses in whichx is the only positive literal isk2−km/n ∼ ω. In fact, for each variable the number of such
clauses is asymptotically Poisson. Consequently, the probability thatx is Z-safe is(1 + o(1)) exp(−ω).
Returning to the clauseΦ1, we conclude that theexpectednumber of indices1 ≤ j ≤ k1 such that|Φ1j | is
Z-safe is(1 + o(1))k1 exp(−ω). Sinceω = (1 − ε) ln k andk1 ≥ k

2 , we have (for large enoughn)

(1 + o(1))k1 exp(−ω) ≥ kε/3.

Indeed, the number of indices1 ≤ j ≤ k1 so that|Φ1j | is Z-safe is binomially distributed, and hence the
probability that there is noZ-safe|Φ1j | is at mostexp(−kε/3). Since we are assuming thatk ≥ k0(ε)
for some large enoughk0(ε), we should think ofkε as “large”. Thus,exp(−kε/3) is tiny and hence it is
“quite likely” that Φ1 can be satisfied by setting some variable to false without creating any new unsatisfied
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clauses. Of course, this argument only applies to the first all-negative clause (i.e.,Z = ∅), and the challenge
lies in dealing with the stochastic dependencies that arise.

To this end, we need to investigate how the setZ computed in Steps 1a–1e evolves over time. Thus, we
will analyze the execution of Phase 1 as a stochastic process, in which the setZ corresponds to a sequence
(Zt)t≥0 of sets. The time parametert is the number of all-negative clauses for which either Step 1d or 1e
has been executed. We will represent the execution of Phase 1on inputΦ by a sequence of (random) maps

πt : [m] × [k] → {−1, 1} ∪ V ∪ V̄ = {±1, x1, x̄1, . . . , xn, x̄n}.

The maps(πs)0≤s≤t capture the information that has determined the firstt steps of the process. Ifπt(i, j) =
1 (resp.πt(i, j) = −1), thenFix has only taken into account thatΦij is a positive (negative) literal, but
not what the underlying variable is. Ifπt(i, j) ∈ V ∪ V̄ , Fix has revealed the actual literalΦij .

Let us define the sequenceπt(i, j) precisely. LetZ0 = ∅. Moreover, letU0 be the set of alli such that
there is exactly onej such thatΦij is positive. Further, defineπ0(i, j) for (i, j) ∈ [m] × [k] as follows. If
i ∈ U0 andΦij is positive, then letπ0(i, j) = Φij . Otherwise, letπ0(i, j) be1 if Φij is a positive literal
and−1 if Φij is a negative literal. In addition, forx ∈ V let

U0(x) = |{i ∈ U0 : ∃j ∈ [k] : π0(i, j) = x}|

be the number of clauses in whichx is the unique positive literal. Fort ≥ 1 we defineπt as follows.

PI1 If there is no indexi ∈ [m] such thatΦi is all-negative but contains no variable fromZt−1, the
process stops. Otherwise letφt be the smallest such index.

PI2 If there is1 ≤ j < k1 such thatUt−1(|Φφtj |) = 0, then choose the smallest such indexj; otherwise
let j = k1. Let zt = Φφtj andZt = Zt−1 ∪ {zt}.

PI3 Let Ut be the set of alli ∈ [m] such thatΦi is Zt-unique. Forx ∈ V let Ut(x) be the number of
indicesi ∈ Ut such thatx occurs positively inΦi.

PI4 For any(i, l) ∈ [m] × [k] let

πt(i, l) =

{

Φil if (i = φt ∧ l ≤ k1) ∨ |Φil| = zt ∨ (i ∈ Ut ∧ π0(i, l) = 1),
πt−1(i, l) otherwise.

Let T be the total number of iterations of this process before it stops and defineπt = πT , Zt = ZT ,
Ut = UT , Ut(x) = UT (x), φt = zt = 0 for all t > T .

Let us discuss briefly how the above process mirrors Phase 1 ofFix. StepPI1 selects the least indexφt
such that clauseΦφt

is all-negative but contains no variable from the setZt−1 of variables that have been
selected to be set to false so far. In terms of the descriptionof Fix, this corresponds to jumping forward to
the next execution of Steps 1d–e. SinceUt−1(x) is the number ofZt−1-unique clauses in which variablex
occurs positively, StepPI2 applies the same rule as 1d–e ofFix to select the new elementzt to be included
in the setZt. StepPI3 then “updates” the numbersUt(x). Finally, stepPI4 sets up the mapπt to represent
the information that has guided the process so far: we revealthe firstk1 literals of the current clauseΦφt

,
all occurrences of the variablezt, and all positive literals ofZt-unique clauses.

Example 12.To illustrate the processPI1–PI4 we run it on a5-CNFΦ with n = 10 variables andm = 9
clauses. Thus,k1 = 3. We are going to illustrate the information that the processreveals step by step.
Instead of using+1 and−1 to indicate positive/negative literals, we just use+ and− to improve readability.
Moreover, to economize space we let thecolumnscorrespond to the clauses. SinceΦ is random each literal
Φij is positive/negative with probability12 independently. Suppose the sign patter of the formula ofΦ is

π0 =

− − − + + + + + +
− − − − − − + − +
− − − − − − − − +
− − − − − − − + −
− − − − − − − − −
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Thus, the first three clausesΦ1,Φ2,Φ3 are all-negative, the next three clausesΦ4,Φ5,Φ6 have exactly
one positive literal, etc. In order to obtainπ0, we need to reveal the variables underlying the unique posi-
tive literals ofΦ4,Φ5,Φ6. Since we have only conditioned on the signs, the positive literals occurring in
Φ4,Φ5,Φ6 are still uniformly distributed overV . Suppose revealing them yields

π0 =

− − − x5 x2 x3 + + +
− − − − − − + − +
− − − − − − − − +
− − − − − − − + −
− − − − − − − − −

Thus, we haveU0 = {4, 5, 6},U0(x2) = U0(x3) = U0(x5) = 1, andU0(x) = 0 for all other variablesx.
At time t = 1 PI1 looks out for the first all-negative clause, which happens tobeΦ1. Henceφ1 = 1. To
implementPI2, we need to reveal the firstk1 = 3 literals ofΦ1. The underlying variables are unaffected
by the conditioning so far, i.e., they are independently uniformly distributed overV . Suppose we get

π0 =

x̄2 − − x5 x2 x3 + + +
x̄3 − − − − − + − +
x̄1 − − − − − − − +
− − − − − − − + −
− − − − − − − − −

The variablesx2, x3 underlying the first two literals ofΦ1 are inU0. This means that setting them to
false would produce new violated clauses. Therefore,PI2 setsj = k1 = 3, z1 = x1, andZ1 = {x1}.
Now, PI3 checks out what clauses areZ1-unique. To this end we need to reveal the occurrences ofz1 =
x1 all over the formula. At this point each±-sign still represents a literal whose underlying variableis
uniformly distributed overV . Therefore, for each±-entry(i, j) we have|Φij | = x1 with probability1/n
independently. Assume that the occurrences ofx1 are as follows:

π0 =

x̄2 − x̄1 x5 x2 x3 + + +
x̄3 − − − − − + − +
x̄1 − − − − − − − x1

− − − − − − − x1 −
− − − x̄1 − − − − −

As x1 ∈ Z1, we considerx1 assigned false. Sincex1 occurs positively in the second last clauseΦ8, this
clause has only one “supporting” literal left. As we have revealed all occurrences ofx1 already, the variable
underlying this literal is uniformly distributed overV \ {x1}. Suppose it isx4. As x4 is needed to satisfy
Φ8, we “protected” it by settingU1(x4) = 1. Furthermore,Φ4 featuresx1 negatively. Hence, this clause
is now satisfied byx1, and thereforex5 could safely be set to false. Thus,U1(x5) = 0. Further, we keep
U1(x2) = U2(x3) = 1 and letU1 = {5, 6, 8}. Summarizing the information revealed at timet = 1, we get

π1 =

x̄2 − x̄1 x5 x2 x3 + x4 +
x̄3 − − − − − + − +
x̄1 − − − − − − − x1

− − − − − − − x1 −
− − − x̄1 − − − − −

At time t = 2 we deal with the second clauseΦ2 whose column is still all-minus. Henceφ2 = 2. Since we
have revealed all occurrences ofx1 already, the firstk1 = 3 literals ofΦ2 are uniformly distributed over
V \ Z1 = {x2, . . . , x10}. Suppose revealing them gives

π0 =

x̄2 x̄5 x̄1 x5 x2 x3 + x4 +
x̄3 x̄2 − − − − + − +
x̄1 x̄3 − − − − − − x1

− − − − − − − x1 −
− − − x̄1 − − − − −

The first variable ofΦ2 is x5 andU1(x5) = 0. Thus,PI2 will selectz2 = x5 and letZ2 = {x1, x5}. To
determineU2, PI3 needs to reveal all occurrences ofx5. At this time each±-sign stands for a literal whose
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variable is uniformly distributed overV \ Z1. Therefore, for each±-sign the underlying variable is equal
to x5 with probability1/(n− 1) = 1/9. Assume that the occurrences ofx5 are

π0 =

x̄2 x̄5 x̄1 x5 x2 x3 + x4 +
x̄3 x̄2 − − − − + − x5

x̄1 x̄3 − − − − − − x1

− − − − − − − x1 −
x̄5 − − x̄1 − − − − −

Sincex5 occurs positively in the last clauseΦ9, it only has one plus left. Thus, this clause isZ2-unique and
we have to reveal the variable underlying the last plus sign.As we have revealed the occurrences ofx1 and
x5 already, this variable is uniformly distributed overV \{x1, x5}. Suppose it isx4. ThenU2 = {5, 6, 8, 9},
U2(x2) = U2(x3) = 1, U2(x4) = 2, andπ2 reads

π2 =

x̄2 x̄5 x̄1 x5 x2 x3 + x4 x4

x̄3 x̄2 − − − − + − x5

x̄1 x̄3 − − − − − − x1

− − − − − − − x1 −
x̄5 − − x̄1 − − − − −

At this point there are no all-minus columns left, and therefore the process stops withT = 2. In the
course of the process we have revealed all occurrences of variables inZ2 = {x1, x5}. Thus, the variables
underlying the remaining±-sign are independently uniformly distributed overV \ Z2. ⊓⊔

Observe that at each timet ≤ T the processPI1–PI4 adds precisely one variablezt to Zt. Thus,
|Zt| = t for all t ≤ T . Furthermore, for1 ≤ t ≤ T the mapπt is obtained fromπt−1 by replacing some
±1s by literals, but no changes of the opposite type are made.

Of course, the processPI1–PI4 can be applied to any concretek-SAT formulaΦ (rather than the random
Φ). It then yields a sequenceπt [Φ] of maps, variableszt [Φ], setsUt [Φ], Zt [Φ], and numbersUt(x) [Φ].
For each integert ≥ 0 we define an equivalence relation≡t on the setΩk(n,m) of k-SAT formulas by
lettingΦ ≡t Ψ iff πs [Φ] = πs [Ψ ] for all 0 ≤ s ≤ t. LetFt be theσ-algebra generated by the equivalence
classes of≡t. The family(Ft)t≥0 is a filtration. Intuitively, a random variableX is Ft-measurable iff its
value is determined by timet. Thus, the following is immediate from the construction.

Fact 13. For anyt ≥ 0 the random mapπt, the random variablesφt+1 andzt, the random setsUt andZt,
and the random variablesUt(x) for x ∈ V areFt-measurable.

If πt(i, j) = ±1, then up to timet the processPI1–PI4 has only taken the sign of the literalΦij

into account, but has been oblivious to the underlying variable. The only conditioning is that|Φij | 6∈ Zt
(because otherwisePI4 would have replaced the±1 by the actual literal). Since the input formulaΦ
is random, this implies that|Φij | is uniformly distributed overV \ Zt. In fact, for all (i, j) such that
πt(i, j) = ±1 the underlying variables are independently uniformly distributed overV \Zt. Arguments of
this type are sometimes referred to as the “method of deferred decisions”.

Fact 14. LetEt be the set of all pairs(i, j) such thatπt(i, j) ∈ {−1, 1}. The conditional joint distribution
of the variables(|Φij |)(i,j)∈Et

givenFt is uniform over(V \ Zt)Et . In symbols, for any formulaΦ and for
any mapf : Et [Φ] → V \ Zt [Φ] we have

P [∀(i, j) ∈ Et [Φ] : |Φij | = f(i, j)|Ft] (Φ) = |V \ Zt [Φ] |−|Et[Φ]|.

In each stept ≤ T of the processPI1–PI4 one variablezt is added toZt. There is a chance that this
variable occurs in several all-negative clauses, and therefore the stopping timeT should be smaller than
the total number of all-negative clauses. To prove this, we need the following lemma. Observe that byPI4
clauseΦi is all-negative and contains no variable fromZt iff πt(i, j) = −1 for all j ∈ [k].

Lemma 15. W.h.p. the following is true for all1 ≤ t ≤ min{T, n}: the number of indicesi ∈ [m] such
thatπt(i, j) = −1 for all j ∈ [k] is at most2nω exp(−kt/n)/k.
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Proof. The proof is based on Lemma 3 and Fact 14. Similar proofs will occur repeatedly. We carry this one
out at leisure. For1 ≤ t ≤ n andi ∈ [m] we define a random variable

Xti =

{

1 if t ≤ T andπt(i, j) = −1 for all j ∈ [k],
0 otherwise.

The goal is to show that w.h.p.

∀1 ≤ t ≤ n :

m
∑

i=1

Xti ≤ 2nω exp(−kt/n)/k. (3)

To this end, we are going to prove that

P

[

m
∑

i=1

Xti > 2nω exp(−kt/n)/k

]

= o(1/n) for any1 ≤ t ≤ n. (4)

Then the union bound entails that (3) holds w.h.p. Thus, we are left to prove (4).
To this end we fix1 ≤ t ≤ n. Consideringt fixed, we may drop it as a subscript and writeXi = Xti

for i ∈ [m]. Letµ = ⌈ln2 n⌉. For a setM ⊂ [m] we letEM denote the event thatXi = 1 for all i ∈ M.
In order to apply Lemma 3 we need to bound the probability of the eventEM for anyM ⊂ [m] of sizeµ.
To this end, we consider the random variables

Nsij =

{

1 if πs(i, j) = −1 ands ≤ T ,
0 otherwise

(i ∈ [m] , j ∈ [k] , 0 ≤ s ≤ n).

ThenXi = 1 iff Nsij = 1 for all 0 ≤ s ≤ t and allj ∈ [k]. Hence, lettingNs =
∏

(i,j)∈M×[k] Nsij , we
have

P [EM] = E

[

∏

i∈M
Xi

]

= E

[

t
∏

s=0

Ns

]

. (5)

The expectation ofN0 can be computed easily: for anyi ∈ M we have
∏k
j=1 N0ij = 1 iff clauseΦi is all-

negative. Since the clauses ofΦ are chosen uniformly,Φi is all-negative with probability2−k. Furthermore,
these events are mutually independent for alli ∈ M. Therefore,

E [N0] = E





∏

i∈M

k
∏

j=1

N0ij



 = 2−k|M| = 2−kµ. (6)

In addition, we claim that

E [Ns|Fs−1] ≤ (1 − 1/n)kµ for any1 ≤ s ≤ n. (7)

To see this, fix any1 ≤ s ≤ n. We consider four cases.

Case 1:T < s. ThenNs = 0 by the definition of the variablesNsij .
Case 2:πs−1(i, j) 6= −1 for some(i, j) ∈ M× [k]. Thenπs(i, j) = πs−1(i, j) 6= −1 by PI4, and thus

Ns = Nsij = 0.
Case 3:φs ∈ M. If the indexφs chosen byPI1 at times lies inM, thenPI4 ensures that for allj ≤ k1

we haveπs(φs, j) 6= ±1. Therefore,Ns = Nsφsj = 0.
Case 4: none of the above occurs.Asπs−1(i, j) = −1 for all (i, j) ∈ M× [k], givenFs−1 the variables

(|Φij |)(i,j)∈M×[k] are mutually independent and uniformly distributed overV \ Zs−1 by Fact 14.
They are also independent of the choice ofzs, becauseφs 6∈ M. Furthermore, byPI4 we haveNsij =
1 only if |Φij | 6= zs. This event occurs for all(i, j) ∈ M × [k] independently with probability
1 − |V \ Zs−1|−1 ≤ 1 − 1/n. Consequently,E [Ns|Fs−1] ≤ (1 − 1/n)kµ, whence (7) follows.
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For any0 ≤ s ≤ t the random variableNs is Fs-measurable, becauseπs is (by Fact 13). Therefore,
Lemma 5 implies in combination with (7) that

E

[

t
∏

s=1

Ns|F0

]

≤ (1 − 1/n)ktµ ≤ exp(−ktµ/n). (8)

Combing (5) with (6) and (8), we obtain

P [EM] = E

[

t
∏

s=0

Ns

]

= E

[

N0 · E
[

t
∏

s=1

Ns|F0

]]

≤ E [N0] · exp(−ktµ/n) = λµ, whereλ = 2−k exp(−kt/n).

Since this bound holds for anyM ⊂ [m] of sizeµ, Lemma 3 implies thatP [
∑m

i=1Xi > 2λm] = o(1/n).
As 2λm ≤ 2nω exp(−kt/n)/k, this yields (4) and thus the assertion. ⊓⊔

Corollary 16. W.h.p. we haveT < 4nk−1 lnω.

Proof. Let t0 = ⌊2nk−1 lnω⌋ and letIt be the number of indicesi such thatπt(i, j) = −1 for all 1 ≤ j ≤
k. ThenPI2 ensures thatIt ≤ It−1 − 1 for all t ≤ T . Consequently, ifT ≥ 2t0, then0 ≤ IT ≤ It0 − t0,
and thusIt0 ≥ t0. Since⌊2nk−1 lnω⌋ > 3nω exp(−kt0/n)/k for sufficiently largek, Lemma 15 entails

P [T ≥ 2t0] ≤ P [It0 ≥ t0] = P
[

It0 ≥ ⌊2nk−1 lnω⌋
]

≤ P [It0 > 3nω exp(−kt0/n)/k] = o(1).

Hence,T < 2t0 w.h.p. ⊓⊔

For the rest of this section we let
θ = ⌊4nk−1 lnω⌋.

The next goal is to estimate the number ofZt-unique clauses, i.e., the size of the setUt. For technical
reasons we will consider a slightly bigger set: letUt be the set of alli ∈ [m] such that there is an indexj
such thatπ0(i, j) 6= −1 but there exists noj such thatπt(i, j) ∈ {1} ∪ Z̄t. That is, clauseΦi contains a
positive literal, but by timet there isat mostone positive literalΦij 6∈ Zt left, and there in noj such that
Φij ∈ Z̄t. This ensures thatUt ⊂ Ut. For i ∈ Ut iff there isexactly onej such thatΦij is positive but not
in Zt and there in noj such thatΦij ∈ Z̄t. In Section 4.2 we will establish the following bound.

Lemma 17. W.h.p. we havemax0≤t≤T |Ut| ≤ max0≤t≤T |Ut| ≤ (1 + ε/3)ωn.

Additionally, we need to bound the number ofZt-unsafe variables, i.e., variablesx ∈ V \ Zt such that
Ut(x) > 0. This is related to an occupancy problem. Let us think of the variablesx ∈ V \Zt as “bins” and
of the clausesΦi with i ∈ Ut as “balls”. If we place each balli into the (unique) binx such thatx occurs
positively inΦi, then by Lemma 17 the average number of balls/bin is

|Ut|
|V \ Zt|

≤ (1 + ε/3)ω

1 − t/n
w.h.p.

Recall thatω = (1 − ε) ln k. Corollary 16 yieldsT ≤ 4nk−1 lnω w.h.p. Consequently, fort ≤ T we have
(1 + ε/3)(1 − t/n)−1ω ≤ (1 − 0.6ε) lnk w.h.p., provided thatk is large enough. Hence, if the “balls”
were uniformly distributed over the “bins”, we would expect

|V \ Zt| exp(−|Ut|/|V \ Zt|) ≥ (n− t)k0.6ε−1 ≥ nkε/2−1

“bins” to be empty. The next corollary shows that this is accurate. We defer the proof to Section 4.3.

Corollary 18. LetQt = |{x ∈ V \ Zt : Ut(x) = 0}|. Thenmint≤T Qt ≥ nkε/2−1 w.h.p.

Now that we know that for allt ≤ T there are “a lot” of variablesx ∈ V \ Zt−1 such thatUt(x) = 0
w.h.p., we can prove that it is quite likely that the clauseΦφt

selected at timet contains one. More precisely,
we have the following.
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Corollary 19. Let

Bt =

{

1 if min1≤j<k1 Ut−1(|Φφtj |) > 0, Qt−1 ≥ nkε/2−1, |Ut−1| ≤ (1 + ε/3)ωn, andT ≥ t,
0 otherwise.

ThenBt isFt-measurable andE [Bt|Ft−1] ≤ exp(−kε/6) for all 1 ≤ t ≤ θ.

In words,Bt = 1 indicates that the clauseΦφt
processed at timet does not contain aZt−1-safe variable

(“min1≤j<k1 Ut−1(|Φφtj |) > 0”), although there are plenty such variables (“Qt−1 ≥ nkε/2−1”), and
although the number ofZt−1-unique clauses is small (“|Ut−1| ≤ (1 + ε/3)ωn”).

Proof of Corollary 19.Since the eventT < t and the random variableQt−1 areFt−1-measurable and as
Ut−1(|Φφtj |) isFt-measurable for anyj < k1 by Fact 13,Bt isFt-measurable. LetΦ be such thatT [Φ] ≥
t, Qt−1 [Φ] ≥ nkα−1, and|Ut−1 [Φ] | ≤ (1+ε/3)ωn. We condition on the eventΦ ≡t−1 Φ. Then at timet
the processPI1–PI4 selectsφt such thatπt−1(φt, j) = −1 for all j ∈ [k]. Hence, by Fact 14 the variables
|Φφtj | are uniformly distributed and mutually independent elements ofV \ Zt−1. Consequently, for each
j < k1 the eventUt−1(|Φφtj |) = 0 occurs with probability|Qt−1|/|V \ Zt−1| ≥ kε/2−1 independently.
Thus, the probability thatUt−1(|Φφtj |) > 0 for all j < k1 is at most(1 − kε/2−1)k1−1. Finally, provided
thatk ≥ k0(ε) is sufficiently large, we have(1 − kε/2−1)k1−1 ≤ exp(−kε/6). ⊓⊔
Proof of Proposition 9.The definition of the processPI1–PI4 mirrors the execution of the algorithm, i.e.,
the setZ obtained after Steps 1a–1d ofFix equals the setZT . Therefore, the first item of Proposition 9 is
an immediate consequence of Corollary 16 and the fact that|Zt| = t for all t ≤ T . Furthermore, the second
assertion follows directly from Lemma 17 and the fact that|Ut| ≤ |Ut| equals the number ofZt-unique
clauses.

To prove the third claim, we need to bound the number of clauses that are unsatisfied under the assign-
mentσZT

that sets all variables inV \ ZT to true and all variables inZT to false. By construction any
all-negative clause contains a variable fromZT and is thus satisfied underσZT

(cf. PI1). We claim that for
anyi ∈ [m] such thatΦi is unsatisfied underσZT

one of the following is true.

a. There is1 ≤ t ≤ T such thati ∈ Ut−1 andzt occurs positively inΦi.
b. There are1 ≤ j1 < j2 ≤ k such thatΦij1 = Φij2 .

To see this, assume thatΦi is unsatisfied underσZY
and b. does not occur. Let us assume without loss

of generality thatΦi1, . . . ,Φil are positive andΦil+1, . . . ,Φik are negative for somel ≥ 1. SinceΦi is
unsatisfied underσZT

, we haveΦi1, . . . ,Φil ∈ ZT andΦil+1, . . . ,Φik 6∈ Z̄T . Hence, for each1 ≤ j ≤ l
there istj ≤ T such thatΦij = ztj . As Φi1, . . . ,Φik are distinct, the indicest1, . . . , tl are mutually
distinct, too. Assume thatt1 < · · · < tl, and lett0 = 0. ThenΦi contains precisely one positive literal
fromV \Ztl−1

. Hence,i ∈ Utl−1
. SinceΦi is unsatisfied underσZT

no variable fromZT occurs negatively
in Φi and thusi ∈ Us for all tl−1 ≤ s < tl. Therefore,i ∈ Utl−1 andztl = Φil, i.e., a. occurs.

LetX be the number of indicesi ∈ [m] for which a. occurs. We claim that

X ≤ n exp(−kε/7) w.h.p. (9)

Since the number ofi ∈ [m] for which b. occurs isO(lnn) w.h.p. by Lemma 4, (9) implies the third
assertion in Proposition 9. Thus, the remaining task is to prove (9).

To establish (9), letBt be as in Corollary 19 and set

Dt =

{

Ut−1(zt) if Bt = 1 andUt−1(zt) ≤ ln2 n,
0 otherwise.

Then by the definition of the random variablesBt,Dt eitherX ≤ ∑

1≤t≤θ Dt or one of the following
events occurs:

i. T > θ.
ii. Qt < nkε/2−1 for some0 ≤ t ≤ T .
iii. |Ut| > (1 + ε/3)ωn for some1 ≤ t ≤ T .
iv. |Ut−1(zt)| > ln2 n for some1 ≤ t ≤ θ.
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The probability of i. iso(1) by Corollary 16. Moreover, ii. does not occur w.h.p. by Corollary 18, and the
probability of iii. is o(1) by Lemma 17. If iv. occurs, then the variablezt occurs in at leastln2 n clauses for
some1 ≤ t ≤ θ, which has probabilityo(1) by Lemma 4. Hence, we have shown that

X ≤
∑

1≤t≤θ
Dt w.h.p. (10)

Thus, we need to bound
∑

1≤t≤θ Dt. By Fact 13 and Corollary 19 the random variableDt is Ft-
measurable. Let̄Dt = E [Dt|Ft−1] andMt =

∑t
s=1 Ds − D̄s. Then(Mt)0≤t≤θ is a martingale with

M0 = 0. As all incrementsDs − D̄s are bounded byln2 n in absolute value by the definition ofDt,
Lemma 6 (Azuma-Hoeffding) entails thatMθ = o(n) w.h.p. Hence, we have

∑

1≤t≤θ
Dt = o(n) +

∑

1≤t≤θ
D̄t w.h.p. (11)

We claim that
D̄t ≤ 2ω exp(−kε/6) for all 1 ≤ t ≤ θ. (12)

For by Corollary 19 we have

E [Bt|Ft−1] ≤ exp(−kε/6) for all 1 ≤ t ≤ θ. (13)

Moreover, ifBt = 1, thenPI2 setszt = |Φφtk1 |. The indexφt is chosen so thatπt−1(φt, j) = −1 for all
j ∈ [k]. Therefore, givenFt−1 the variablezt = Φφtk1 is uniformly distributed overV \ Zt−1 by Fact 14.
Hence,

D̄t ≤ E [Bt|Ft−1] ·
∑

x∈V \Zt−1

Ut−1(x)

|V \ Zt−1|
=

|Ut−1| · E [Bt|Ft−1]

|V \ Zt−1|
.

Furthermore,Bt = 1 implies|Ut−1| ≤ (1 + ε/3)ωn. Consequently, fork ≥ k0(ε) large enough we get

D̄t ≤
(1 + ε

3 )ωn · E [Bt|Ft−1]

n− t
≤ (1 + ε

3 )ωn · E [Bt|Ft−1]

n− θ
≤ 2ωE [Bt|Ft−1] . (14)

Combining (13) and (14), we obtain (12). Further, plugging (12) into (11) and assuming thatk ≥ k0(ε) is
large enough, we get

∑

1≤t≤θ
Dt = 2ω exp(−kε/6)θ + o(n) ≤ 3ω exp(−kε/6)θ ≤ n exp(−kε/7) w.h.p.

Thus, (9) follows from (10). ⊓⊔

4.2 Proof of Lemma 17

For integerst ≥ 1, i ∈ [m], j ∈ [k] let

Htij =

{

1 if πt−1(i, j) = 1 andπt(i, j) = zt
0 otherwise,

Stij =

{

1 if T ≥ t andπt(i, j) ∈ {1,−1}
0 otherwise.

(15)

Thus,Htij = 1 indicates that the variable underlying the positive literal Φij is the variablezt set to false at
time t and thatΦij did not get revealed before. Moreover,Stij = 1 means that the variable underlyingΦij

has not been revealed up to timet. In particular, it does not belong to the setZt of variables set to false.

Lemma 20. For any two setsI,J ⊂ [θ] × [m] × [k] we have

E





∏

(t,i,j)∈I
Htij ·

∏

(t,i,j)∈J
Stij |F0



 ≤ (n− θ)
−|I|

(1 − 1/n)
|J |

.
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Proof. Let 1 ≤ t ≤ θ. LetIt = {(i, j) : (t, i, j) ∈ I}, Jt = {(i, j) : (t, i, j) ∈ J }, and

Xt =
∏

(i,j)∈It

Htij ·
∏

(i,j)∈Jt

Stij .

If Xt = 1, then eitherIt∪Jt = ∅ or t ≤ T ; for if t > T , thenStij = 0 by definition andHtij = 0 because
πt = πt−1. Furthermore,Xt = 1 implies that

πt−1(i, j) = 1 for all (i, j) ∈ It andπt−1(i, j) ∈ {−1, 1} for all (i, j) ∈ Jt. (16)

Thus, letΦ be ak-CNF such thatT [Φ] ≥ t andπt−1 [Φ] satisfies (16). We claim that

E [Xt|Ft−1] (Φ) ≤ (n− θ)−|It|(1 − 1/n)|Jt|. (17)

To show this, we condition on the eventΦ ≡t−1 Φ. Then at timet stepsPI1–PI2 select a variablezt
from the the all-negative clauseΦφt

. As for any(i, j) ∈ It the literalΦij is positive, we haveφt 6= i.
Furthermore, we may assume that if(φt, j) ∈ Jt thenj > k1, because otherwiseπt(i, j) = Φij and hence
Xt = Stφtj = 0 (cf. PI4). Thus, due to (16) and Fact 14 in the conditional distributionP [·|Ft−1] (Φ) the
variables(|Φij |)(i,j)∈It∪Jt

are uniformly distributed overV \Zt−1 and mutually independent. Therefore,
the events|Φij | = zt occur independently with probability1/|V \Zt−1| = 1/(n−t+1) for (i, j) ∈ It∪Jt,
whence

E [Xt|Ft−1] (Φ) ≤ (n− t+ 1)−|It|(1 − 1/(n− t+ 1))|Jt| ≤ (n− θ)−|It|(1 − 1/n)|Jt|.

This shows (17). Finally, combining (17) and Lemma 5, we obtain

E





∏

(t,i,j)∈I
Htij ·

∏

(t,i,j)∈J
Stij |F0



 = E

[

θ
∏

t=1

Xt|F0

]

≤
θ
∏

t=1

(n− θ)−|It|(1 − 1/n)|Jt| = (n− θ)
−|I|

(1 − 1/n)
|J |

,

as desired. ⊓⊔

Armed with Lemma 20, we can now bound the number of indicesi ∈ Ut such thatΦi has “few” positive
literals. Recall thati ∈ Ut iff Φi hasl ≥ 1 positive literals of which (at least)l − 1 lie in Zt while no
variable fromZt occurs negatively inΦi.

Lemma 21. Let1 ≤ l <
√
k and1 ≤ t ≤ θ. Moreover, let

Λl(t) = ω

(

k − 1

l − 1

)(

t

n

)l−1

(1 − t/n)k−l.

With probability1− o(1/n) eitherT < t or there are at most(1 + ε/9)Λl(t)n indicesi ∈ Ut such thatΦi

has preciselyl positive literals.

Proof. Fix 1 ≤ t ≤ θ. Fori ∈ [m] let

Xi =

{

1 if T ≥ t, Φi has exactlyl positive literals, andi ∈ Ut,
0 otherwise.

Our task is to bound
∑

i∈[m]Xi. To do so we are going to apply Lemma 3. Thus, letµ =
⌈

ln2 n
⌉

, let
M ⊂ [m] be a set of sizeµ, and letEM be the event thatXi = 1 for all i ∈ M. Furthermore, letPi ⊂ [k]
be a set of sizel − 1 for eachi ∈ M, and letP = (Pi)i∈M be the family of all setsPi. In addition, let
ti : Pi → [t] for all i ∈ M, and letT = (ti)i∈M comprise all mapsti. LetEM(P , T ) be the event that the
following statements are true:
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a. Φi has exactlyl positive literals for alli ∈ M.
b. Φij = zti(j) for all i ∈ M andj ∈ Pi.
c. T ≥ t and no variable fromZt occurs negatively inΦi.

If the eventEM occurs, then there existP , T such thatEM(P , T ) occurs. Hence, in order to bound the
probability ofEM we will bound the probabilities of the eventsEM(P , T ) and apply the union bound.

To bound the probability ofEM(P , T ), let

I = IM(P , T ) = {(s, i, j) : i ∈ M, j ∈ Pi, s = ti(j)} ,
J = JM(P , T ) = {(s, i, j) : i ∈ M, j ∈ [k] \ Pi}

Let Yi = 1 if clauseΦi has exactlyl positive literals, including thel − 1 literalsΦij for j ∈ Pi (i ∈ M).
ThenP [Yi = 1] = (k − l + 1)2−k for eachi ∈ M. Moreover, the eventsYi = 1 for i ∈ M are mutually
independent andF0-measurable. Therefore, by Lemma 20

P [EM(P , T )] ≤ E

[

∏

i∈M
Yi

]

· E





∏

(t,i,j)∈I
Htij ·

∏

(t,i,j)∈J
Stij |F0





≤
[

k − l + 1

2k
· (n− t)1−l (1 − 1/n)(k−l+1)t

]µ

. (18)

For eachi ∈ M there are
(

k
l−1

)

ways to choose a setPi and thentl−1 ways to choose the mapti.
Therefore, the union bound and (18) yield

P [EM] ≤
∑

P,T
P [EM(P , T )] ≤ λµ where

λ =

(

k

l − 1

)

tl−1 × k − l + 1

2k
· (n− t)

1−l
(1 − 1/n)

(k−l+1)t
.

Hence, by Lemma 3 with probability1 − o(1/n) we have
∑

i∈[m]Xi ≤ (1 + o(1))λm. In other words,
with probability1 − o(1/n) eitherT < t or there are at most(1 + o(1))λm indicesi ∈ [m] such thatΦi

has preciselyl positive literals andi ∈ Ut. Thus, the remaining task is to show that

λm ≤ (1 + ε/10)Λl(t)n. (19)

To show (19), we estimate

λm ≤ m · k2−k ·
(

k − 1

l − 1

)(

t

n− t

)l−1

(1 − 1/n)t(k−1−(l−1))

≤ m · k2−k ·
(

k − 1

l − 1

)(

t

n

)l−1

(1 − t/n)k−1−(l−1)η, whereη =

(

n

n− t

)l−1

·
(

(1 − 1/n)t

1 − t/n

)k−l

≤ n · Λl(t) · η. (20)

We can boundη as follows:

η ≤ (1 + t/(n− t))
l

(

exp(−t/n)

exp(−t/n− (t/n)2)

)k−l
≤ (1 + 2t/n)

l
exp(k(t/n)2)

≤ exp(2lθ/n+ k(θ/n)2) ≤ exp(8lk−1 lnω + 16k−1 ln2 ω).

Sincel ≤
√
k andω ≤ ln k, the last expression is less than1 + ε/10 for sufficiently largek ≥ k0(ε).

Hence,η ≤ 1 + ε/10, and thus (19) follows from (20). ⊓⊔

The following lemma deals withi ∈ Ut such thatΦi contains “a lot” of positive literals.

Lemma 22. W.h.p. the following is true for alll ≥ ln k. There are at mostn exp(−l) indicesi ∈ [m] such
thatΦi has exactlyl positive literals among which at leastl − 1 are inZθ.
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Proof. For anyi ∈ [m] we let

Xi =

{

1 Φi has exactlyl positive literals among whichl − 1 are inZθ.
0 otherwise.

Let M ⊂ [m] be a set of sizeµ =
⌈

ln2 n
⌉

and letEM be a the event thatXi = 1 for all i ∈ M.
Furthermore, letPi ⊂ [k] be a set of sizel − 1 for eachi ∈ M. Let ti : Pi → [θ] for eachi ∈ M, and set
T = (ti)i∈M. Let EM(P , T ) be the event that the following two statements are true for all i ∈ M:

a. Φi has exactlyl positive literals.
b. For allj ∈ Pi we haveΦij = zti(j).

If EM occurs, then there areP , T such thatEM(P , T ) occurs. Hence, we will use the union bound.
Fori ∈ M we letYi = 1 if clauseΦi has exactlyl positive literals, including the literalsΦij for j ∈ Pi.

SetI = {(s, i, j) : i ∈ M, j ∈ Pi, s = ti(j)}. If EM(P , T ) occurs, then
∏

(s,i,j)∈I
Hsij ·

∏

i∈M
Yi = 1.

ThenE
[
∏

i∈M Yi
]

≤ ((k− l+ 1)/2k)µ. Moreover, boundingE
[

∏

(s,i,j)∈I Hsij |F0

]

via Lemma 20 and

taking into account that
∏

i∈M Yi isF0-measurable, we obtain

P [EM(P , T )] ≤ E

[

∏

i∈M
Yi

]

· E





∏

(s,i,j)∈I
Hsij |F0



 ≤
[

k − l + 1

2k
· (n− θ)1−l

]µ

.

Hence, by the union bound

P [EM] ≤ P [∃P , T : EM(P , T ) occurs] ≤
∑

P,T
P [EM(P , T )] ≤ λµ, where

λ =

(

k

l − 1

)

θl−1 × k − l + 1

2k
· (n− θ)1−l. (21)

Lemma 3 implies that
∑

i∈[m]Xi ≤ 2λm w.h.p. That is, w.h.p. there are at most2λm indicesi ∈ [m] such
thatΦi has exactlyl positive literals of whichl − 1 lie in Zθ. Thus, the estimate

2λm ≤ 2k+1ωn

k
×
(

k

l − 1

)

· k − l + 1

2k
·
(

θ

n− θ

)l−1

≤ 2ωn ·
(

ekθ

(l − 1)(n− θ)

)l−1

≤ 2ωn

(

12 lnω

l

)l−1

[asθ = 4nk−1 lnω]

≤ n exp(−l) [becausel ≥ ln k ≥ ω]

completes the proof. ⊓⊔
Proof of Lemma 17.SinceT ≤ θ w.h.p. by Corollary 16, it suffices to show that w.h.p. for all0 ≤ t ≤
min{T, θ} the bound|Ut| ≤ (1 + ε/3)ωn holds. LetUtl be the number of indicesi ∈ Ut such thatΦi

has preciselyl positive literals. Then Lemmas 21 and 22 imply that w.h.p. for all t ≤ min{T, θ} and all
1 ≤ l ≤ k simultaneously

Utl ≤
{

n exp(−l) if l ≥
√
k,

(1 + ε/9)Λl(t) otherwise.

Therefore, assuming thatk ≥ k0(ε) is sufficiently large, we see that w.h.p.

max
0≤t≤min{T,θ}

|Ut| ≤ max
0≤t≤min{T,θ}

k
∑

l=1

Utl ≤ nk exp(−
√
k) + max

0≤t≤min{T,θ}

∑

1≤l≤
√
k

(1 + ε/9)Λl(t)n

≤ n+ (1 + ε/9)ωn · max
0≤t≤min{T,θ}

∑

1≤l≤
√
k

(

k − 1

l − 1

)(

t

n

)l−1

(1 − t/n)(k−1)−(l−1)

≤ (1 + ε/3)ωn,
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as desired. ⊓⊔

4.3 Proof of Corollary 18

Define a mapψt : Ut → V as follows. Fori ∈ Ut let s be the least index suchi ∈ Us; if there isj such that
Φij ∈ V \ Zs, letψt(i) = Φij , and otherwise letψt(i) = zs. The idea is thatψt(i) is the unique positive
literal of Φi that is not assigned false at the times when the clause becameZs-unique. The following
lemma shows that the (random) mapψt is not too far from being “uniformly distributed”.

Lemma 23. Let t ≥ 0, Ût ⊂ [m], andψ̂t : Ût → V . ThenP
[

ψt = ψ̂t|Ut = Ût
]

≤ (n− t)−|Ût|.

The precise proof of Lemma 23 is a little intricate, but the lemma itself is very plausible. If clauseΦi

becomesZs-unique at times, then there is a unique indexj such thatΦij ∈ V \Zs. Moreover,πs−1(i, j) =
1, i.e., the literalΦij has not been “revealed” before times. Therefore, Fact 14 implies thatΦij is uniformly
distributed overV \Zs (givenFs−1). Thus,ψt(i) = Φij attains each of|V \Zs| = n− s ≥ n− t possible
values with equal probability. Hence, we can think ofΦi as a ball that gets tossed into a uniformly random
“bin” ψs(i) at times. But this argument alone does not quite establish Lemma 23, because our “ball” may
disappear from the game at a later times < u ≤ t: if Φil = z̄u for somel ∈ [k], thenΦi is notZu-unique
anymore. However, this event is independent of the binψs(i) that the ball got tossed into, as it only depends
on literalsΦil such thatπu−1(i, l) = −1. Let us now give the detailed proof.

Proof of Lemma 23.SetZ−1 = ∅. Moreover, define random variables

γt(i, j) =

{

πt(i, j) if πt(i, j) ∈ {−1, 1}
0 otherwise

for (i, j) ∈ [m] × [k] .

Thus,γt is obtained by just recordingwhich positionsthe processPI1–PI4 has revealed up to timet,
without taking notice of the actual literalsπt(i, j) ∈ V ∪ V̄ in these positions. We claim that for any
i ∈ [m]

i ∈ Ut ⇔ max
j∈[k]

γ0(i, j) ≥ 0 ∧ (∀j ∈ [k] : γt(i, j) = min{γ0(i, j), 0}) . (22)

ForUt is the set of alli ∈ [m] such thatΦi contains none of the variables inZt negatively and has at most
one positive occurrence of a variable fromV \ Zt. Hence,i ∈ Ut iff

a. for anyj ∈ [k] such thatΦij is negative we haveΦij 6∈ Zt; by PI4 this is the case iffπt(i, j) = −1,
and thenγt(i, j) = −1.

b. for anyj ∈ [k] such thatΦij is positive we haveπt(i, j) = Φij and henceγt(i, j) = 0. For assume
that i ∈ Ut. If Φij ∈ Zt, thenπt(i, j) = Φij by PI4, and henceγt(i, j) = 0. Moreover, ifΦij is the
only positive literal ofΦi that does not belong toZt, theni ∈ Ut and henceπt(i, j) = Φij by PI4.
Thus,γt(i, j) = 0. Conversely, ifγt(i, j) = 0 for all positiveΦij , thenΦi has at most one occurrence
of a positive variable fromV \ Zt.

Thus, we have established (22).
Fix a setÛt ⊂ [m], let Φ be any formula such thatUt [Φ] = Ût, and letγ̂s = γs [Φ] for all s ≤ t.

Moreover, fors ≤ t let Γs be the event thatγu = γ̂u for all u ≤ s. The goal is to prove that

P
[

ψt = ψ̂t|Γt
]

≤ (n− t)−|Ût|. (23)

Let τ : Ût → [0, t] assign to eachi ∈ Ût the leasts such thati ∈ Ûs. Intuitively this is the first times when
Φi became eitherZs-unique or unsatisfied under the assignmentσZs

that sets the variables inZs to false
and all others to true. We claim that

P
[

∀i ∈ Ût : ψt(i) = ψ̂t(i)|Γt
]

≤
∏

i∈Ût

(n− τ(i))−1. (24)



21

Sinceτ(i) ≤ t for all i ∈ Ût, (24) implies (23) and thus the assertion.
Let τs be the event thatψu(i) = ψ̂t(i) for all 0 ≤ u ≤ s and alli ∈ τ−1(u), and letτ−1 = Ωk(n,m)

be the trivial event. In order to prove (24), we will show thatfor all 0 ≤ s ≤ t

P [τs|τs−1 ∩ Γs] ≤ (n− s)−|τ−1(s)| and (25)

P [τs|τs−1 ∩ Γs] = P [τs|τs−1 ∩ Γt] . (26)

Combining (25) and (26) yields

P
[

∀i ∈ Ût : ψt(i) = ψ̂t(i)|Γt
]

= P [τt|Γt] =
∏

0≤s≤t
P [τs|τs−1 ∩ Γt]

=
∏

0≤s≤t
P [τs|τs−1 ∩ Γs] ≤

∏

0≤s≤t
(n− s)−|τ−1(s)|,

which shows (24). Thus, the remaining task is to establish (25) and (26).
To prove (25) it suffices to show that

P [τs ∩ Γs|Fs−1] (ϕ)

P [τs−1 ∩ Γs|Fs−1] (ϕ)
≤ (n− s)−|τ−1(s)| for all ϕ ∈ τs−1 ∩ Γs. (27)

Note that the l.h.s. is just the conditional probability ofτs givenτs−1 ∩ Γs with respect to the probability
measureP [·|Fs−1] (ϕ). Thus, let us condition on the eventΦ ≡s−1 ϕ ∈ τs−1 ∩ Γs. ThenΦ ∈ Γs, and
thereforeγ0 = γ̂0 andγs = γ̂s. Hence, (22) entailsUs [Φ] = Us [ϕ] = Us [Φ] and thusτ−1(s) ⊂ Us [Φ].
Let i ∈ τ−1(s), and letJi be the set of indicesj ∈ [k] such thatγs−1(i, j) = 1. Recall thatψs(i) is
defined as follows: ifΦij = zs for all j ∈ Ji, thenψs(i) = zs; otherwiseψs(i) = Φij for the (unique)
j ∈ Ji such thatΦij 6= zs. By Fact 14 in the measureP [·|Fs−1] (ϕ) the variables(Φij)i∈τ−1(s),j∈Ji

are
independently uniformly distributed overV \ Zs−1 (becauseπs−1(i, j) = γs−1(i, j) = 1). Hence, the
eventsψs(i) = ψ̂t(i) occur independently for alli ∈ τ−1(s). Thus, letting

pi = P
[

ψs(i) = ψ̂t(i) ∧ ∀j ∈ Ji : γs(i, j) = 0|Fs−1

]

(ϕ),

qi = P [∀j ∈ Ji : γs(i, j) = 0|Fs−1] (ϕ)

for i ∈ τ−1(s), we have
P [τs ∩ Γs|Fs−1] (ϕ)

P [τs−1 ∩ Γs|Fs−1] (ϕ)
=

∏

i∈τ−1(s)

pi
qi
. (28)

Observe that the event∀j ∈ Ji : γs(i, j) = 0 occurs iffΦij = zs for at least|Ji| − 1 elementsj ∈ Ji
(cf. PI4). Therefore,

qi = |Ji| · |V \ Zs−1|−(|Ji|−1)(1 − |V \ Zs−1|−1) + |V \ Zs−1|−|Ji|

To boundpi for i ∈ τ−1(s) we consider three cases.

Case 1:ψ̂t(i) ∈ V \ Zs−1. As Φij ∈ V \ Zs−1 for all j ∈ Ji the eventψs(i) = ψ̂t(i) has probability0.
Case 2:ψ̂t(i) = zs. The eventψs(i) = ψ̂t(i) occurs iff Φij = zs for all j ∈ Ji, which happens with

probability|V \ Zs−1|−|Ji| in the measureP [·|Fs−1] (ϕ). Hence,pi = (n− s+ 1)−|Ji|.
Case 3:ψ̂t(i) ∈ V \ Zs. If ψs(i) = ψ̂t(i), then there isj ∈ Ji such thatΦij = ψ̂t(i) andΦij′ = zs for

all j′ ∈ Js \ {j}. Hence,pi = |Ji| · |V \ Zs−1|−|Ji| = |Ji|(n− s+ 1)−|Ji|.

In all three cases we have

qi
pi

≥ |Ji|(n− s+ 1)1−|Ji|(1 − 1/(n− s+ 1))

|Ji|(n− s+ 1)−|Ji| = n− s.

Thus, (27) follows from (28). This completes the proof of (25).
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In order to prove (26) we will show that for any0 ≤ b ≤ c < a

P [Γa|τb ∩ Γc] = P [Γa|Γc] . (29)

This implies (26) as follows:

P [τs|τs−1 ∩ Γt] =
P [τs ∩ Γt]

P [τs−1 ∩ Γt]
=

P [Γt|τs ∩ Γs] P [τs ∩ Γs]
P [Γt|τs−1 ∩ Γs] P [τs−1 ∩ Γs]

(29)
=

P [τs ∩ Γs]
P [τs−1 ∩ Γs]

= P [τs|τs−1 ∩ Γs] .

To show (29) it suffices to consider the casea = c+ 1, because fora > c+ 1 we have

P [Γa|τb ∩ Γc] = P [Γa|τb ∩ Γc+1] P [τb ∩ Γc+1|τb ∩ Γc]
= P [Γa|τb ∩ Γc+1] P [Γc+1|τb ∩ Γc] .

Thus, suppose thata = c + 1. At time a = c + 1 PI1 selects an indexφa ∈ [m]. This is the least index
i such thatγc(i, j) = −1 for all j; thus,φa is determined once we condition onΓc. Then,PI2 selects a
variableza = |Φφaja | with ja ≤ k1. Now,γa is obtained fromγc by setting the entries for some(i, j) such
thatγc(i, j) ∈ {−1, 1} to 0 (cf. PI4). More precisely, we haveγa(φa, j) = 0 for all j ≤ k1. Furthermore,
for i ∈ [m] \ {φa} let Ji be the set of allj ∈ [k] such thatπa(i, j) = γa(i, j) ∈ {−1, 1}, and fori = φa
let Ji be the set of allk1 < j ≤ k such thatπa(i, j) = γa(i, j) ∈ {−1, 1}. Then for anyi ∈ [m] and any
j ∈ Ji the eventγc(i, j) = 0 only depends on the events|Φij′ | = za for j′ ∈ Ji. By Fact 14 the variables
(|Φij′ |)i∈[m],j∈Ji

are independently uniformly distributed overV \ Zc. Therefore, the events|Φij′ | = za
for j′ ∈ Ji are independent of the choice ofza and of the eventτb. This shows (29) and thus (26). ⊓⊔
Proof of Corollary 18.Let µ ≤ (1 + ε/3)ωn be a positive integer and let̂Ut ⊂ [m] be a set of sizeµ.
Suppose thatt ≤ θ. Let ν = nk−ε/2, and letB be the set of all mapsψ : Ût → [n] such that there are less
thanν + t numbersx ∈ [n] such thatψ−1(x) = ∅. Furthermore, letBt be the event that there are less than
ν variablesx ∈ V \ Zt such thatUt(x) = 0. Since|Zt| = t, we have

P
[

Bt|Ut = Ût
]

≤
∑

ψ∈B
P
[

ψt = ψ|Ut = Ût
]

≤ |B|(n− t)−µ [by Lemma 23]

=
|B|
nµ

·
(

1 +
t

n− t

)µ

≤ |B|
nµ

· exp(2θµ/n) ≤ |B|
nµ

· exp(9nk−1 ln2 k). (30)

Furthermore,|B|/nµ is just the probability that there are less thanν empty bins ifµ balls are thrown
uniformly and independently inton bins. Hence, we can use Lemma 2 to bound|B|n−µ. To this end,
observe that because we are assumingε < 0.1 the bound

exp(−µ/n) ≥ exp(−(1 + ε/3)ω) = kα−1 holds, whereα =
2ε

3
− ε2

3
≥ 0.6ε.

Therefore, Lemma 2 entails that

|B|n−µ ≤ P [Z(µ, n) ≤ exp(−µ/n)n/2]

≤ O(
√
n) exp [− exp(−µ/n)n/8] ≤ exp

[

−kα−1n/9
]

. (31)

Combining (30) and (31), we see that fork ≥ k0(ε) large enough

Pt = P
[

Bt|Ut = Ût : Ût ⊂ [m] , |Ût| = µ
]

≤ exp
[

nk−1
(

9 ln2 k − kα/9
)]

= o(1/n).

Thus, Corollary 16 and Lemma 17 imply that

P [∃t ≤ T : |{x ∈ V \ Zt : Ut(x) = 0} < ν|]

≤P [T > θ] + P

[

max
0≤t≤T

|Ut| > (1 + ε/3)ωn

]

+
∑

0≤t≤θ
Pt = o(1),

as desired. ⊓⊔
Remark 24.The evolution of the mapsγt can be tracked via the method of differential equations. This
allows for a precise quantitative analysis of Phase 1 ofFix for small values ofk.
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5 Proof of Proposition 10

Let 0 < ε < 0.1. Throughout this section we assume thatk ≥ k0 for a large enoughk0 = k0(ε) ≥ 10, and
thatn > n0 for some large enoughn0 = n0(ε, k). Letm = ⌊n · (1− ε)2kk−1 ln k⌋, ω = (1− ε) ln k, and
k1 = ⌈k/2⌉. In addition, we keep the notation introduced in Section 4.1.

5.1 Outline

Similarly as in Section 4, we will describe the execution of Phase 2 ofFix(Φ) via a stochastic process.
Roughly speaking the new process starts where the processPI1–PI4 from Section 4 (i.e., Phase 1 ofFix)
stopped. More precisely, recall thatT denotes the stopping time ofPI1–PI4. Let Z ′

0 = ∅ andπ′
0 = πT .

Let U ′
0 = UT , and letU ′

0(x) be the number of indicesi ∈ U ′
0 such thatx occurs positively inΦi for any

variablex. Moreover, letQ′
0 be the set of indicesi ∈ [m] such thatΦi is unsatisfied under the assignment

σZT
that sets the variables inZT to false and all others to true. Fort ≥ 1 we proceed as follows.

PI1’ If Q′
t−1 = ∅, the process stops. Otherwise letψt = minQ′

t−1.
PI2’ If there are three indicesk1 < j ≤ k − 5 such thatπ′

t−1(ψt, j) ∈ {1,−1} andU ′
t−1(|Φψtj |) = 0,

then letk1 < j1 < j2 < j3 ≤ k−5 be the lexicographically first sequence of such indices. Otherwise
let k − 5 < j1 < j2 < j3 ≤ k be the lexicographically first sequence of indicesk − 5 < j ≤ k such
that|Φψtj | 6∈ Z ′

t−1. LetZ ′
t = Z ′

t−1 ∪ {|Φψtjl | : l = 1, 2, 3}.
PI3’ LetU ′

t be the set of alli ∈ [m] that satisfy the following condition. There is exactly onel ∈ [k] such
thatΦil ∈ V \ (Z ′

t ∪ ZT ) and for allj 6= l we haveΦij ∈ ZT ∪ Z ′
t ∪ V \ ZT . Let U ′

t(x) be the
number of indicesi ∈ U ′

t such thatx occurs positively inΦi (x ∈ V ).
PI4’ Let

π′
t(i, j) =

{

Φij if (i = ψt ∧ j > k1) ∨ |Φij | ∈ Z ′
t ∪ ZT ∨ (i ∈ U ′

t ∧ π0(i, j) = 1),
π′
t−1(i, j) otherwise.

LetQ′
t be the set of all(ZT , Z ′

t)-endangered clauses that contain less than three variablesfromZ ′
t.

Let T ′ be the stopping time of this process. Fort > T ′ andx ∈ V let π′
t = π′

T ′ , U ′
t = U ′

T ′ , Z ′
t = Z ′

T ′ , and
U ′
t(x) = U ′

T ′(x).
The processPI1’–PI4’ models the execution of Phase 2 ofFix(Φ). For in the terminology of Section 3,

a variablex is (ZT , Z
′
t)-secure iffU ′

t(x) = 0. Hence, the setZ ′ computed in Phase 2 ofFix coincides
with Z ′

T ′ . Thus, our task is to prove that|Z ′
T ′ | ≤ nk−12 w.h.p.

The processPI1’–PI4’ can be applied to any concretek-SAT formulaΦ (rather than the randomΦ).
It then yields a sequenceπ′

t [Φ] of maps, variablesz′t [Φ], etc. In analogy to the equivalence relation≡t
from Section 4, we define an equivalence relation≡′

t by lettingΦ ≡′
t Ψ iff Φ ≡s Ψ for all s ≥ 0, and

π′
s [Φ] = π′

s [Ψ ] for all 0 ≤ s ≤ t. Thus, intuitivelyΦ ≡′
t Ψ means that the processPI1–PI4 behaves

the same on bothΦ, Ψ , and the processPI1’–PI4’ behaves the same onΦ, Ψ up to timet. Let F ′
t be the

σ-algebra generated by the equivalence classes of≡′
t. Then(F ′

t)t≥0 is a filtration.

Fact 25. For anyt ≥ 0 the mapπ′
t, the random variableψ′

t+1, the random setsU ′
t andZ ′

t, and the random
variablesU ′

t(x) for x ∈ V areF ′
t-measurable.

In analogy to Fact 14 we have the following (by “deferred decisions”).

Fact 26. LetE ′
t be the set of all pairs(i, j) such thatπ′

t(i, j) ∈ {±1}. The conditional joint distribution of
the variables(|Φij |)(i,j)∈E′

t
givenF ′

t is uniform over(V \ Z ′
t)

E′

t .

Let

θ′ = ⌊exp(−kε/16)n⌋, and recall thatθ = ⌊4nk−1 lnω⌋, whereω = (1 − ε) ln k.

To prove Proposition 10 it is sufficient to show thatT ′ ≤ θ′ w.h.p., because|Z ′
t| = 3t for all t ≤ T ′. To

this end, we follow a similar program as in Section 4.1: we will show that|U ′
t | is “small” w.h.p. for all
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t ≤ θ′, and that therefore fort ≤ θ′ there are plenty of variablesx such thatU ′
t(x) = 0. This implies

that fort ≤ θ′ the process will only “generate” very few(ZT , Z ′
t)-endangered clauses. This then entails a

bound onT ′, because each step of the process removes (at least) one(ZT , Z
′
t)-endangered clause from the

setQ′
t. In Section 5.2 we will infer the following bound on|U ′

t |.
Lemma 27. W.h.p. for allt ≤ θ′ we have|U ′

t \ UT | ≤ n/k.

Corollary 28. W.h.p. the following is true for allt ≤ θ′: there are at leastnkε/3−1 variablesx ∈ V \
(Z ′

t ∪ ZT ) such thatU ′
t(x) = 0.

Proof. By Corollary 18 there are at leastnkε/2−1 variablesx ∈ V \ZT such thatUT (x) = 0 w.h.p. Hence,

u1 = |{x ∈ V \ ZT : UT (x) = 0}| ≥ nkε/2−1.

If x ∈ V \ (Z ′
t ∪ ZT ) has the propertyU ′

t(x) > 0 butUT (x) = 0, then there is an indexi ∈ U ′
t \ UT such

thatx is the unique positive literal ofΦi in V \ (Z ′
t ∪ ZT ). Therefore, by Lemma 27 w.h.p.

u2 = |{x ∈ V \ (Z ′
t ∪ ZT ) : UT (x) = 0 < U ′

t(x)}| ≤ |U ′
t \ UT | ≤ n/k.

Finally, byPI2’ we have|Z ′
t| ≤ 3t for all t. Hence,

|{x ∈ V \ (Z ′
t ∪ ZT ) : U ′

t(x) = 0}| ≥ u1 − u2 − |Z ′
t| ≥ nkε/2−1 − n/k − 3θ′ ≥ nkε/3−1,

provided thatk ≥ k0(ε) is sufficiently large. ⊓⊔
Corollary 29. LetY be the set of allt ≤ θ′ such that there are less than3 indicesk1 < j ≤ k − 5 such
thatπ′

t−1(ψt, j) ∈ {−1, 1} andU ′
t−1(|Φψtj |) = 0. Then|Y| ≤ 3θ′ exp(−kε/4) w.h.p.

We defer the proof of Corollary 29 to Section 5.3, where we also prove the following.

Corollary 30. Let κ = ⌊kε/4⌋. There are at most2k exp(−κ)n indicesi ∈ [m] such thatΦi contains
more thanκ positive literals, all of which lie inZθ′ ∪ ZT .

Corollary 31. W.h.p. the total number of(ZT , Z ′
θ′)-endangered clauses is at mostθ′.

Proof. Recall that a clauseΦi is (ZT , Z
′
θ′)-endangered if for anyj such that the literalΦij is true under

σZT
the underlying variable|Φij | lies inZ ′

θ′ . LetY be the set from Corollary 29, and letZ =
⋃

s∈Y Z
′
s \

Z ′
s−1. We claim that ifΦi is (ZT , Z

′
θ′)-endangered, then one of the following statements is true:

a. There are two indices1 ≤ j1 < j2 ≤ k such that|Φij1 | = |Φij2 |.
b. There are indicesi′ 6= i, j1 6= j2, j′1 6= j′2 such that|Φij1 | = |Φi′j′

1
| and|Φij2 | = |Φi′j′

2
|.

c. Φi is unsatisfied underσZT
.

d. Φi contains more thanκ = ⌊kε/4⌋ positive literals, all of which lie inZ ′
θ′ ∪ ZT .

e. Φi has at mostκ positive literals, is satisfied underσZT
, and contains a variable fromZ.

To see this, assume thatΦi is (ZT , Z
′
θ′)-endangered and a.–d. do not hold. Observe thatZ ⊃ ZT ∩ Z ′

θ′

by construction (cf.PI2’ ). Hence, if there isj such thatΦij = x̄ for somex ∈ ZT , thenx ∈ Z and thus
e. holds. Thus, assume that no variable fromZT occurs negatively inΦi. ThenΦi containsl ≥ 1 positive
literals fromV \ ZT , and we may assume without loss of generality that these are just the firstl literals
Φi1, . . . ,Φil. Furthermore,Φi1, . . . ,Φil ∈ Z ′

θ′. Hence, for each1 ≤ j ≤ l there is1 ≤ tj ≤ θ′ such that
Φij ∈ Z ′

tj \Z ′
tj−1. SinceΦi satisfies neither a. nor b., the numberst1, . . . , tl are mutually distinct. (For if,

say,t1 = t2, then eitherΦi1 = Φi2, orΦi andΦψt1
have at least two variables in common.) Thus, we may

assume without loss of generality thatt1 < · · · < tl. Theni ∈ U ′
tl−1 by the construction in stepPI3’ , and

thusΦil ∈ Z. Hence, e. holds.
LetXa, . . . , Xe be the numbers of indicesi ∈ [m] for which a.,. . . ,e. above hold. W.h.p.Xa +Xb =

O(lnn) by Lemma 4. Furthermore,Xc ≤ exp(−kε/8)n w.h.p. by Proposition 9. Moreover, Corollary 30
yieldsXd ≤ 2k exp(−κ/2)n w.h.p. Finally, sinceY ≤ 3θ′ exp(−kε/4) w.h.p. by Corollary 29 and as
|Z| = 3|Y|, Lemma 7 shows that w.h.p. fork ≥ k0(ε) large enough

Xe ≤ κ ·
√

|Z| /n · n ≤ κ ·
√

9 exp(−kε/4)θ′/n < θ′/2
[

asθ′ = ⌊exp(−kε/16)n⌋
]

.

Combining these estimates, we obtainXa + · · · +Xe ≤ θ′ w.h.p., provided thatk ≥ k0(ε) is large. ⊓⊔
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Proof of Proposition 10.We claim thatT ′ ≤ θ′ w.h.p.. This implies the proposition because|ZT ′ | = 3T ′

and3θ′ = 3⌊exp(−kε/16)n⌋ ≤ nk−12 if k ≥ k0(ε) is sufficiently large. To see thatT ′ ≤ θ′ w.h.p., letX0

be the total number of(ZT , Z ′
θ′)-endangered clauses, and letXt be the number of(ZT , Z ′

θ′)-endangered
clauses that contain less than 3 variables fromZ ′

t. SincePI2’ adds 3 variables from a(ZT , Z ′
θ′)-endangered

clauses toZ ′
t at each time step, we have0 ≤ Xt ≤ X0 − t for all t ≤ T ′. Hence,T ′ ≤ X0, and thus the

assertion follows from Corollary 31. ⊓⊔

5.2 Proof of Lemma 27

As in (15) we let

Htij =

{

1 if πt−1(i, j) = 1 andπt(i, j) = zt
0 otherwise,

Stij =

{

1 if T ≥ t andπt(i, j) ∈ {1,−1}
0 otherwise.

Note thatHtij ,Stij refer to the processPI1–PI4 from Section 4. With respect toPI1’–PI4’ , we let

H′
tij =

{

1 if π′
t−1(i, j) = 1, π′

t(i, j) ∈ Z ′
t, andT ≤ θ,

0 otherwise.

In analogy to Lemma 20 we have the following.

Lemma 32. For anyI ′ ⊂ [θ′] × [m] × [k] we haveE
[

∏

(t,i,j)∈I′ H′
tij |F ′

0

]

≤ (3/(n− θ − 3θ′))|I
′|
.

Proof. Let I ′
t = {(i, j) : (t, i, j) ∈ I′} andXt =

∏

(i,j)∈I′

t
H′
tij . Due to Lemma 5 it suffices to show

E
[

Xt|F ′
t−1

]

≤ (3/(n− θ − 3θ′))
|I′

t| for all t ≤ θ′. (32)

To see this, let1 ≤ t ≤ θ′ and consider a formulaΦ such thatT [Φ] ≤ θ, t ≤ T ′ [Φ], andπ′
t−1(i, j) [Φ] = 1

for all (i, j) ∈ I′
t. We condition on the eventΦ ≡′

t−1 Φ. Then at timet stepsPI1’–PI2’ obtainZ ′
t by

adding three variables that occur in clauseΦψt
, which is (ZT , Z

′
t−1)-endangered. Let(i, j) ∈ I′

t. Since
Φ ≡t−1 Φ andπ′

t−1(i, j) [Φ] = 1, we haveπ′
t−1(i, j) [Φ] = 1. By PI4’ this means thatΦij 6∈ ZT ∪ Z ′

t−1

is a positive literal. Thus,Φi is not(ZT , Z ′
t−1)-endangered. Hence,ψt 6= i. Furthermore, by Fact 26 in the

conditional distributionP
[

·|F ′
t−1

]

(Φ) the variables(Φij)(i,j)∈I′

t
are independently uniformly distributed

over the setV \ (ZT ∪ Z ′
t−1). Hence,

P
[

Φij ∈ Z ′
t|F ′

t−1

]

[Φ] = 3/|V \ (ZT ∪ Z ′
t−1)| for any(i, j) ∈ I′

t, (33)

and these events are mutually independent for all(i, j) ∈ I′
t. Since|ZT | = n− T andT = T [Φ] ≤ θ, and

because|Z ′
t−1| = 3(t− 1), (33) implies (32) and hence the assertion. ⊓⊔

Lemma 33. Let 2 ≤ l ≤
√
k, 1 ≤ l′ ≤ l − 1, 1 ≤ t ≤ θ, and1 ≤ t′ ≤ θ′. For eachi ∈ [m] let

Xi = Xi(l, l
′, t, t′) = 1 if T ≥ t, T ′ ≥ t′, and the following four events occur:

a. Φi has exactlyl positive literals.
b. l′ of the positive literals ofΦi lie in Z ′

t′ \ Zt.
c. l − l′ − 1 of the positive literals ofΦi lie in Zt.
d. No variable fromZt occurs inΦi negatively.

Let

B(l, l′, t) = 4ωn ·
(

6θ′k

n

)l′

·
(

k − l′ − 1

l − l′ − 1

)(

t

n

)l−l′−1

(1 − t/n)k−l. (34)

ThenP [
∑m

i=1Xi > B(l, l′, t)] = o(n−3).
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Proof. We are going to apply Lemma 3. Setµ = ⌈ln2 n⌉ and letM ⊂ [m] be a set of sizeµ. Let EM be
the event thatXi = 1 for all i ∈ M. LetPi ⊂ [k] be a set of sizel, and letHi, H

′
i ⊂ Pi be disjoint sets

such that|Hi ∪H ′
i| = l − 1 and|H ′

i| = l′ for eachi ∈ M. LetP = (Pi, Hi, H
′
i)i∈M. Furthermore, let

ti : Hi → [t] andt′i : H ′
i → [t′] for all i ∈ M, and setT = (ti, t

′
i)i∈M. Let EM(P , T ) be the event that

T ≥ t, T ′ ≥ t′, and the following four statements are true for alli ∈ M:

a’. The literalΦij is positive for allj ∈ Pi and negative for allj ∈ [k] \ Pi.
b’. Φij ∈ Z ′

t′
i
(j) \ Z ′

t′
i
(j)−1 for all i ∈ M andj ∈ H ′

i.
c’. Φij = zti(j) for all i ∈ M andj ∈ Hi.
d’. No variable fromZt occurs negatively inΦi.

If EM occurs, then there exist(P , T ) such thatEM(P , T ) occurs. Hence, we are going to use the union
bound. For eachi ∈ M there are

(

k

1, l′, l − l′ − 1

)

ways to choose the setsPi,Hi,H ′
i.

Once these are chosen, there are

t′
l′ ways to choose the mapt′i, andtl−l

′−1 ways to choose the mapti.

Thus,

P [EM] ≤
∑

P,T
P [EM(P , T )] ≤

[(

k

1, l′, l− l′ − 1

)

t′
l′
tl−l

′−1

]µ

max
P,T

P [EM(P , T )] . (35)

Hence, we need to boundP [EM(P , T )] for any givenP , T . To this end, let

I = I(M,P , T ) = {(s, i, j) : i ∈ M, j ∈ Pi, s = ti(j)} ,
I ′ = I ′(M,P , T ) = {(s, i, j) : i ∈ M, j ∈ P ′

i , s = t′i(j)} ,
J = J (M,P , T ) = {(s, i, j) : i ∈ M, j ∈ [k] \ (Pi ∪ P ′

i ), s ≤ t} .

If EM(P , T ) occurs, then the positive literals of each clauseΦi, i ∈ M, are preciselyΦij with j ∈ Pi,
which occurs with probability2−k independently. In addition, we haveHsij = 1 for all (s, i, j) ∈ I,
H′
sij = 1 for all (s, i, j) ∈ I′, andSsij = 1 for all (s, i, j) ∈ J . Hence,

P [EM(P , T )] ≤ 2−kµ · E





∏

(t,i,j)∈I′

H′
tij ·

∏

(t,i,j)∈I
Htij ·

∏

(t,i,j)∈J
Stij |F0



 .

Since the variablesHtij andStij areF ′
0-measurable, Lemmas 20 and 32 yield

P [EM(P , T )] ≤ 2−kµ · E



E





∏

(t,i,j)∈I′

H′
tij |F ′

0



 ·
∏

(t,i,j)∈I
Htij ·

∏

(t,i,j)∈J
Stij |F0





≤ 2−kµ ·
(

3

n− θ − 3θ′

)l′µ

· E





∏

(t,i,j)∈I
Htij ·

∏

(t,i,j)∈J
Stij |F0





≤ (n− θ)−(l−l′−1)µ (1 − 1/n)(k−l)tµ . (36)

Combining (35) and (36), we see thatP [EM] ≤ λµ, where

λ = 2−k
(

k

1, l′, l − l′ − 1

)(

3t′

n− θ − 3θ′

)l′ (
t

n− θ

)l−l′−1

(1 − 1/n)(k−l)t, (37)
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whence Lemma 3 yields

P

[

m
∑

i=1

Xi > 2λm

]

= o(n−3). (38)

Thus, the remaining task is to estimateλm: by (37) and sincem ≤ n · 2kω/k, we have

λm = mk2−k
(

k − 1

l′

)(

3t′

n− θ − 3θ′

)l′

·
(

k − l′ − 1

l − l′ − 1

)(

t

n− θ

)l−l′−1

(1 − 1/n)(k−l)t

≤ ωn ·
(

6θ′k

n

)l′

·
(

k − l′ − 1

l − l′ − 1

)(

t

n

)l−l′−1

(1 − t/n)k−l · η, where (39)

η =

(

n

n− θ

)l−l′−1

·
(

(1 − 1/n)t

1 − t/n

)k−l

≤
(

1 +
θ

n− θ

)l−l′−1

exp(kt2/n2) ≤ exp(2θl/n+ kθ2/n2).

Sinceθ ≤ 4k−1n lnk andl ≤
√
k, we haveη ≤ 2 for large enoughk ≥ k0(ε). Thus,2λm ≤ B(l, l′, t),

whence the assertion follows from (38) and (39). ⊓⊔

Lemma 34. Let ln k ≤ l ≤ k, 1 ≤ l′ ≤ l, 1 ≤ t ≤ θ, and1 ≤ t′ ≤ θ′. For eachi ∈ [m] let Yi = 1 if
T ≥ t, T ′ ≥ t′, and the following three events occur:

a. Φi has exactlyl positive literals.
b. l′ of the positive literals ofΦi lie in Z ′

t′ \ Zt.
c. l − l′ − 1 of the positive literals ofΦi lie in Zt.

ThenP [
∑m

i=1 Yi > n exp(−l)] = o(n−3).

Proof. The proof is similar to (and less involved than) the proof of Lemma 33. We are going to apply
Lemma 3 once more. Setµ = ⌈ln2 n⌉ and letM ⊂ [m] be a set of sizeµ. Let EM be the event that
Yi = 1 for all i ∈ [M ]. Let Pi ⊂ [k] be a set of sizel, and letHi, H

′
i ⊂ Pi be disjoint sets such that

|Hi∪H ′
i | = l−1 and|H ′

i| = l′ for eachi ∈ M. LetP = (Pi, Hi, H
′
i)i∈M. Furthermore, letti : Hi → [t]

andt′i : H ′
i → [t′] for all i ∈ M, and setT = (ti, t

′
i)i∈M. LetEM(P , T ) be the event thatT ≥ t, T ′ ≥ t′,

and that the following statements are true for alli ∈ M:

a’. Φij is positive for allj ∈ Pi and negative for allj 6∈ Pi.
b’. Φij ∈ Z ′

t′
i
(j) \ Z ′

t′
i
(j)−1 for all i ∈ M andj ∈ H ′

i.
c’. Φij = zti(j) for all i ∈ M andj ∈ Hi.

If EM occurs, then there are(P , T ) such thatEM(P , T ) occurs. Using the union bound as in (35), we get

P [EM] ≤
∑

P,T
P [EM(P , T )] ≤

[(

k

1, l′, l− l′ − 1

)

t′
l′
tl−l

′−1

]µ

max
P,T

P [EM(P , T )] . (40)

Hence, we need to boundP [EM(P , T )] for any givenP , T . To this end, let

I = I(M,P , T ) = {(s, i, j) : i ∈ M, j ∈ Pi, s = ti(j)} ,
I ′ = I ′(M,P , T ) = {(s, i, j) : i ∈ M, j ∈ P ′

i , s = t′i(j)} .

If EM(P , T ) occurs, then the positive literals of each clauseΦi are preciselyΦij with j ∈ Pi (i ∈ M). In
addition,Hsij = 1 for all (s, i, j) ∈ I andH′

sij = 1 for all (s, i, j) ∈ I′. Hence, by Lemmas 20 and 32

P [EM(P , T )] ≤ 2−kµE





∏

(t,i,j)∈I′

H′
tij

∏

(t,i,j)∈I
Htij |F0



 ≤
[

2−k
(

3

n− θ − 3θ′

)l′(
1

n− θ

)l−l′−1
]µ

.(41)



28

Combining (40) and (41), we see thatP [EM] ≤ λµ, where

λ = 2−k
(

k

1, l′, l − l′ − 1

)(

3t′

n− θ − 3θ′

)l′ (
t

n− θ

)l−l′−1

≤ k2−k
(

k − 1

l′

)(

3t′

n− θ − 3θ′

)l′

·
(

k − l′ − 1

l − l′ − 1

)(

t

n− θ

)l−l′−1

≤ k2−k ·
(

6kθ′

n

)l′ (
e(k − l′ − 1)θ

(l − l′ − 1)n

)l−l′−1

. (42)

Invoking Lemma 3, we getP [
∑m

i=1 Yi > 2λm] = o(n−3). Thus, we need to show that2λm < exp(−l)n.

Case 1:l′ ≥ l/2. Sinceθ/n ≤ 4k−1 lnω andθ′/n < k−2, (42) yields

λm ≤ ωn (4e lnω · θ′/n)
l′/2 ≤ exp(−l)n/2.

Case 2:l′ < l/2. Then (42) entailsλm ≤ ωn exp(−2l′) (10e lnω/l)
l−l′−1 ≤ exp(−l)n/2.

Hence, in either case we obtain the desired bound. ⊓⊔

Proof of Lemma 27.For1 ≤ t′ ≤ θ′ and1 < l ≤ k let Il(t′) be the set of indicesi ∈ U ′
t′ \UT such thatΦi

has preciselyl positive literals. Then

U ′
t′ \ UT =

k
⋃

l=2

Il(t
′). (43)

To bound the size of the set on the r.h.s., we define (random) setsX(l, l′, t, t′) for 1 ≤ l′ ≤ l−1, andt ≥ 1
as follows. Ift > T or t′ > T ′, we letX(l, l′, t, t′) = ∅. Otherwise,X(l, l′, t, t′) is the set of alli ∈ [m]
such thatΦi satisfies the following conditions a.–d. (cf. Lemma 33):

a. Φi has exactlyl positive literals.
b. l′ of the positive literals ofΦi lie in Z ′

t′ \ Zt.
c. l − l′ − 1 of the positive literals ofΦi lie in Zt.
d. No variable fromZt occurs inΦi negatively.

We claim that

Il(t
′) ⊂

l−1
⋃

l′=1

X(l, l′, T,min {T ′, t′}). (44)

To see this, recall thatUT contains alli ∈ [m] such thatΦi has precisely one positive literalΦij ∈ V \ZT
and no negative literal from̄ZT . Moreover,U ′

t′ is the set of alli ∈ [m] such thatΦi features precisely one
positive literalΦij 6∈ Z ′

t′ ∪ ZT and no negative literal from̄ZT . Now, let i ∈ Il. Then a. follows directly
from the definition ofIl. Moreover, asi ∈ Il ⊂ U ′

t′ clauseΦi has no literal fromZ̄T ; this shows d. Further,
if i ∈ Il(t

′), then at least one positive literal ofΦi lies inZ ′
t′ \ ZT , as otherwisei ∈ UT . Let l′ ≥ 1 be

the number of these positive literals. Thenl′ < l, because there is exactly onej such thatΦij 6∈ ZT ∪ Z ′
t′

is positive (by the definition ofU ′
t′ ). Furthermore, as there isexactlyone suchj, the remainingl − l′ − 1

positive literals ofΦi are inZT . Hence, b. and c. hold as well.
With B(l, l′, t) as in Lemma 33 letE1 be the event that

∀2 ≤ l ≤
√
k, 1 ≤ l′ ≤ l − 1, 1 ≤ t ≤ θ, 1 ≤ t′ ≤ θ′ : X(l, l′, t, t′) ≤ B(l, l′, t).

Further, letE2 be the event that

∀
√
k < l ≤ k, 1 ≤ l′ ≤ l − 1, 1 ≤ t ≤ θ, 1 ≤ t′ ≤ θ′ : X(l, l′, t, t′) ≤ n exp(−l).

Let E be the event thatT ≤ θ and that bothE1, E2 occur. Then by Corollary 16, Lemma 33 and Lemma 34

P [¬E ] ≤ P [T > θ] + P [¬E1] + P [¬E2] ≤ o(1) + 2k2θθ′ · o(n−3) = o(1). (45)
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Furthermore, ifE occurs, then (44) entails that for allt′ ≤ θ′

∑

2≤l≤
√
k

|Il(t′)| ≤
∑

2≤l≤
√
k

l−1
∑

l′=1

X(l, l′, T,min {T ′, t′}) ≤
k
∑

l=1

l−1
∑

l′=1

B(l, l′, T )

≤ 4ωn
k
∑

l′=1

(

6θ′k

n

)l′ k−l′−1
∑

j=0

(

k − l′ − 1

j

)(

T

n

)j

(1 − T/n)k−l
′−1−j

= 4ωn

k
∑

l′=1

(

6θ′k

n

)l′

≤ 5ωn · 6θ′k

n
≤ n/k2 [asθ′ < n/k4 for k ≥ k0(ε) large]. (46)

Moreover, ifE occurs, then (44) yields that for allt′ ≤ θ′

∑

√
k<l≤k

|Il(t′)| ≤
∑

√
k<l≤k

exp(−l)n ≤ n/k2 [provided thatk ≥ k0(ε) is large enough]. (47)

Thus, the assertion follows from (43) and (45)–(47). ⊓⊔

5.3 Proof of Corollaries 29 and 30

As a preparation we need to estimate the number of clauses that have contain a huge number of literals from
Zt for somet ≤ θ. Note that the following lemma solely refers to the processPI1–PI4 from Section 4.

Lemma 35. Let t ≤ θ. With probability at least1 − o(1/n) there are no more thann exp(−k) indices
i ∈ [m] such that|{j : k1 < j ≤ k, |Φij | ∈ Zt}| ≥ k/4.

Proof. For anyi ∈ [m], j ∈ [k], and1 ≤ s ≤ θ let

Zsij =

{

1 if |Φij | = zs, πs−1(i, j) ∈ {−1, 1}, ands ≤ T ,
0 otherwise.

We claim that for any setI ⊂ [t] × [m] × ([k] \ [k1]) we have

E





∏

(s,i,j)∈I
Zsij



 ≤ (n− θ)−|I|. (48)

To see this, letIs = {(i, j) : (s, i, j) ∈ I} and setZs =
∏

(i,j)∈Is
Zsij . Then for alls ≤ θ the random

variableZs isFs-measurable by Fact 13. Moreover, we claim that

E [Zs|Fs−1] ≤ (n− θ)−|Is| (49)

for anys ≤ θ. To prove this, consider any formulaΦ such thats ≤ T [Φ] andπs−1(i, j) [Φ] ∈ {−1, 1}
for all (i, j) ∈ Is. Then by Proposition 14 in the probability distributionP [·|Fs−1] (Φ) the variables
(Φij)(i,j)∈Is

are mutually independent and uniformly distributed overV \Zs−1. They are also independent
of the choice of the variablezs, becausej > k1 for all (i, j) ∈ Is and the variablezs is determined by
the firstk1 literals of some clauseΦφs

(cf. PI2). Therefore, for all(i, j) ∈ Is the eventΦij = zs occurs
with probability1/|V \ Zs−1| independently. As|Zs−1| = s − 1, this shows (49), and (48) follows from
Lemma 5 and (49).

For i ∈ [m] let Xi = 1 if t ≤ T and there are at leastκ = ⌈k/4⌉ indicesj ∈ [k] \ [k1] such that
|Φij | ∈ Zt, and setXi = 0 otherwise. LetM ⊂ [m] be a set of sizeµ = ⌈ln2 n⌉ and letEM be the event
thatXi = 1 for all i ∈ M. Furthermore, letPi ⊂ [k] \ [k1] be a set of sizeκ− 1 for eachi ∈ M, and let
ti : Pi → [t] be a map. LetP = (Pi)i∈M andT = (ti)i∈M, and letEM(P , T ) be the event thatt ≤ T
andZti(j)ij = 1 for all i ∈ M and allj ∈ Pi. Let

I = IM(P , T ) = {(ti(j), i, j) : i ∈ M, j ∈ Pi}.
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Then (48) entails that for anyP , T

P [EM(P , T )] ≤ E





∏

(s,i,j)∈I
Zsij



 ≤ (n− θ)−|I| ≤ (n− θ)−µ(κ−1). (50)

Moreover, ifEM occurs, then there existP , T such thatEM(P , T ) occurs. For anyi ∈ M there are
(

k−k1
κ−1

)

ways to choosePi andtκ−1 ways to chooseti. Hence, by the union bound

P [EM] ≤
∑

P,T
P [EM(P , T )] ≤ λµ where

λ =

(

k − k1

κ− 1

)

tκ−1 · (n− θ)1−κ ≤
(

ekt

(κ− 1)(n− θ)

)κ−1

≤ (12θ/n)κ−1.

Finally, Lemma 3 implies that for sufficiently largek we have with probability1 − o(n−1)

m
∑

i=1

Xi ≤ 2mλ ≤ n · 2k(12θ/n)κ−1 ≤ n exp(−k)
[

asθ = ⌊4nk−1 lnω⌋ ≤ 4nk−1 ln ln k
]

,

as desired. ⊓⊔

Proof of Corollary 29.The goal is to bound the number|Y| of timest ≤ θ′ such that the clauseΦψt
chosen

by PI1’ features less than three literalsΦψtj such thatπ′
t−1(ψt, j) ∈ {−1, 1} andU ′

t−1(|Φψtj|) = 0
(k1 < j ≤ k − 5). We use a similar argument as in the proof of Corollary 19. Let

Q′
t = |{x ∈ V \ (ZT ∪ Z ′

t) : U ′
t(x) = 0}|

and define0/1 random variablesB′
t for t ≥ 1 by lettingB′

t = 1 iff the following four statements hold:

a. T ′ ≥ t.
b. Q′

t−1 ≥ nkε/3−1.
c. There are less thank/4 indicesk1 < j ≤ k such that|Φψtj | ∈ ZT .
d. At most two indicesk1 < j ≤ k − 5 satisfyπ′

t−1(ψt, j) = −1 andU ′
t−1(|Φψtj |) = 0.

This random variable isF ′
t-measurable by Fact 25. Letδ = exp(−kε/3/6). We claim

E [B′
t|Ft−1] ≤ δ for anyt ≥ 1. (51)

To see this, letΦ be a formula for which a.–c. hold. We condition on the eventΦ ≡′
t−1 Φ. Then at time

t the processPI1’–PI4’ choosesψt = ψt [Φ] such thatΦψt
is (ZT , Z

′
t−1)-endangered and contains less

than three variables fromZ ′
t−1. If π′

t−1(ψt, j) 6= −1, then eitherπ′
t−1(ψt, j) = 1 or Φψtj ∈ ZT ∪ Z ′

t−1.
Due to c. there are less thank/4 indicesj > k1 such that|Φψtj | ∈ ZT . Further, sinceΦψt

is (ZT , Z
′
t−1)-

endangered, there is noj such thatπ′
t−1(ψt, j) = 1. Consequently, there are at least(k− k1 − 5)− 1

4k− 2
indicesk1 < j ≤ k − 5 such thatπ′

t−1(ψt, j) = −1. Let J be the set of all these indices. Assuming
k ≥ k0(ε) is sufficiently large, we have

|J | ≥ (k − k1 − 5) − k/4 − 2 ≥ k/5. (52)

By Fact 26 the variables(|Φψtj |)j∈J are independently uniformly distributed overV \ (ZT ∪ Z ′
t−1).

Therefore, the number ofj ∈ J such thatU ′
t−1(|Φψtj |) = 0 is binomialBin(|J |,Q′

t−1/|V \(ZT∪Z ′
t−1)|).

Since b. requiresQ′
t−1 ≥ nkε/3−1, (52) and the Chernoff bound (1) yield

E
[

B′
t|F ′

t−1

]

(Φ) ≤ P

[

Bin

(

|J |, Q′
t−1

|V \ (ZT ∪ Z ′
t−1)|

)

< 3

]

≤ P
[

Bin
(

⌈k/5⌉, kε/3−1
)

< 3
]

≤ δ,

provided thatk is sufficiently large. Thus, we have established (51).



31

LetY ′ = |{t ∈ [θ′] : B′
t = 1}|. We are going to show that

Y ′ ≤ 2θ′δ w.h.p. (53)

To this end, lettingµ = ⌈lnn⌉, we will show that

E [(Y ′)µ] ≤ (θ′δ)µ where(Y ′)µ =

µ−1
∏

j=0

Y ′ − j. (54)

This implies (53). For ifY ′ > 2θ′δ, then for largen we have(Y ′)µ > (2θ′δ − µ)µ ≥ (1.9 · θ′δ)µ, whence
Markov’s inequality entailsP [Y ′ > 2θ′δ] ≤ P [(Y ′)µ > (1.9θ′δ)µ] ≤ 1.9−µ = o(1).

In order to establish (54), we define a random variableY ′
T for any tupleT = (t1, . . . , tµ) of mutually

distinct integerst1, . . . , tµ ∈ [θ′] by lettingY ′
T =

∏µ
i=1 B′

ti . Since(Y ′)µ equals the number ofµ-tuplesT
such thatY ′

T = 1, we obtain

E [(Y ′)µ] ≤
∑

T
E [Y ′

T ] ≤ θ′
µ

max
T

E [Y ′
T ] . (55)

To bound the last expression, we may assume thatT is such thatt1 < · · · < tµ. As B′
t is F ′

t-measurable,
we have for alll ≤ µ

E

[

l
∏

i=1

B′
ti

]

≤ E

[

E

[

l
∏

i=1

B′
ti |F ′

tl−1

]]

= E

[

l−1
∏

i=1

B′
ti · E

[

B′
tl
|F ′
tl−1

]

]

(51)
≤ δ · E

[

l−1
∏

i=1

B′
ti

]

.

Proceeding inductively froml = µ down tol = 1, we obtainE [Y ′
T ] ≤ δµ, and thus (54) follows from (55).

To complete the proof, letY ′′ be the number of indicesi ∈ [m] such that|Φij | ∈ ZT for at leastk/4
indicesk1 < j ≤ k. Combining Corollary 16 (which shows that|ZT | = T ≤ θ w.h.p.) with Lemma 35,
we see thatY ′′ ≤ n exp(−k) ≤ θδ w.h.p. As|Y| ≤ Y ′ + Y ′′, the assertion thus follows from (53) and the
fact thatθδ + 2θ′δ ≤ exp(−kε/4)n for k ≥ k0(ε) large enough. ⊓⊔
Proof of Corollary 30.Letκ = ⌊kε/4⌋. The goal is to bound the number ofi ∈ [m] such thatΦi contains at
leastκ positive literals, all of which end up inZT ∪Z ′

θ′ . SinceT ≤ θ w.h.p. by Corollary 16, we just need
to bound the number ofV of i ∈ [m] such thatΦi has at leastκ positive literals among which at leastκ lie
in Zθ ∪ Z ′

θ′ . Let Vll′ be the number ofi ∈ [m] such thatΦi has exactlyl′ positive literals among which
exactlyl′ lie in Z ′

θ′ \ Zθ while exactlyl − l′ of them lie inZθ. Then w.h.p.

k
∑

l=κ

l
∑

l′=1

Vll′ ≤ nk exp(−κ) by Lemma 34, and
k
∑

l=κ

Vl0 ≤ nk exp(−κ) by Lemma 22.

Thus,V ≤ 2nk exp(−κ) w.h.p., as desired. ⊓⊔

6 Proof of Proposition 11

As before, we let0 < ε < 0.1. We assume thatk ≥ k0 for a large enoughk0 = k0(ε), and thatn > n0

for some large enoughn0 = n0(ε, k). Furthermore, we letm = ⌊n · (1 − ε)2kk−1 ln k⌋, ω = (1 −
ε) ln k andk1 = ⌈k/2⌉. We keep the notation introduced in Section 4.1. In particular, recall thatθ =
⌊4nk−1 lnω⌋.

In order to prove that the graphG(Φ, Z, Z ′) has a matching that covers all(Z,Z ′)-endangered clauses,
we are going to apply the marriage theorem. Basically we are going to argue as follows. LetY ⊂ Z ′ be a set
of variables. SinceZ ′ is “small” by Proposition 10,Y is small, too. Furthermore, Phase 2 ensures that any
(Z,Z ′)-endangered clause contains three variables fromZ ′. To apply the marriage theorem, we thus need
to show that w.h.p. for anyY ⊂ Z ′ the number of(Z,Z ′)-endangered clauses that contain only variables
from Y ∪ (V \Z ′) (i.e., the set of all(Z,Z ′)-endangered clauses whose neighborhood inG(Φ, Z, Z ′) is a
subset ofY ) is at most|Y |.
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To establish this, we will use a first moment argument (over sets Y ). This argument does actually not
take into account thatY ⊂ Z ′, but is over all “small” setY ⊂ V . Thus, letY ⊂ V be a set of sizeyn. We
define a family(yij)i∈[m],j∈[k] of random variables by letting

yij =

{

1 if |Φij | ∈ Y,
0 otherwise.

Moreover, define for each integert ≥ 0 an equivalence relation≡Yt onΩk(n,m) by lettingΦ ≡Yt Φ′ iff
πs [Φ] = πs [Φ′] for all 0 ≤ s ≤ t andyij [Φ] = yij [Φ′] for all (i, j) ∈ [m] × [k]. In other words,Φ ≡Yt Φ′

means that the variables fromY occur in the same places, and that the processPI1–PI4 from Section 4
behaves the same up to timet. Thus,≡Yt is a refinement of the equivalence relation≡t from Section 4.1. Let
FY
t be theσ-algebra generated by the equivalence classes of≡Yt . Then the family(FY

t )t≥0 is a filtration.
SinceFY

t contains theσ-algebraFt from Section 4.1, all random variables that areFt-measurable are
FY
t -measurable as well. In analogy to Fact 14 we have the following (“deferred decisions”).

Fact 36. Let EYt be the set of all pairs(i, j) such thatπt(i, j) ∈ {1,−1} andyij = 0. The conditional

joint distribution of the variables(|Φij |)(i,j)∈EY
t

givenFY
t is uniform over(V \ (Zt ∪ Y ))E

Y
t .

For anyt ≥ 1, i ∈ [m], j ∈ [k] we define a random variable

HY
tij =

{

1 if yij = 0, t ≤ T , πt−1(i, j) = 1 andπt(i, j) = zt,,
0 otherwise.

Lemma 37. For any setI ⊂ [θ] × [m] × [k] we haveE
[

∏

(t,i,j)∈I HY
tij |FY

0

]

≤ (n− θ)−|I|.

Proof. Due to Fact 36 the proof of Lemma 20 carries over directly. ⊓⊔

For a given setY we would like to bound the number ofi ∈ [m] such thatΦi contains at least three
variables fromY andΦi has no positive literal inV \ (Y ∪ ZT ). If for any “small” setY the number of
such clauses is less than|Y |, then we can apply this result toY ⊂ Z ′ and use the marriage theorem to show
thatG(Φ, Z, Z ′) has the desired matching. We proceed in several steps.

Lemma 38. Lett ≤ θ. LetM ⊂ [m] and setµ = |M|. Furthermore, letL,Λ be maps that assign a subset
of [k] to eachi ∈ M such that

L(i) ∩ Λ(i) = ∅ and|Λ(i)| ≥ 3 for all i ∈ M. (56)

LetE(Y, t,M, L, Λ) be the event that the following statements are true for alli ∈ M:

a. |Φij | ∈ Y for all j ∈ Λ(i).
b. Φij is a negative literal for allj ∈ [k] \ (L(i) ∪ Λ(i)).
c. Φij ∈ Zt \ Y for all j ∈ L(i).

Let l =
∑

i∈M |L(i)| andλ =
∑

i∈M |Λ(i)|. ThenP [E(Y, t,M, L, Λ)] ≤ 2−kµ(2t/n)l(2y)λ.

Proof. Let E = E(Y, t,M, L, Λ). Let ti be a mapL(i) → [t] for eachi ∈ M, let T = (ti)i∈M, and let
E(T ) be the event that a. and b. hold andΦij = zti(j) for all i ∈ M andj ∈ L(i). If E occurs, then there
is T such thatE(T ) occurs. Hence, by the union bound

P [E ] ≤
∑

T
P [E(T )] ≤ tl max

T
P [E(T )] . (57)

To bound the last term fix anyT . Let I = {(s, i, j) : i ∈ M, j ∈ L(i), s = ti(j)}. If E(T ) occurs, then
HY
sij = 1 for all (s, i, j) ∈ I. Therefore, by Lemma 37

P
[

E(T )|FY
0

]

≤ E





∏

(s,i,j)∈I
HY
sij |FY

0



 ≤ (n− θ)−|I| = (n− θ)−l. (58)
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Furthermore, the event that a. and b. hold for alli ∈ M isFY
0 -measurable. Since the literalsΦij are chosen

independently, we have

P [a. and b. hold for alli ∈ M] ≤ yλ2λ−kµ = (2y)
λ

2−kµ. (59)

Combining (58) and (59), we obtainP [E(T )] ≤ 2−kµ(n − θ)−l (2y)λ . Finally, plugging this bound
into (57), we get fork ≥ k0(ε) is sufficiently large

P [E ] ≤ 2−kµ
(

t

n− θ

)l

(2y)
λ ≤ 2−kµ

(

2t

n

)l

(2y)
λ [

asθ = ⌊4nk−1 lnω⌋ < n
2

]

,

as desired. ⊓⊔
Corollary 39. Let t ≤ θ. Let M ⊂ V and setµ = |M|. Let l, λ be integers such thatλ ≥ 3µ. Let
E(Y, t,M, l, λ) be the event that there exist mapsL,Λ that satisfy (56) such thatl =

∑

i∈M |L(i)|,
λ =

∑

i∈M |Λ(i)|, and that the eventE(Y, t,M, L, Λ) occurs. Then

P [E(Y, t,M, l, λ)] ≤ 2−l−kµ(2k2y)λ.

Proof. Given l, λ there are at most
(

kµ
l,λ

)

ways to choose the mapsL,Λ (because the clauses inM contain
a total number ofkµ literals). Therefore, by Lemma 38 and the union bound

2kµP [E(Y, t,M, l, λ)] ≤
(

kµ

l, λ

)

(2t/n)l(2y)λ ≤ 2−l
(

4eθkµ

ln

)l (
2ekµy

λ

)λ

≤ 2−l
(

50µ lnω

l

)l

(2ky)λ

= 2−l(2ky)λ · ω−50µ·α lnα, whereα =
l

50µ lnω
. (60)

Since−α lnα ≤ 1/2, we obtainω−50µ·α lnα ≤ ω25µ ≤ (ln k)25µ ≤ kλ. Plugging this last estimate
into (60) yields the desired bound. ⊓⊔
Corollary 40. Let t ≤ θ and letE(t) be the event that there are setsY ⊂ V , M ⊂ [m] of size3 ≤
|Y | = |M| = µ ≤ nk−12 and integersl ≥ 0, λ ≥ 3µ such that the eventE(Y, t,M, l, λ) occurs. Then
P [E(t)] = o(1/n).

Proof. Let us fix an integer1 ≤ µ ≤ nk−12 and letE(t, µ) be the event that there exist setsY,M of
the given sizeµ = yn and numbersl, λ such thatE(Y, t,M, l, λ) occurs. Then the union bound and
Corollary 39 yield

P [E(t, µ)] ≤
∑

λ≥3µ

∑

Y,M:|Y |=|M|=µ

∑

l≥0

P [E(Y, t,M, l, λ)] ≤
(

n

µ

)(

m

µ

)

22−kµ(2k2y)3µ

≤
(

e22k lnω

ky2

)µ

· 22−kµ(2k2y)3µ ≤ 4
[

yk6
]µ ≤ y−µ/2.

Summing over3 ≤ µ ≤ nk−12, we obtainP [E(t)] ≤∑µ P [E(t, µ)] = O(n−3/2). ⊓⊔
Proof of Proposition 11.Assume that the graphG(Φ, Z, Z ′) does not have a matching that covers all
(Z,Z ′)-endangered clauses. Then by the marriage theorem there area setY ⊂ Z ′ and a setM of (Z,Z ′)-
endangered clauses such that|M| = |Y | > 0 and all neighbors of indicesi ∈ M in the graphG(Φ, Z, Z ′)
lie in Y . Indeed, as each(Z,Z ′)-endangered clause contains at least three variables fromZ ′, we have
|Y | ≥ 3. Therefore, for each clausei ∈ M the following three statements are true:

a. There is a setΛ(i) ⊂ [k] of size at least3 such that|Φij | ∈ Y for all j ∈ Λ(i).
b. There is a (possibly empty) setL(i) ⊂ [k] \ Λ(i) such thatΦij ∈ Z for all j ∈ L(i).
c. For allj ∈ [k] \ (L(i) ∪ Λ(i)) the literalΦij is negative.

As a consequence, at least one of the following events occurs:

1. T > θ = ⌊4k−1 lnω⌋.
2. |Z ′| > nk−12.
3. There ist ≤ θ such thatE(t) occurs.

The probability of the first event iso(1) by Proposition 9, the second event has probabilityo(1) by Propo-
sition 10, and the probability of the third one isθ · o(n−1) = o(1) by Corollary 40. ⊓⊔



34

References

1. D. Achlioptas, P. Beame, M. Molloy: Exponential bounds for DPLL below the satisfiability threshold. Proc. 15th
SODA (2004) 139–140.

2. D. Achlioptas, A. Coja-Oghlan: Algorithmic barriers from phase transitions. Proc. 49th FOCS (2008) 793–802.
3. D. Achlioptas, C. Moore: Randomk-SAT: two moments suffice to cross a sharp threshold. SIAM Journal on

Computing36 (2006) 740–762.
4. D. Achlioptas, Y. Peres: The threshold for randomk-SAT is2k ln 2 − O(k). Journal of the AMS17 (2004) 947–

973.
5. J. Ardelius, L. Zdeborova: Exhaustive enumeration unveils clustering and freezing in random 3-SAT. Phys. Rev. E

78 (2008) 040101(R).
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