A Better Algorithm for Random k-SAT

Amin Coja-Oghlan

University of Edinburgh, School of Informatics, 10 CrichtStreet, Edinburgh EH8 9AB
acoghl an@nf . ed. ac. uk

Abstract. Let® be a uniformly distributed randokSAT formula withn variables andnr clauses. We
present a polynomial time algorithm that finds a satisfyisgignment off with high probability for
constraint densities:/n < (1 —¢e;,)2% In(k)/k, wheres;, — 0. Previously no efficient algorithm was
known to find satisfying assignments with a non-vanishingbgbility beyondm /n = 1.817 - 2 /k
[Frieze and Suen, J. of Algorithms 1996].

1 Introduction

1.1 Solving randomk-SAT

The k-SAT problem is well known to be NP-hard fér > 3. This indicates that no algorithm can solve
all possible inputs efficiently. Therefore, there has beenmifgignt amount of research dreuristicsfor
k-SAT, i.e., algorithms that solve “most” inputs efficienflyhere the meaning of “most” varies). While
some heuristics fok-SAT are very sophisticated, virtually all of them are basedat least) one of the
following basic paradigms.

Pure literal rule. If a variablex occurs only positively (resp. negatively) in the formulet, isto true (resp.
false). Simplify the formula by substituting the newly agséd value for: and repeat.

Unit clause propagation. If there is a clause that contains only a single literal (tetause”), then set the
underlying variable so as to satisfy this clause. Then sfinglle formula and repeat.

Walksat. Initially pick a random assignment. Then repeat the foltayviWhile there is an unsatisfied
clause, pick one at random, pick a variable occurring in tiesen clause randomly, and flip its value.

Backtracking. Assign a variable:, simplify the formula, and recurse. If the recursion faddind a satis-
fying assignment, assignthe opposite value and recurse.

Heuristics based on these paradigms can be surprisingbessitl on certain types of inputs (e.g.,
[10, 16]). However, it remains remarkably simple to gerefatmulas that seem to elude all known algo-
rithms/heuristics. Indeed, the simplest conceivable tfpmndominstance does the trick: |& denote a
k-SAT formula over the variable sét = {z1,...,x,} that is obtained by choosing clauses uniformly
at random and independently from the set of(al)* possible clauses. Then for a large regime of con-
straint densitiesn /n satisfying assignments are known to exist due to non-caciste arguments, but no
algorithm is known to find one in sub-exponential time withamfvanishing probability.

To be precise, keepingfixed and lettingn = [rn] for a fixedr > 0, we say that has some property
with high probability(“w.h.p.”) if the probability that the property holds tentisone as: — oc. Via the
(non-algorithmic) second moment method and the sharptiblésheorem [3, 4, 14] it can be shown that
& has a satisfying assignment w.h.puif/n < (1 — ¢;)2% In 2. Heres;, is independent of but tends td)
for largek. On the other hand, a first moment argument shows that ndysagjsassignment exists w.h.p.
if m/n > 2%1n2. In summary, the threshold fd¥ being satisfiable is asymptoticalf In 2.

Yet for densitiesn /n beyonde - 2¥ /k no algorithm has been known to find a satisfying assignment in
polynomial time with a probability that remains bounded wfram 0 for largen — neither on the basis of
arigorous analysis, nor on the basis of experimental or@weence. In fact, many algorithms, including
Pure Literal, Unit Clause, and DPLL are known to either faigrhibit an exponential running time beyond
c-2F /I for certain constants < e. There is experimental evidence that the same is true of$&lkndeed,
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devising an algorithm to solve random formulas with a nonistaing probability for densities: /n up to
2Fw (k) /k for any (howsoever slowly growing)(k) — oo has been a prominent open problem [3,4, 8,
22], which the following theorem resolves.

Theorem 1. There exist a sequeneg — 0 and a polynomial time algorithrRi x such that=i x applied
to a random formula® with m/n < (1 — ;)2" In(k) /k outputs a satisfying assignment w.h.p.

Fi x is a combinatorial, local-search type algorithm. It canroplemented to run in time((n + m)?3/?).

The recent paper [2] provides evidence that beyond density = 2 In(k)/k the problem of finding
a satisfying assignment becomes conceptually signifigzamtire difficult (to say the least). To explain this,
we need to discuss a concept that originates in statistioalips.

1.2 Adigression: replica symmetry breaking

For the last decade randdmSAT has been studied by statistical physicists using stighited, insightful,
but mathematically highly non-rigorous techniques from theory of spin glasses. Their results suggest
that below the threshold densifyf In 2 for the existence of satisfying assignments various otiheise
transitions take place that affect the performance of @lyois.

To us the most important one is tHgnamic replica symmetry breakifdRSB) transition. Lef (®) C
{0,1}" be the set of all satisfying assignments of the random foarulWe turnS(#) into a graph by
considerings, 7 € S(®) adjacent if their Hamming distance equals one. Very roughgaking, according
to the dRSB hypothesis there is a density s such that forn/n < rrsp the correlations that shape the
setS (&) are purely local, whereas for densitiegn > rrsp long range correlations occur. Furthermore,
rrsp ~ 2FIn(k)/k ask gets large.

Confirming and elaborating on this hypothesis, we recerdfgl#ished a good part of the dRSB phe-
nomenon rigorously [2]. In particular, we proved that thera sequence, — 0 such that forn/n > (1+
ex)2% In(k) /k the values that the solutionsc S(®) assign to the variables are mutually heavily correlated
in the following sense. Let us call a variahldrozenin a satisfying assignmentif any satisfying assign-
mentr such that(z) # 7(z) is at Hamming distanc&(n) from o. Then form/n > (1 +&;)2% In(k)/k
in all but ao(1)-fraction of all solutionsr € S(9) all but ans-fraction of the variables are frozen w.h.p.,
wheres;, — 0.

This suggests that on random formulas with density. > (1+¢,)2* In(k)/k local search algorithms
are unlikely to succeed. For think of tfector graph whose vertices are the variables and the clauses, and
where a variable is adjacent to all clauses in which it occlinen a local search algorithm assigns a value
to a variablex on the basis of the values of the variables that have dist&it¢ from = in the factor
graph. But in the random formul& with m/n > (1 + £4)2" In(k)/k assigning one variable is likely
to impose constraints on the values that can be assignediables at distanc€(lnn) from z. A local
search algorithm is unable to catch these constraints.rtimfately, virtually all knowrk-SAT algorithms
are local.

The above discussion applies to “large” valueg @day,k > 10). In fact, non-rigorous arguments as
well as experimental evidence [5] suggest that the pictigeiite different and rather more complicated for
“small” k (say,k = 3). In this case the various phenomena that occur at (or veas) tige poin* In(k)/k
for £k > 10 appear to happen at vastly different points in the satisiaddime. To keep matters as simple
as possible we focus on “largé”in this paper. In particular, no attempt has been made toaexplicit
bounds on the numbetg in Theorem 1 for “small’k (however, the analysis shows = O(InIn k/ In k)).
IndeedFi x is designed so as to allow for as easy an analysis as possilgerierak rather than to excel
for smallk. Nevertheless, it would be interesting to see how the idebgWdFi x can be used to obtain an
improved algorithm for smakt as well?

In summary, the dRSB picture leads to the question whé&thgmarks the end of the algorithmic road
for randomk-SAT, up to the precise value ef.?

11t is worth mentioning that a naive implementationfifx succeeded on most (pseudo-)random sample instances
with n = 30,000 andm/n = 0.6 - 2" In(k) /k for 3 < k < 12. The constant increased @65 for k = 17 (with
n = 1,000). At this pointFi x outperformed the algorithm SCB from Frieze and Suen [15].



1.3 Related work

Quite a few papers deal with efficient algorithms for rande8AT, contributing either rigorous results,
non-rigorous evidence based on physics arguments, oriexgreal evidence. Table 1 summarizes the part
of this work that is most relevant to us. The best rigorousltégrior to this work) is due to Frieze and
Suen [15]. They proved that “SCB” succeeds for densifié / k, wheren,, increases ta.817 ask — oco.
SCB can be considered a (restricted) DPLL-algorithm. It bovas the shortest clause rule, which is a
generalization of Unit Clause, with (very limited) bacldkang. Conversely, there is a constant 0 such
that DPLL-type algorithms exhibit an exponential runniirge w.h.p. for densities beyond- 2* /& for
largek [1].

Algorithm Densitym/n < --- |Success probabilityref., yea

Pure Literal o(1) ask — oo w.h.p. [19], 2006

Walksat, rigorous 198 /k? w.h.p. [9], 2009

Walksat, non-rigorous 2% /k w.h.p. [23], 2003

k=2 )
Unit Clause ) % 0(1) [7], 1990
k=3 )

Shortest Clause |+ (‘;j) kot 2t w.h.p. [8], 1992

SC+backtracking ~ 1.817 - % w.h.p. [15], 1996

BP-+decimation e- 27k w.h.p. [22], 2007
(non-rigorous)

Table 1. Algorithms for randonk-SAT

The term “success probability” refers to the probabilitytwivhich the algorithm finds a satisfying
assignment of a random formula. For all algorithms except Ofause this isl — o(1) asn — oo. For
Unit Clause it converges to a number strictly betweemd1.

Montanari, Ricci-Tersenghi, and Semerjian [22] providelence that Belief Propagation guided deci-
mation may succeed up to density2* /k w.h.p. This algorithm is based on a very different paradigamt
the others mentioned in Table 1. The basic idea is to run aagegsassing algorithm (“Belief Propaga-
tion”) to compute for each variable the marginal probapiiitat this variable takes the value true/false in
a uniformly random satisfying assignment. Then, the dettonatep selects a variable randomly, assigns
it the value true/false with the corresponding marginabgiality, and simplifies the formula. Ideally, re-
peating this procedure will yield a satisfying assignmentyvided that Belief Propagation keeps yielding
the correct marginals. Proving (or disproving) this rersairmajor open problem.

Survey Propagation is a modification of Belief Propagatioat taims to approximate the marginal
probabilities induced by a particular non-uniform probigpdistribution on the set of certain generalized
assignments [6, 21]. It can be combined with a decimationgmtare as well to obtain a heuristic fording
a satisfying assignment. However, there is no evidenceShatey Propagation guided decimation finds
satisfying assignments beyoad?2* /k for generak w.h.p.

In summary, various algorithms are known/appear to sucaglceither high or a non-vanishing prob-
ability for densitiesc - 2 /k, where the constartdepends on the particulars of the algorithm. But there
has been no prior evidence (either rigorous results, ngorous arguments, or experiments) that some
algorithm succeeds for densities/n = 2*w(k)/k with w(k) — oo.

The discussion so far concerns the case of gertedal addition, a large number of papers deal with
the casek = 3. Flaxman [13] provides a survey. Currently the best rigehp@analyzed algorithm for
random 3-SAT is known to succeed uprig’'n = 3.52 [17,20]. This is also the best known lower bound
on the 3-SAT threshold. The best current upper bouridsig6 [11], and non-rigorous arguments suggest
the threshold to be: 4.267 [6]. As mentioned in Section 1.2, there is non-rigorous euick that the
structure of the set of all satisfying assignment evolvésintly in random 3-SAT than in randomSAT
for “large” k. This may be why experiments suggest that Survey Propamgtiioled decimation for 3-SAT
succeeds for densities /n up to4.2, i.e., close to the conjectured 3-SAT threshold [6].



1.4 Techniques and outline

Remember théactor graphrepresentation of a formul&: the vertices are the variables and the clauses,
and each clause is adjacent to all the variables that appétardmn terms of the factor graph it is easy to
point out the key difference betweéin x and, say, Unit Clause.

The execution of Unit Clause can be described as followsiallyi all variables are unassigned. In
each step the algorithm checks fowait clauseC, i.e., a claus&” that has precisely one unassigned
variablez left while the previously assigned variables do not alresatisfyC'. If there is a unit clausé€’,
the algorithm assigns so as to satisfy it. If not, the algorithm just assigns a randalue to a random
unassigned variable.

Fig. 1. depth one vs. depth three

In terms of the factor graph, every step of Unit Clause meredpects thdirst neighborhoof each
clauseC to decide whethef’ is a unit clause. Clauses or variables that have distancertwmre have no
immediate impact (cf. Figure 1). Thus, one could call Unia@e a “depth one” algorithm. In this sense
most other rigorously analyzed algorithms (e.g., Sho@émtise, Walksat) are depth one as well.

Fi x is depth three. Initially it sets all variables to true. Taaih a satisfying assignment, in the first
phase the algorithm passes over all initially unsatisfiesd, (@ll-negative) clauses. For each such clatse
Fi x inspects all variables in that clause, all clause3 that these variables occur in, and all varialjes
that occur in those (cf. Figure 1). Based on this informatiba algorithm selects a variabidrom C' that
gets set to false so as to satisfy More preciselyFi x aims to choose: so that setting it to false does
not generate any new unsatisfied clauses. The second arrthgitase may reassign (very few) variables
once more. We will describe the algorithm precisely in Set8.

In summary, the main reason wky x outperforms Unit Clause etc. is that it bases its decisiornbe
third neighborhoods in the factor graph, rather than justfitst. This entails that the analysis lif X is
significantly more involved than that of, say, Unit Clauske®nalysis is based on a blend of probabilistic
methods (e.g., martingales) and combinatorial argumé@san employ thenethod of deferred decisions
to a certain extent: in the analysis we “pretend” that theallgm exposes the literals of the random input
formula only when it becomes strictly necessary, so thatutiexposed ones remain “random”. However,
the picture is not as clean as in the analysis of, say, Unitig&laln particular, analyzingi x via the
method of differential equations seems prohibitive, asiéar general clause lengtlksSection 3 contains
an outline of the analysis, the details of which are carrietio Section 4—6. Before we come to this, we
summarize a few preliminaries in Section 2.

Finally, one might ask whether an even stronger algorithmleobtained by increasing the depth to
some numbed > 3. But in the light of the dRSB picture this seems unlikelyeztdt for generat.

2 Preliminaries and notation

In this section we introduce some notation and present a &siclfacts. Although most of them (or closely
related ones) are well known, we present some of the proofhéosake of completeness.



2.1 Balls and bins

Consider a balls and bins experiment whedistinguishable balls are thrown independently and unifgr
at random intan bins. Thus, the probability of each distribution of ballsibins equals —*.

Lemma 2. Let Z(u, n) be the number of empty bins. Let= nexp(—p/n). ThenP [Z(p,n) < A/2] <
O(\/1) - exp(—A/8) asn — oo.

The proofis based on the followirghernoff bounan the tails of a binomially distributed random variable
X with mean)\ (see [18, pages 26-28]): for ahy> 0
t2

P(X >A+1t) <exp (—2

m) and P(X <A —t) <exp (-ﬁ) : (1)

2A

Proof of Lemma 2.et X; be the number of balls in bin In addition, let(Y;)1 <<, be a family of mutually
independent Poisson variables with meaim, and letY” = }" | ¥;. ThenY has a Poisson distribution
with meany. Therefore, Stirling’s formula showB [Y = u] = ©(u~1/?). Furthermore, theonditional
joint distribution ofY7, ..., Y,, given thatY” = x coincides with the joint distribution oKy, . .., X,, (see,
e.g., [12, Section 2.6]). As a consequence,

P[Z(pu,n) <A2]=P[{ie[n]:Y; =0} <A2Y =y

< P S ==Y _om il vi=0)l <32 @

Finally, sinceYy, . .., Y, are mutually independent aidY; = 0] = \/n forall 1 < i < n, the number of
indicesi € [n] such thal; = 0 is binomially distributed with meai. Thus, the assertion follows from (2)
and the Chernoff bound (1). a

2.2 Randomk-SAT formulas

Throughout the paper we 1&t = V,, = {«1,...,2,} be a set of propositional variables.Zf C V, then
Z = {z : x € Z} contains the corresponding set of negative literals. Meegedf [ is a literal, then|l|
signifies the underlying propositional variablelfs an integer, lefu] = {1,2,..., u}.

We let {2 (n, m) be the set of alk-SAT formulas with variables frofy = {1, ..., z,} that contain
preciselym clauses. More precisely, we consider each formula an cdderéuple of clauses and each
clause an orderecdttuples of literals, allowing both literals to occur repedly in one clause and clauses to
occur repeatedly in the formula. Thu&€y,(n, m)| = (2n)*™. Let Xx(n, m) be the power set aby, (n, m),
and letP = P (n, m) be the uniform probability measure.

Throughout the paper we denote a uniformly random elemef,¢f, m) by @. In addition, we use
& to denote specific (i.e., non-random) element$2pfn, m). If & € 24 (n,m), thend,; denotes théth
clause of?, and®;; denotes thgth literal of ;.

Lemma 3. For anyd > 0 and anyk > 3 there isny > 0 such that for alln > nq the following is true.
Suppose that > én and thatX; : 2;(n,m) — {0,1} is a random variable for each € [m]. Let

1= [In*n]|. For a setM C [m] let £, signify the event thak’; = 1 for all i € M. If there is a number
A > ¢ such that for anyM C [m] of sizep, we have

m

ZXi > (14 5)/\m] <n 10

i=1

PEm] < A, then P

Proof. Let X’ be the number of seté! C [m] of sizen such thatX; = 1 foralli € M. Then

EX]= Y PMieM:X,=1< (m)m
MC [l M= a
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If >0, X, > L=[(1448)Am], thent > (ﬁ) Consequently, by Markov’s inequality

ffnee]sofoa (] 50 B () < )

1=1 0

SinceAm > §%n we see thatl + §)Am — u > (1 + 6/2) m for sufficiently largen. Hence, for large
enoughn we haveP [}, X; > L] < (1+4/2)"* < n~ ', as desired. O

Although we allow variables to appear repeatedly in the selaugse, the following lemma shows that
this occurs very rarely w.h.p.

Lemma 4. Suppose that: = O(n). Then w.h.p. there are at mdstn indicesi € [m] such that one of
the following is true.

1. There arel < j; < jo < k such thai®;;, | = [P, |.
2. Thereis’ # i and indicesj; # ja, ji # j3 such thal®;;, | = [®, ;| and|P;j,| = |Pirj, |.

Furthermore, w.h.p. no variable occurs in more tHan » clauses.

Proof. Let X be the number of such indicésor which 1. holds. For eache [m] and any paid < j; <

Jj2 < k the probability that®,;, | = |®;,| is 1/n, because each of the two variables is chosen uniformly at
random. Hence, by the union bound for &rifie probability that there arg < j» such that®,;, | = |P;, |

is at most(%) /n. Consequentlyl [X] < m(%)/n = O(1) asn — oo, and thusX < i Inn w.h.p. by
Markov's inequality.

Let Y be the number of € [m] for which 2. is true. For any giveii’, j1, j1, j, j4 the probability
that|®;;, | = |® ;| and|®;;,| = [P ;| is 1/n?. Furthermore, there are” ways to choosg, i’ and then
(k(k —1))* ways to choosg:, ji, j2, j5- Hence E [Y] < m?k*n=2 = O(1) asn — oo. Thus,Y < 1lnn
w.h.p. by Markov’s inequality.

Finally, for any variabler the number of indice$ € [m] such thatr occurs in®; has a binomial
distributionBin(m, 1 — (1 — 1/n)*). Since the meam - (1 — (1 — 1/n)¥) is O(1), the Chernoff bound (1)
implies that the probability that occurs in more thaim? n clauses i (1/n). Hence, by the union bound
there is no variable with this property w.h.p. a

Recall that Hiltration is a sequencéF,)o<;<, of o-algebrasF, C Xy (n,m) such thatF, C Fi44
forall 0 < ¢t < 7. For a random variabl& : 2;(n,m) — R we letE [X|F;] denote theconditional
expectation Thus, E [X|F;] : 2x(n,m) — R is a F-measurable random variable such that for any

A € F; we have
S EXIR](®) =) X(®).
PcA PcA

Also remember thal [-| ;] assigns a probability measurd:|F;] (@) to any® € 2;(n, m), namely
PL|F](®): A€ Xi(n,m) — E[1a|F](2),
wherel (p) = 1if ¢ € Aandl4(p) = 0 otherwise.

Lemma 5. Let (F;)o<i<- be afiltration and let X};), <<, be a sequence of non-negative random vari-
ables such that eacH; is F;-measurable. Assume that there are numigers 0 such thaft [X;|F;_1] <
&foralll <t <7.ThenE[[], o, X¢e|lFo] < [[i<i<r &t

Proof. Forl < s < 7 weletY; = [[;_, X;. Lets > 1. SinceY,_; is F,_;-measurable, we obtain
E D/s|-7:0] =E [}/5le5|-/¢0] =E [E [}/571X5|-7:571] |-7:0] =E DfsflE [Xs|-7:571] |-7:0] S gsE D/571|-7:0] )
whence the assertion follows by induction. a

We also need the following tail bound (“Azuma-Hoeffding'ge[18, p. 37]).



Lemma 6. Let (M;)o<i<- be a martingale with respect to a filtratiof#¥; )o<;<. such thatM, = 0
Suppose that there exist numbersuch that M; — M;_;| < ¢ forall 1 < ¢ < 7. Then for anyA > 0 we
haveP [[M.| > A < exp [-A?/(2>°,_, ¢})].

Finally, we need the following bound on the number of cladkaeshave “few” positive literals in total
but contain at least one variable (either positively or tigghy) from a “small” set.

Lemma 7. Suppose that > 3andm/n < 2°k~'Ink. Letl <[ < vk and sety = 0.01 - k—*'. For a set
Z C V let Xz be the number of indicese [m] such that®; is a clause with preciselypositive literals
that contains a variable fronZ. Thenmax { X : | Z| < dn} < Von w.h.p.

Proof. Let u = [v/dn]. We use a first moment argument. Clearly we just need to censgtsZ of size
[6n]. Thus, there are at mogf,, ) ways to choos€. OnceZ is fixed, there are at mogt;) ways to choose

asetZ C [m] of sizeu. For each € 7 the probability that; contains a variable fror# and has precisely
I positive literals is at most' ~*k (7). Hence, by the union bound

2 < (5

o
2 In(
) ( eln( )5"> [asm < 2%k~ 1n k]

~—

Pmax{Xz :|Z| <dn} > pu] <

N

IN
SN

) (4e In(k) - k! \/3)# [because: = [v/on]]
) §Von/8 [usingd = 0.01 - k=%

P [n\/g (\/5(1 —Ind) + ém&)} .

IN

IN
A/~ /~ /~
S o >l o

The last expression ig1), because/5(1 — In §) + 1 1nd is negative ag < 0.01. O

3 The algorithm Fi x

In this section we present the algoritifnx. To establish Theorem 1 we will prove the following: for any
0 < e < 0.1thereisky = ko(e) > 10 such that for allc > ko the algorithmFi x outputs a satisfying
assignment w.h.p. when applieddowith m = |n - (1 — £)2¥k~!Ink|. Thus, we assume thatexceeds
some large enough numbky depending orx only. In addition, we assume throughout that> ng for
some large enoughy = ng(e, k). We set

w=(1-¢)lnkandk; = [k/2].

Let® € 2 (n,m) be ak-SAT instance. When applied tb the algorithm basically tries to “fix” the
all-true assignment by setting “a few” variabl&sc V' to false so as to satisfy all clauses. Obviously, the
setZ will have to contain one variable from each clause congjstimegative literals only. The key issue
is to pick “the right” variables. To this end, the algorithrogs over the all-negative clauses in the natural
order. If the present all-negative clauBgdoes not contain a variable frofyet, Fi x (tries to) identify a
“safe” variable ind;, which it then adds td&. Here “safe” means that setting the variable to false doés no
create new unsatisfied clauses. More precisely, we say ttlatised; is Z-uniqueif @; contains exactly
one positive literal fron?”\ Z and no literal fromZ. Moreoveryx € V'\ Z is Z-unsafef it occurs positively
in a Z-unique clause, and-safeif this is not the case. Then in order to fix an all-negativeis&d; we
preferZ-safe variables.

To implement this ide&i x proceeds in three phases. Phase 1 performs the operatimibdedn the
previous paragraph: try to identifya-safe variable in each all-negative clause. Of course, it hagpen
that an all-negative clause does not contai-aafe variable. In this cadéi x just picks the variable
in position k1. Consequently, the assignment constructed in the firstephesy not satisfyall clauses.
However, we will prove that the number of unsatisfied clause®ry small, and the purpose of Phases 2
and 3 is to deal with them. Before we come to this, let us desd?hase 1 precisely.



Algorithm 8. Fi x(®)
Input: A k-SAT formula®. Output:Either a satisfying assignment or “fail”.

la. LetZ =4.

1b. Fori=1,...,mdo

1c. If @; is all-negative and contains no variable from Z

1d. Ifthereis 1 < j < ki such that |®;;| is Z-safe, then pick the least such j and add |®;;| to Z.
le. Otherwise add |®; , | to Z.

The following proposition, which we will prove in Section giymmarizes the analysis of Phase 1. &gt
be the assignment that sets all variable¥’ify Z to true and all variables iZ to false.

Proposition 9. At the end of the first phase Bf x (@) the following statements are true w.h.p.

1. We haveZ| < 4nk 'lnw.
2. At most(1 + £/3)wn clauses areZ-unique.
3. At mosexp(—k°/®)n clauses are unsatisfied undey.

Sincek > ko(¢) is “large”, we should think ofxp(—k°/%) as tiny. In particularexp(—k*/%) < w/k. As

the probability that a random clause is all-negativi§, under the all-true assignmefit+o(1))2~*m ~
wn/k clauses are unsatisfied w.h.p. Hence, the outeopef Phase 1 is already a lot better than the all-true
assignment w.h.p.

Step 1d only considers indicés< j < k;. This is just for technical reasons, namely to maintain a
certain degree of stochastic independence to facilitheeghalysis of) Phase 2.

Phase 2 deals with the clauses that are unsatisfied upddihe general plan is similar to Phase 1: we
(try to) identify a setZ’ of “safe” variables that can be used to satisfy dhyeunsatisfied clauses without
“endangering” further clauses. More precisely, we say ¢helaused; is (Z, Z’)-endangeredf there is
nol < j < k such that the litera®;; is true underwz and|®;;| € V \ Z’. Roughly speaking®; is
(Z, Z")-endangered if it relies on one of the variablesZihto be satisfied. Calp; (Z, Z’)-secureif it is
not(Z, Z')-endangered. Phase 2 will construct agesuch that for alll < i < m one of the following is
true:

— @,is(Z,7')-secure.
— There are at least three indices< j < k such that®;;| € Z'.

To achieve this, we say that a variables (Z, Z’)-unsafef © € ZUZ’ or there are indice, ) € [m] x [k]
such that the following two conditions hold:

a. Forallj #1lwehaved;; c ZUZ' UV \ Z.
b. Spil = XT.

(In words,z occurs positively inp;, and all other literals of; are either positive but i U Z’ or negative
but not inZ.) Otherwise we calk (Z, Z’)-safe In the course of the proceds, x greedily tries to add as
few (Z, Z')-unsafe variables td’ as possible.

2a. LetQ@ consistof all i € [m] such that &; is unsatisfied under oz. Let Z’' = 0.
2b. WhileQ # 0
2c. Let? = min Q.
2d. If there are indices k1 < j1 < j2 < j3 < k — 5 suchthat |®;;,| is (Z, Z')-safe for | = 1,2, 3,
pick the lexicographically first such sequence j1, j2, 53 and add |®;;, |, |Pij, |, |Pijs| tO Z'.
2e. else
let k — 5 < j1 < j2 < js < k be the lexicographically first sequence such that |®;;,| ¢ Z’
and add |®;;,|to Z' (1 =1,2,3).
2f. Let Q be the set of all (Z, Z’)-endangered clauses that contain less than 3 variables from Z'.

Note that the While-loop gets executed at meg3 times, becaus€’ gains three new elements in each
iteration. Actually we prove in Section 5 below that the fisatZ’ is fairly small w.h.p.

Proposition 10. The setZ’ obtained in Phase 2 dfi x(®) has sizd 7’| < nk~'2 w.h.p.



After completing Phase Ej x is going to set the variables I\ (ZUZ’) to true and the variables i\
7' to false. This will satisfy al(Z, Z’)-secure clauses. In order to satisfy tte Z')-endangered clauses as
well, Fi x needs to set the variablesii appropriately. To this end, we set up a bipartite gréip#, 7, 7')
whose vertex set consists of thg, Z’)-endangered clauses and theZetEach(Z, Z’)-endangered clause
is adjacent to the variables froff that occur in it. If there is a matchiny in G(2, Z, Z') that covers alll
(Z, Z')-endangered clauses, we construct an assignment 5, as follows: for each variable € V' let

false ifr e Z\ 7’
oz.z .m(x) = false if{®;,z} € M for somel < i < m andz occurs negatively id;,
true otherwise.

To be precise, Phase 3 proceeds as follows.

3. If G(®, Z, Z'") has a matching that covers all (Z, Z')-endangered clauses, then compute an (arbitrary)
such matching M and output oz 2/ . If not, output “fail”.

The (bipartite) matching computation can be performediitn. + m)>/?) time via the Hopcroft-Karp
algorithm. In Section 6 we will show that the matching exists.p.

Proposition 11. W.h.p.G(®, Z, Z') has a matching that covers dl, Z')-endangered clauses.

Proof of Theorem 1Fi x is clearly a deterministic polynomial time algorithm. Ithmains to show that
Fi x(®) outputs a satisfying assignment w.h.p. By Proposition 14sBI8 will find a matchind/ that
covers all(Z, Z')-endangered clauses w.h.p., and thus the output will bedbigrement = oz 7/ m
w.h.p. Assume that this is the case. Thesets all variables it \ Z’ to false and all variables i\ (ZUZ’)
to true, thereby satisfying allZ, Z’)-secure clauses. Furthermore, for eazhZ’)-endangered clausg;
there is an edgé¢®;, |®;;|} in M. If &;; is negative, thew (|®;;|) = false, and if if®;; is positive, then
o(®;;) = true. In either case satisfiesp,. O

4  Proof of Proposition 9

Throughout this section we I8t < ¢ < 0.1 and assume thdt > k, for a sufficiently largekg = ko(e)
depending om only. Moreover, we assume that = |n - (1 — £)2¥k~!In k| and thatr > n, for some
large enoughy = ng(e, k). Letw = (1 — e) In k andk; = [k/2].

4.1 Outline

Before we proceed to the analysis, it is worthwhile givingrigtintuitive explanation as to why Phase 1
“works”. Namely, let us just consider tHast all-negative claus@; of the random input formula. With-
out loss of generality we may assume that 1. Given that®, is all-negative, the:-tuple of variables
(|®1])1<j<x € V* is uniformly distributed. Furthermore, at this poift = (). Hence, a variable is
Z-unsafe iff it occurs as the unique positive literal in sorfeuse. The expected number of clauses with
exactly one positive literal i82~*m ~ wn asn — oo. Thus, for each variable the expected number of
clauses in whichr is the only positive literal i&2~*m /n ~ w. In fact, for each variable the number of such
clauses is asymptotically Poisson. Consequently, theghibty thatz is Z-safe is(1 + o(1)) exp(—w).
Returning to the claus®,, we conclude that thexpectediumber of indiceg < j < k; such thai® ;| is
Z-safe is(1 + o(1))k; exp(—w). Sincew = (1 — £) Ink andk; > £, we have (for large enough)

(1+0(1))ky exp(—w) > k°/3.

Indeed, the number of indicés< j < k; so that|®,,| is Z-safe is binomially distributed, and hence the
probability that there is n&-safe|$, ;| is at mostexp(—£k©/3). Since we are assuming that> ko (¢)

for some large enoughy (), we should think ofc as “large”. Thusexp(—k©/3) is tiny and hence it is
“quite likely” that ¢, can be satisfied by setting some variable to false withouatitrg any new unsatisfied
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clauses. Of course, this argument only applies to the firstemjative clause (i.eZ = ), and the challenge
lies in dealing with the stochastic dependencies that.arise

To this end, we need to investigate how theseomputed in Steps 1a—1e evolves over time. Thus, we
will analyze the execution of Phase 1 as a stochastic procesbich the setZ corresponds to a sequence
(Zi)1>0 of sets. The time parameters the number of all-negative clauses for which either Se¢prlle
has been executed. We will represent the execution of Phasénput® by a sequence of (random) maps

7 [m] x [k] = {-1,1}UV UV = {£1,21,Z1,...,Tn, Tn}

The mapg,)o<s<: capture the information that has determined thefiss¢ps of the process. (i, j) =
1 (resp.m:(4,j) = —1), thenFi x has only taken into account thé; is a positive (negative) literal, but
not what the underlying variable is.4f,(i, j) € V U V, Fi x has revealed the actual liteial;.

Let us define the sequeneg(i, j) precisely. LetZ, = (). Moreover, letl; be the set of all such that
there is exactly ong such thawb,; is positive. Further, defingy (4, j) for (¢, j) € [m] x [k] as follows. If
i € Uy and®;; is positive, then letry(i, j) = P;;. Otherwise, letry (7, j) be 1 if &,; is a positive literal
and—1if &;; is a negative literal. In addition, far € V' let

Uo(x) = {i € Up:3j € [k] : mo(4,7) = x}]
be the number of clauses in whighis the unique positive literal. Far> 1 we definer; as follows.

PI1 If there is no index. € [m] such that®, is all-negative but contains no variable fraf_,, the

process stops. Otherwise Igtbe the smallest such index.
Pl2 Ifthereisl < j < ki such that/;_,(|®y,;|) = 0, then choose the smallest such ingertherwise

|et_] = k. Letz = 45¢tj andZt =71 U {Zt}
PI3 LetU; be the set of alf € [m] such thatb; is Z;-unique. Forz € V let U;(x) be the number of

indicesi € U, such that: occurs positively ind;.
Pl4 Forany(i,l) € [m] x [k] let

(l)_ D, if (i:¢tAl§]€1)V|45il|:Zt\/(iEUt/\Tfo(i,l):l),
T8 = 121 (4,1) otherwise.

Let T be the total number of iterations of this process beforeopstand definer, = nr, Z;, = Zr,
U; =Urp, Ut((E) = UT((E), (bt =2z=0 forallt > T.

Let us discuss briefly how the above process mirrors Phas€ibafStepPl1 selects the least index
such that clausé,, is all-negative but contains no variable from the Zgt; of variables that have been
selected to be set to false so far. In terms of the descripfi6in x, this corresponds to jumping forward to
the next execution of Steps 1d—e. Sifige  (z) is the number ofZ;_;-unique clauses in which variahle
occurs positively, Step12 applies the same rule as 1d—d-ofx to select the new elementto be included
in the setZ;. StepPI3 then “updates” the numbet§ (x). Finally, stepPI4 sets up the map, to represent
the information that has guided the process so far: we rekedlrstk; literals of the current claus@,,
all occurrences of the variablg, and all positive literals of;-unique clauses.

Example 12.To illustrate the proced3I1-PI4 we run it on a5-CNF & with n = 10 variables andn = 9
clauses. Thusg; = 3. We are going to illustrate the information that the proaesgals step by step.
Instead of using-1 and—1 to indicate positive/negative literals, we just useand— to improve readability.
Moreover, to economize space we let tsdumnscorrespond to the clauses. Sinrkés random each literal
&,; is positive/negative with probabilitg independently. Suppose the sign patter of the formuta

— -ttt
—————— + -+
———————— -
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Thus, the first three claus@,, &5, $3 are all-negative, the next three claugeg @5, #5 have exactly
one positive literal, etc. In order to obtairg, we need to reveal the variables underlying the unique posi-
tive literals of®,4, @5, $4. Since we have only conditioned on the signs, the positteedis occurring in
@, D5, g are still uniformly distributed oveV. Suppose revealing them yields

— — — X5 X2 X3 + + +
-—— - - -+ -+
mH=—-————- - - ——+
________|__

Thus, we havé/y = {4,5,6}, Up(z2) = Up(z3) = Up(x5) = 1, andUy(z) = 0 for all other variables:.

At time ¢t = 1 PI1 looks out for the first all-negative clause, which happensed,. Hence¢, = 1. To
implementPI2, we need to reveal the firéty = 3 literals of @,. The underlying variables are unaffected
by the conditioning so far, i.e., they are independentlyarmly distributed ovell’. Suppose we get

X2 — — x5 22 23 + + +
X3 ——— — —+—+
X——— - — ——+
_______ _|__

The variablesrs, 23 underlying the first two literals o, are inUy. This means that setting them to
false would produce new violated clauses. TherefBig,setsj = k1 = 3, 21 = 21, andZ; = {z1}.
Now, PI3 checks out what clauses afg-unique. To this end we need to reveal the occurrences ef

x1 all over the formula. At this point eact-sign still represents a literal whose underlying variable
uniformly distributed ovel/. Therefore, for eack--entry (i, j) we have|®;;| = 1 with probability1/n
independently. Assume that the occurrences,odire as follows:

T2 — X1 %5 T2 T3 + + +
T3 — — — — — + - +

As z1 € Zy, we considerr; assigned false. Since occurs positively in the second last claug, this
clause has only one “supporting” literal left. As we havesaed all occurrences af, already, the variable
underlying this literal is uniformly distributed ovéf \ {z1}. Suppose it isc4. As x4 is needed to satisfy
&g, we “protected” it by settind/; (x4) = 1. Furthermoreg, featuresr; negatively. Hence, this clause
is now satisfied by, and therefore:; could safely be set to false. Thus, (z5) = 0. Further, we keep
Ui(z2) = Us(x3) = 1 and letU; = {5, 6, 8}. Summarizing the information revealed at time 1, we get

T2 — T1 Ts T2 T3 + Xa +

Attime ¢t = 2 we deal with the second clauge whose column is still all-minus. Heneg = 2. Since we
have revealed all occurrencesxof already, the firsk; = 3 literals of @, are uniformly distributed over
V\ Z1 = {x2,...,x10}. Suppose revealing them gives

T2 X5 T1 X5 T2 T3 + T4 +
Tz3X2 — — — — + — +

The first variable o, is x5 andU; (x5) = 0. Thus,PI12 will selectzy = x5 and letZs = {z1,25}. To
determind/,, P13 needs to reveal all occurrencesgf At this time eacht-sign stands for a literal whose
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variable is uniformly distributed ovér \ Z;. Therefore, for each--sign the underlying variable is equal
to 25 with probability1/(n — 1) = 1/9. Assume that the occurrencesigfare

T2 X5 T1 T5 T2 T3 + T4 +

T3 T2 — — — — + — X5
T Tz — — — — — — 1
_______ T, —
X5 — — 1 — — — — —

Sincex; occurs positively in the last clauds, it only has one plus left. Thus, this claus¢sunique and
we have to reveal the variable underlying the last plus $\grhwe have revealed the occurrences paind
x5 already, this variable is uniformly distributed oviék {z1, x5 }. Suppose itis:4. ThenUs = {5, 6, 8, 9},

Ug(l‘g) = U2(1'3) =1, U2($4) =2, and7r2 reads

T2 Ts T1 Ts5 T2 T3 + T4 Xa

T3 T2 — — — — + — s
Mg = T1 T3 — — — — — — 1
_______ T, —
Is — — T3 — — — — —

At this point there are no all-minus columns left, and therefthe process stops with = 2. In the
course of the process we have revealed all occurrencesiabiles inZ, = {1, z5}. Thus, the variables
underlying the remaining--sign are independently uniformly distributed o¥én 7. a

Observe that at each time< T the proces$11-PI4 adds precisely one variablg to Z;. Thus,
|Z:| = tforallt < T.Furthermore, fod <t < T the mapr, is obtained fromr;_; by replacing some
+1s by literals, but no changes of the opposite type are made.

Of course, the proce§41—PI4 can be applied to any concréteSAT formulad (rather than the random
®). It then yields a sequencs [@] of maps, variables, [9], setsU, [®], Z; [®], and numbers/;(x) [P].

For each integer > 0 we define an equivalence relatien on the set2;(n, m) of k-SAT formulas by
letting® =, ¥ iff &g [§] = 7, [P] forall 0 < s < ¢. Let F; be thes-algebra generated by the equivalence
classes ofs;. The family (F;):>¢ is a filtration. Intuitively, a random variabl& is F;-measurable iff its
value is determined by time Thus, the following is immediate from the construction.

Fact 13. For anyt > 0 the random mag, the random variableg,; andz;, the random set§; and 7,
and the random variableB; (z) for x € V are F;-measurable.

If m¢(i,7) = =£1, then up to timel the proces$11-Pl4 has only taken the sign of the literdd;;
into account, but has been oblivious to the underlying WeiaThe only conditioning is that?;;| ¢ Z;
(because otherwisBl4 would have replaced the-1 by the actual literal). Since the input formuéa
is random, this implies thgt®;;| is uniformly distributed ovel” \ Z,. In fact, for all (z, j) such that
(4, j) = £1 the underlying variables are independently uniformlyriisted ove \ Z,. Arguments of
this type are sometimes referred to as the “method of defeleeisions”.

Fact 14. Let&, be the set of all pair$:, j) such thatr, (i, j) € {—1, 1}. The conditional joint distribution
of the variableg|®;;)(; j ce, givenF; is uniform over(V \ Z;)%:. In symbols, for any formulé and for
any mapf : & [@] — V' \ Z; [®] we have

P V(i j) € & (@] : [Byj] = f(i, )| Fi] (@) =V \ Z, [@] |15,

In each step < T of the proces®I1-Pl14 one variablez; is added taZ;. There is a chance that this
variable occurs in several all-negative clauses, and finer¢he stopping tim&’ should be smaller than
the total number of all-negative clauses. To prove this, aedrthe following lemma. Observe that Bi4
clause®; is all-negative and contains no variable frémiff (¢, j) = —1 for all j € [k].

Lemma 15. W.h.p. the following is true for all < ¢t < min{7,n}: the number of indices € [m] such
thatm,(i,5) = —1forall j € [k] is at mos@nw exp(—kt/n)/k.
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Proof. The proofis based on Lemma 3 and Fact 14. Similar proofs wiliorepeatedly. We carry this one
out at leisure. Fot < ¢t < n and: € [m] we define a random variable

X, 1 if t <Tandm(i,j) = —1forall j € [k],
%= 0 otherwise.

The goal is to show that w.h.p.

Vi<t<n: ZX“ < 2nwexp(—kt/n)/k. 3)

=1

To this end, we are going to prove that

P ZX” > 2nwexp(—kt/n)/k| = o(1/n) foranyl <t <n. 4

i=1

Then the union bound entails that (3) holds w.h.p. Thus, wdedt to prove (4).

To this end we fixt < ¢ < n. Considering fixed, we may drop it as a subscript and wrike = X;;
fori € [m). Lety = [In*n]. For a setM C [m] we let€ denote the event thaf; = 1 forall i € M.
In order to apply Lemma 3 we need to bound the probability efehentt ,, for any M C [m] of sizep.
To this end, we consider the random variables

. o B
Ny = {1 if 7(i,7) lands < T,

0 otherwise (i €[m], jek],0<s<n).

ThenX; = 1iff N;; = 1forall0 < s < tandallj € [k]. Hence, lettingV; = H(i_’j)eMX[,@] Niij, we

have
P[Em] =E l]‘[ X; HNS]. (5)
s=0

ieM
The expectation alV; can be computed easily: for ang M we have]_[f:1 Noi; = 1iff claused; is all-

negative. Since the clauses®fre chosen uniformlyb; is all-negative with probabilitg —*. Furthermore,
these events are mutually independent fo¥ @l M. Therefore,

=E

k
E[No] =E [H HNOU} = 27FMl = g—hu, (6)

ieMj=1
In addition, we claim that
E[N|Fe1] < (1 —1/n) foranyl < s < n. (7)
To see this, fix any < s < n. We consider four cases.

Case 1:T < s. ThenN; = 0 by the definition of the variable¥/; ;.
Case 2:m5_1(i,j) # —1 forsome (i, j) € M x [k]. Thenwn(i,j) = ms—1(4,j) # —1 by Pl4, and thus
s — Nsij = 0.

Case 3:¢p, € M. If the index¢s chosen byPI1 at times lies in M, thenPl14 ensures that for all < k;
we haver,(¢s,j) # +1. Therefore Ny = N4 ; = 0.

Case 4: none of the above occursAs 751 (i, j) = —1 forall (¢, j) € M x [k], givenF,_; the variables
(12i51) 5,5y emx k) are mutually independent and uniformly distributed oVek Z, , by Fact 14.
They are also independent of the choice gfbecause, ¢ M. Furthermore, by14 we haveN,;; =
1 only if |®;;] # z,. This event occurs for alli,j) € M x [k] independently with probability
1—|V\ Zs_1]7! <1 —1/n. Consequenthyi [N;|Fs—1] < (1 — 1/n)** whence (7) follows.
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For any0 < s < t the random variabld/; is F,-measurable, because is (by Fact 13). Therefore,
Lemma 5 implies in combination with (7) that

E

HNS|FO] < (1= 1/n)k* < exp(—ktu/n). (8)
s=1
Combing (5) with (6) and (8), we obtain

t t
HNS HNS|FO‘|‘|
s=0 s=1

< E [Ny - exp(—Fktu/n) = M,  where\ = 2 % exp(—kt/n).

P[Ey] =E —E|[Ny-E

Since this bound holds for any! C [m] of sizey, Lemma 3 implies thalP [>-7" | X; > 2Am] = o(1/n).
As 2 m < 2nwexp(—kt/n)/k, this yields (4) and thus the assertion. O

Corollary 16. W.h.p. we hav& < 4nk~!Inw.

Proof. Letty = |2nk~!Inw] and letl; be the number of indicessuch thatr; (i, j) = —1forall1 < j <
k. ThenPI2 ensures thaf; < I;_, — 1 forall ¢t < T'. Consequently, if” > 2ty, then0 < Iy < I;, — %o,
and thusl;, > to. Since|2nk~ ! Inw| > 3nw exp(—kto/n)/k for sufficiently largek, Lemma 15 entails

P[T > 2to] < P[L, > to) =P [Iy, > [2nk™ ' Inw]] < P [I;, > 3nwexp(—kto/n)/k] = o(1).
HenceT < 2ty w.h.p. O

For the rest of this section we let
0 = |4nk ' Inw].

The next goal is to estimate the numberffunique clauses, i.e., the size of the Egt For technical
reasons we will consider a slightly bigger set:lgtbe the set of all € [m] such that there is an indgx
such thatr, (i, j) # —1 but there exists ng such thatr, (i, j) € {1} U Z;. That is, clausep; contains a
positive literal, but by time there isat mostone positive literatp;; ¢ Z, left, and there in ng such that
P;; < Z,. This ensures thdf;, c U;. Fori € U, iff there isexactly onej such thaib;; is positive but not
in Z; and there in ng such thaib;; € Z,. In Section 4.2 we will establish the following bound.

Lemma 17. W.h.p. we havenaxo<i<7 |U| < maxo<i<r [Us] < (1 +€/3)wn.

Additionally, we need to bound the numbergfunsafe variables, i.e., variabless V' \ Z; such that
U.(x) > 0. This is related to an occupancy problem. Let us think of gméablesr € V' \ Z; as “bins” and
of the clause®; with i € U, as “balls”. If we place each ballinto the (unique) binc such thate occurs
positively in®;, then by Lemma 17 the average number of balls/bin is

Ul _ (+ef3)w

w.h.p.

Recall thaty = (1 — ) In k. Corollary 16 yieldsI" < 4nk~! Inw w.h.p. Consequently, far< 7' we have
(1+¢/3)(1 —t/n)"'w < (1 — 0.6¢) Ink w.h.p., provided thak is large enough. Hence, if the “balls”
were uniformly distributed over the “bins”, we would expect

VA Zel exp(=|U/IV\ Ze]) = (n = )k~ > nke/271
“bins” to be empty. The next corollary shows that this is aate. We defer the proof to Section 4.3.
Corollary 18. LetQ; = |[{z € V'\ Z; : U;(x) = 0}|. Thenmin,<7 Q; > nk*/?>~! w.h.p.

Now that we know that for all < T there are “a lot” of variables € V' \ Z;_; such that/;(z) = 0
w.h.p., we can prove that itis quite likely that the cladsg selected at timécontains one. More precisely,
we have the following.
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Corollary 19. Let

B, — 1 if min1§j<k1 Ut71(|45¢tj|) >0,Q9 1> nks/zil, |Ut,1| < (1 + 5/3)wn, andT > t,
71 0 otherwise.

ThenB; is Fi-measurable andl [B;|F;_1] < exp(—k*/%) forall 1 <t < 4.

In words,B; = 1 indicates that the claus®,, processed at timedoes not contain &;_-safe variable
(“miny <<k, Ur_1(|®Pg,;]) > 07), although there are plenty such variable®f*; > nk/?~1"), and
although the number df;_;-unique clauses is small|;—1 | < (1 +&/3)wn”).

Proof of Corollary 19.Since the everll’ < ¢ and the random variabl@; ; are 7, _;-measurable and as
Ui—1(|Py,;]) is Fr-measurable for any < ki by Fact 133, is F,-measurable. Leb be such thal” [§] >

t, Qi1 [@] > nk*~1, and|U;—1 [@] | < (1+¢/3)wn. We condition on the evedt =, _; &. Then attimet
the proces®11-Pl14 selectsp; such thatr._;(¢:,j) = —1for all j € [k]. Hence, by Fact 14 the variables
|P4,,| are uniformly distributed and mutually independent eletmefl” \ Z;_,. Consequently, for each
j < ky the eventJ;_;(|®,;|) = 0 occurs with probabilityQ;_;|/|V \ Z;_1| > k*/2~! independently.
Thus, the probability that’, 1 (|®4,;]) > 0 for all j < ki is at most(1 — k</2~1)*1 =1 Finally, provided
thatk > ko(¢) is sufficiently large, we havel — k=/2= 1)1 < exp(—k®/9). 0

Proof of Proposition 9The definition of the proced?I1-PI4 mirrors the execution of the algorithm, i.e.,
the setZ obtained after Steps 1a—1dkifx equals the sefr. Therefore, the first item of Proposition 9 is
an immediate consequence of Corollary 16 and the factfhat ¢ for all ¢t < T'. Furthermore, the second
assertion follows directly from Lemma 17 and the fact tia{ < |l4,| equals the number df,-unique
clauses.

To prove the third claim, we need to bound the number of ckatlsst are unsatisfied under the assign-
mento,. that sets all variables iV \ Z to true and all variables i@ to false. By construction any
all-negative clause contains a variable frém and is thus satisfied undey,,. (cf. P11). We claim that for
anyi € [m] such thatp; is unsatisfied underz,. one of the following is true.

a. Thereisl <t < T suchthat € U;_; andz; occurs positively inb,.
b. There ard < j; < jo < k suchtha®;;, = P;;,.

To see this, assume thd is unsatisfied underz, and b. does not occur. Let us assume without loss
of generality tha®,,, ..., ®;; are positive and;;, 1, ..., P;, are negative for some> 1. Sinced; is
unsatisfied under,., we haved;,, ..., &, € Zr and®;;,1,..., P, & Zr. Hence, for each < j <1
there ist; < T such that®;; = z;,. As &;y,..., P are distinct, the indices,, ..., ¢; are mutually
distinct, too. Assume that < --- < ¢;, and letty, = 0. Then®; contains precisely one positive literal
fromV'\ Z;,_,.Hencej € U;,_,. Sinced; is unsatisfied underz,. no variable fromZ occurs negatively
in ®; and thus € U forall t;_; < s < t;. Thereforej € U;,_; andz;, = &, i.e., a. occurs.

Let X be the number of indiceise [m] for which a. occurs. We claim that

X < nexp(—k/T) w.h.p. 9)

Since the number of € [m] for which b. occurs igD(Inn) w.h.p. by Lemma 4, (9) implies the third
assertion in Proposition 9. Thus, the remaining task is tog(9).
To establish (9), leB; be as in Corollary 19 and set

D, — Ut—l(zt) if B:=1 andUt_l(Zt) < 1n2 n,
= 0  otherwise

Then by the definition of the random variablBg D, eitherX < »°,_,_, D, or one of the following
events occurs: o

i. T >0.

ii. O, <nks/2~!forsome0) <t <T.
iii. U] > (14¢/3)wnforsomel <¢<T.
iv. |Uy_1(z)| > In*nfor somel < ¢ < 6.
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The probability of i. iso(1) by Corollary 16. Moreover, ii. does not occur w.h.p. by Ctangl 18, and the
probability of iii. is o(1) by Lemma 17. If iv. occurs, then the variakleoccurs in at leadin® n clauses for
somel < ¢ < 6, which has probability(1) by Lemma 4. Hence, we have shown that

X< > D whp. (10)

1<t<9

Thus, we need to boungjlgtge D,. By Fact 13 and Corollary 19 the random variailg is F;-
measurable. LeD;, = E [D;|F,_,] and M, = 22:1 Dy — Ds. Then(M,)o<i<p iS @ martingale with
Mgy = 0. As all incrementsD, — D, are bounded byn®n in absolute value by the definition @,
Lemma 6 (Azuma-Hoeffding) entails thatly, = o(n) w.h.p. Hence, we have

> Di=o(n)+ > D whp. (11)
1<t<6 1<t<h
We claim that B
D, < 2wexp(—k/%)  foralll <t <. (12)
For by Corollary 19 we have
E [B|Fi_1] < exp(—k*/%)  forall1 <t <. (13)

Moreover, if B, = 1, thenPI2 setsz, = |®,,, |. The index¢, is chosen so that,_1 (¢, j) = —1 for all
j € [k]. Therefore, giverF;_; the variablez, = P, is uniformly distributed oveV \ Z,_; by Fact 14.
Hence,

> Ui1(2) _ U] - E[Bi|Fia]

D, < .- -
D < E{Bi|Fi] v\ Zod] V\ Zo

2€V\Zi_1

Furthermorep3; = 1 implies|U;_;| < (1 + ¢/3)wn. Consequently, fok > k(e) large enough we get

5 < It 5wn BB|F] _ (1+5wn-E[BiF ]

Dt S S 2wk [Bt|./c't,1] . (14)

n—t - n—=0

Combining (13) and (14), we obtain (12). Further, pluggibg)(into (11) and assuming that> k() is
large enough, we get

Z Dy = 2wexp(—kT/%)0 + o(n) < 3wexp(—k*/%)0 < nexp(—k*/7) w.h.p.
1<1<0

Thus, (9) follows from (10). a

4.2 Proof of Lemma 17

Forintegerg > 1,4 € [m], j € [k] let

o 1 if me—1(4,7) = 1 andme(,5) = 2 S, — 1if T >tandm(i,j5) € {1,-1} (15)
%~ ) 0 otherwise, % 7 ) 0 otherwise.

Thus,H;; = 1 indicates that the variable underlying the positive litébg; is the variable;, set to false at
timet and thaib,; did not get revealed before. Moreovsy;; = 1 means that the variable underlyigg;
has not been revealed up to tién particular, it does not belong to the sgtof variables set to false.

Lemma 20. For any two setg, 7 C [0] x [m] x [k] we have

<(m-0)""a-1/mW

E[ I #Heio JI Susl%o

(t,i,5)€T (ti,5)eT
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Proof. Let1 <t < 6. LetZ; = {(4,)) : (t,4,5) € I}, Ty = {(i,5) : (t,i,5) € T}, and
Xt = H Htij . H Stij-
(4,5)EZe (.)€ Tt

If X; =1,theneithe; UJ, =0 ort < T;forif t > T, thenS,;; = 0 by definition andH,;; = 0 because
m = m—1. Furthermore X, = 1 implies that

m—1(i,j) = 1forall (i,5) € Z, andm,_1 (4, j) € {—1,1} forall (4,7) € J;. (16)
Thus, let® be ak-CNF such thaf” [¢] > ¢t andm,_; [P] satisfies (16). We claim that
E [X¢|F-1] (@) < (n— )71 — 1/l (17)

To show this, we condition on the eved#tt =, ; &. Then at timet stepsPI1-PI2 select a variable;
from the the all-negative clausBy,. As for any(i,j) € Z, the literal®;; is positive, we havey, # i.
Furthermore, we may assume thaidt, j) € J; thenj > ki, because otherwise (i, j) = @,; and hence
X: = Si4,; = 0 (cf. Pl4). Thus, due to (16) and Fact 14 in the conditional distritnu [-|F,_1] (@) the
variables(|®;;|) ;. j)ez,uz, are uniformly distributed ovel” \ Z; _; and mutually independent. Therefore,
the event$®, ;| = =, occur independently with probability |V\ Z,_1| = 1/(n—t+1)for (i, j) € Z,UJ,,
whence

E[X)|F 1] (@) <(n—t+ 1) —1/n—t+ 1)V < (n—0)"171 - 1/n)l7.
This shows (17). Finally, combining (17) and Lemma 5, we mbta
6
El J] Hui- [[ SuilFo| =E lH Xt|}'0]
(t,i,7)€T (t,i,5)eT t=1

(n =) —1/m) = (= 0) " (1 = 1/m)

IN
e

o~
Il

1

as desired. O

Armed with Lemma 20, we can now bound the number of indiced/; such that?, has “few” positive
literals. Recall that € U, iff &; hasi > 1 positive literals of which (at leasf)— 1 lie in Z; while no
variable fromZ, occurs negatively ib;.

Lemma 21. Let1 < < vk and1 < t < 6. Moreover, let

A(t) = w<';:11> <%>ll (1 —t/n)L.

With probabilityl — o(1/n) eitherT < ¢ or there are at mostl + ¢/9) A;(¢)n indices: € U, such thaid;
has precisely positive literals.

Proof. Fix 1 <t < 6. Fori € [m] let

Y. — { 1 if T > t, ®; has exactly positive literals, and € U,
71 0 otherwise.

Our task is to boun@ie[m] X;. To do so we are going to apply Lemma 3. Thus,/let [ln2 n] let

M C [m] be a set of sizg, and let€ be the event thak; = 1 for all i € M. Furthermore, leP; C [k]

be a set of sizé — 1 for eachi € M, and letP = (FP;),cr be the family of all setd;. In addition, let

t; : P, — [t]foralli € M, and let7 = (¢;);,c m comprise all maps;. LetEx((P, T) be the event that the

following statements are true:
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a. @, has exactly positive literals for alk € M.
b. &;; = z,(; foralli € M andj € P;.
c. T > t and no variable fron¥; occurs negatively i®;.

If the event€,, occurs, then there exi®?, 7 such that,(P, T) occurs. Hence, in order to bound the
probability of €, we will bound the probabilities of the everis (P, 7) and apply the union bound.
To bound the probability of o (P, 7), let

IT=Im(P,T)={(s,4,j): 1€ M,j€P;,s=t;,(j)},
J = jM(PvT) = {(5717]) r1eEM,j € [k] \R}

LetY; = 1if clause®; has exactly positive literals, including thé— 1 literals®,; for j € P, (i € M).
ThenP [Y; = 1] = (k — [ + 1)2~% for eachi € M. Moreover, the events; = 1 for i € M are mutually
independent and,-measurable. Therefore, by Lemma 20

PlEm(P,T) <E H Yi|-E H Heij - H Stij|Fo
ieM (t,i,j)ET (t,i,5)eT
k—1+1 - . :
< [—2k (= (1= 1) l“ﬂ} . (18)

For eachi € M there are(lfl) ways to choose a sdt; and thent'~! ways to choose the map.
Therefore, the union bound and (18) yield

PlEm] < ZP [Em(P,T) <M where
P.T

(kN k-l 1-1 (h—1+1)t
A= (l—l)t X =% (n—t)""(1-1/n) .

Hence, by Lemma 3 with probability — o(1/n) we have)_, (., Xi < (1 4 o(1))Am. In other words,
with probability 1 — o(1/n) eitherT < ¢ or there are at mogt + o(1))Am indicesi € [m] such that®;
has precisely positive literals and € U,. Thus, the remaining task is to show that

am < (1+¢/10) A (t)n. (19)

To show (19), we estimate

-1
Am < m - k27F . (k - 1) (L) (1 — 1 /m)fk=1-0=1)

-1 n—t

<m-k27F (];:11> (%)l_l (1 —t/n)k=1=0"Dy wheren = (ni t)l_,1<(11—_1t//7;)t>kl
<n- M) . o0

We can bound) as follows:

k—1
v i) (o BPE) < ang) ex(kie/ )

< exp(210/n + k(0/n)?) < exp(8lk~ Inw 4 16k~ In? w).

Sincel < vk andw < Ink, the last expression is less than- £/10 for sufficiently largek > ko(e).
Hencen < 1+ /10, and thus (19) follows from (20). a

The following lemma deals with € U, such that®; contains “a lot” of positive literals.

Lemma 22. W.h.p. the following is true for all > In k. There are at most exp(—!) indicesi € [m] such
that®; has exactly positive literals among which at least- 1 are in Zy.
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Proof. For anyi € [m] we let

Y 1 &, has exactly positive literals among which— 1 are inZj.
* 1 0 otherwise.

Let M C [m] be a set of sizex = [In*n] and let€,, be a the event thak; = 1 foralli € M.
Furthermore, leP; C [k] be a set of sizé — 1 for eachi € M. Lett; : P, — [0] for eachi € M, and set
T = (ti)iem- LetEap (P, T) be the event that the following two statements are true faralM:

a. @, has exactly positive literals.
b. Forallj € P; we haved;; = z, ;).

If £44 Occurs, then there af@, 7 such that v, (P, 7) occurs. Hence, we will use the union bound.
Fori € M we letY; = 1if clause®; has exactly positive literals, including the litera®;; for j € P;.
SetZ = {(s,i,j):i € M,j € P, s =1;(j)}. If Em(P, T) oceurs, then

[T ®a-[Ivi=1
(s,1,7)€T ieEM

ThenE [[T;cr Yi] < ((k— 1+ 1)/2%)~. Moreover, boundindg [H(s,i,j)eZ Hsij|F0:| via Lemma 20 and
taking into account theft],_ ,, Y; is Fo-measurable, we obtain

IIv

ice M

PEM(P,T)|<E

E—1+1 )
-E H Hsij|—7:0 S{T(n—e)l l:| .
(s,i,J)ET

Hence, by the union bound

PlEm| <P[FP, T : Epm(P,T) occurs < ZP [Em(P,T)] < A, where
P.T

(kg Bl 1-1
/\_<l_1)9 X (n =) (1)

Lemma 3 implies thaEie[m} X; <2 mw.h.p. Thatis, w.h.p. there are at m@stn indicesi € [m] such
that®, has exactly positive literals of whichi — 1 lie in Zy. Thus, the estimate

ok+1un E\ k—1+1 o\
oam < =" : :
=T X(z—1> of <n—9>

-1 -1
< 2wn - $ < 2wn 12Inw [ash = 4nk~'Inw]
(I1-1)(n—20) l

< nexp(—1) [becausé > Ink > w]

completes the proof. a

Proof of Lemma 17Sincel” < 6 w.h.p. by Corollary 16, it suffices to show that w.h.p. for@lK ¢ <
min{T, 0} the boundi/,| < (1 + ¢/3)wn holds. Letl4,; be the number of indices € U, such that®;
has precisely positive literals. Then Lemmas 21 and 22 imply that w.h.p.ab¢ < min{T, 0} and all
1 <1 < k simultaneously

(1+¢/9)A,(t) otherwise
Therefore, assuming that> k() is sufficiently large, we see that w.h.p.

o < {nexp(—l) if 1 >k,
<

k
max |ty <  max Zutl < nkexp(—Vk) +

1 9)A;(t
0<t<min{T,0} 0<t<min{T,0} ogtgrfxllilx{:r,e} Z (L+2/9)A(t)n

=1 1<I<Vk

E—1\ /t\"!
< 1 . E i 1 — ¢/p)k—D—0=-1)
snt(I+e/9wn ogtgl?nif{T,e} (l — 1> <n> ( /m)
1<I<Vk

< (1+¢/3)wn,
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as desired. O

4.3 Proof of Corollary 18

Define a map), : Y; — V as follows. Fori € U, let s be the least index suahe U; if there isj such that
b, € V\ Zs, letyy (i) = &;5, and otherwise lety (i) = z,. The idea is that), (i) is the unique positive
literal of &, that is not assigned false at the timevhen the clause becan# -unique. The following
lemma shows that the (random) mapis not too far from being “uniformly distributed”.

Lemma 23. Lett > 0,2 C [m], andd)y, : Uy — V. ThenP |4y, = |y = Zf{t} < (n—t)"lthl.

The precise proof of Lemma 23 is a little intricate, but thenhea itself is very plausible. If claus®;
become<Z;-unique at times, then there is a unique indg»such thatb,; € V'\ Z,. Moreoverm,_1 (i, j) =
1,i.e., the literak?;; has not been “revealed” before timeTherefore, Fact 14 implies thé;; is uniformly
distributed ovel \ Z; (givenF,_1). Thus,,(i) = &;; attains each ot \ Z;| = n—s > n —t possible
values with equal probability. Hence, we can thinkdgfas a ball that gets tossed into a uniformly random
“bin” () at times. But this argument alone does not quite establish Lemma&&use our “ball” may
disappear from the game at a later time: u < ¢: if &;; = z, for somel € [k], then®; is notZ,-unique
anymore. However, this event is independent of the/hifi) that the ball got tossed into, as it only depends
on literals®;; such thatr,,_1 (i,!) = —1. Let us now give the detailed proof.

Proof of Lemma 23SetZ_; = (). Moreover, define random variables

. m(i,7) if m(i ) € {—1,1 o
(i) = { G G ST for i) € ) < .
Thus,~: is obtained by just recordinghich positionsthe proces$11-PI4 has revealed up to timg
without taking notice of the actual literalg (i, 7) € V U V in these positions. We claim that for any
i€ m]

iteUr & ?é%z](%(i,j) >0A (V)€ k] :y(i,7) =min{yo(i,7),0}). (22)

Forl, is the set of ali € [m] such thai®; contains none of the variables iy negatively and has at most
one positive occurrence of a variable frdm\ Z;. Hence; € U, iff

a. for anyj € [k] such thaw®,; is negative we havé,; ¢ Z,; by Pl4 this is the case iffr.(, j) = —1,
and theny,(i,7) = —1.

b. for any;j € [k] such thatb;; is positive we haver, (i, j) = @,; and hencey (i, j) = 0. For assume
thati € U,. If ®;; € Z,, thenm,(i,j) = D,; by Pl4, and hencey, (i, j) = 0. Moreover, if®;; is the
only positive literal of®; that does not belong t4,, theni € U, and hencer, (i, j) = ®;; by Pl4.
Thus,v.(4, j) = 0. Conversely, ify(i, j) = 0 for all positive®;;, thend; has at most one occurrence
of a positive variable front \ Z;.

Thus, we have established (22). R
Fix a sett, C [m], let @ be any formula such thét; [¢] = U,, and lety, = ~, [P] for all s < t.
Moreover, fors < t let I'; be the event that, = 4, for all u < s. The goal is to prove that

Py =il < (-t~ (23)

Letr : U, — [0,1] assign to eache U/, the leasts such that € I/. Intuitively this is the first imes when
&, became eithe#,-unique or unsatisfied under the assignment that sets the variables i, to false
and all others to true. We claim that

P Vi et : (i) = &t(i)m} < [In—rn (24)

iEZ;lt
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Sincer (i) < tforalli e Uy, (24) implies (23) and thus the assertion.
Let 7, be the event thap,, (i) = (i) forall 0 < u < sand alli € 7=*(u), and letr_; = 24 (n, m)
be the trivial event. In order to prove (24), we will show thattall 0 < s <¢

[TslTs 1N F] < (n ) T )] and (25)
[TS|7571 NI, ] P [TS|Ts 1M Ft] (26)

Combining (25) and (26) yields

Pvied :w(i) =iG)n| =PIl = [[ Plrlnann]

0<s<t

I1 pinlrann)< I (n—s)~7" @),

0<s<t 0<s<t

which shows (24). Thus, the remaining task is to establiSh #2d (26).
To prove (25) it suffices to show that

P [TS n Fslj:s—l] (SO)
P [7'571 n Fs|-7:571] ((p)

<(n-s) 'Ol forallger, NI 27)

Note that the I.h.s. is just the conditional probabilityrefgivenr,_1 N I's with respect to the probability
measure [-|Fs_1] (¢). Thus, let us condition on the evedtt=;_1 ¢ € 7.1 N I;. Then® € I, and
thereforey, = 40 andv; = 4,. Hence, (22) entails/; [®] = Us [p] = Us [#] and thusr—1(s) C U [P].
Leti € 7—!(s), and letJ; be the set of indiceg € [k] such thatys_1(i,j) = 1. Recall thaty,(i) is
defined as follows: itp;; = z, for all j € J;, theny, (i) = z,; otherwisey, (i) = ®;; for the (unique)
J € Jisuch thab;; # z,. By Fact 14 in the measuie[-|F, ] (¢) the variable§®;;);c. 1), jcs, are
independently uniformly distributed ovéf \ Z,_; (becausers,l(i,j) = vs-1(4,j) = 1). Hence, the
eventsy, (i) = v, (i) occur independently for alle 7' (s). Thus, letting

pi = P %(1) = Q/Ajt(z) /\VJ € Jz : 75(7;7j) = Ol}—s—l} (90)7
qi = P [Vj € Ji: WS(ivj) = O|—7:s—l] (90)

fori € 771(s), we have

P [rs N 5| Fs—1] (v) pi
28
P[TS 1ﬂF|fS 1 cp H ( )

ieT—1( )
Observe that the eveltj € J; : v4(i,j) = 0 occurs iff®;; = z, for at least|J;| — 1 elements € J;
(cf. P14). Therefore,
gi = il - [V\ Zoa [TV = VA Zoa[TH + [V Zoa |
To boundp; for i € 7=1(s) we consider three cases.

Case 1:);(i) € V' \ Z,_1. As®b;; € V \ Z,_, forall j € J; the eventp, (i) = 1 (i) has probability.

Case 2: 1/§t( ) = zs. The event),(i) = wt( ) occurs iff@;; = z, for all j € J;, which happens with
probability |V \ Z,_.|~7"l in the measur® [|F,_1] (). Hencep; = (n — s + 1)~ /I,

Case 31 (i) € V' \ Z,. If ¢4(i) = 4:(i), then there ig € J; such thaw,; = ¢ (i) and®;; = z, for
all ' € J,\ {j}. Hencep; = |J;| - |V \ Zs_1|~1Pil = | Ti|(n — s + 1)~ 1Vil.

In all three cases we have

4 o |Jil(n — s+ D)7 Hil(1 —1/(n — s+ 1))
pi | Ji|(n — s + 1)~ Il

=n—S=S.

Thus, (27) follows from (28). This completes the proof of 25



22

In order to prove (26) we will show that forafly< b < ¢ < a

P[Fa|TbmFC]:P[Fa|FC]' (29)
This implies (26) as follows:
B P[rs N 1Y B P[[i|7s N ) P [1s N T
Plrlraniil = 5 [ro1N1)]  P[Lrs1NIs|Prei N1y
@9y Plrs NIy
= —— = P 7g|7s_ Il.
Plr1n1y [rolmo-1 N 1)

To show (29) it suffices to consider the case ¢ + 1, because for > ¢ + 1 we have
P [Fa|Tb ﬂFc] = P[Fa|7'b ﬂFc_H]P [Tb ﬂFC+1|TbﬂFC]
=Pl N Teq1) P[Tegr|mm NI .

Thus, suppose that= ¢ + 1. Attime a = ¢ + 1 PI1 selects an index,, € [m]. This is the least index
i such thaty.(i, j) = —1 for all j; thus, ¢, is determined once we condition dn. Then,PI2 selects a
variablez, = |®4,,, | with j, < k1. Now,~, is obtained fromy, by setting the entries for sonté j) such
that~.(i,j) € {—1,1} to 0 (cf. Pl4). More precisely, we have, (¢, j) = 0 for all j < k;. Furthermore,
fori € [m]\ {¢a} let J; be the set of alj € [k] such thatr, (i, j) = v.(i,7) € {—1,1}, and fori = ¢,
let 7; be the set of alk; < j < k such thatr, (i, j) = v4(¢,7) € {—1,1}. Then for anyi € [m] and any
j € J; the eventy.(i,j) = 0 only depends on the even,; ;| = z, for j/ € J;. By Fact 14 the variables
(|1®ij/1)ic[m),jes are independently uniformly distributed oviér\ Z.. Therefore, the event®, /| = z,
for j/ € J; are independent of the choicenf and of the event,. This shows (29) and thus (26). O

Proof of Corollary 18.Let 1 < (1 + ¢/3)wn be a positive integer and let, ¢ [m] be a set of sizgu.
Suppose that < 6. Letr = nk—%/2, and letB be the set of all maps : ¢, — [n] such that there are less

thanv + t numberse € [n] such that)~!(z) = (). Furthermore, leB; be the event that there are less than
v variablesy € V'\ Z, such that/,(x) = 0. Since|Z,| = ¢, we have

p [Btmt :L?t} <SP [¢t _— :zjft} <|B|(n—t)"*  [by Lemma 23]
YeB

_ |B| t \"_ Bl Bl 12
= 1+ p— < o ~exp(20p/n) < o ~exp(Ink™ " In"k).  (30)

Furthermore|B|/n* is just the probability that there are less tharmpty bins if . balls are thrown
uniformly and independently inte bins. Hence, we can use Lemma 2 to bouBdn#. To this end,
observe that because we are assunirg0.1 the bound

2

exp(—u/n) > exp(—(1 +¢/3)w) = k>~ holds, wherey = % -3 > 0.6e.

Therefore, Lemma 2 entails that
|Bln™" < P[Z(p,n) < exp(—p/n)n/2]
< O(v/n) exp [~ exp(—pu/n)n/8] < exp [~k "n/9]. (31)
Combining (30) and (31), we see that fob> & (¢) large enough
P, =P |BUy = Uy, : Uy C [m], U] = u] <exp [nk™! (9In® k — k%/9)] = o(1/n).
Thus, Corollary 16 and Lemma 17 imply that
PE<T:{xzeV\Z : :U(x)=0}<v|]

<P[T>6]+P Lrg&szWJ > (1+E/3)wn] + Z P, = o(1),
0<t<0
as desired. O

Remark 24.The evolution of the maps; can be tracked via the method of differential equationssThi
allows for a precise quantitative analysis of Phase Hiof for small values of:.
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5 Proof of Proposition 10

Let0 < ¢ < 0.1. Throughout this section we assume that k, for a large enough, = ko(¢) > 10, and
thatn > n, for some large enoughy = no(e, k). Letm = [n- (1 — )2k 1 Ink|,w = (1 — &) Ink, and
k1 = [k/2]. In addition, we keep the notation introduced in Section 4.1

5.1 Outline

Similarly as in Section 4, we will describe the execution bBe 2 ofFi x(®) via a stochastic process.
Roughly speaking the new process starts where the pr&¢esBI4 from Section 4 (i.e., Phase 1 Bf x)
stopped. More precisely, recall tHAtdenotes the stopping time 811-Pl4. Let Z, = 0 andn| = 7.
LetUj = Ur, and letU((x) be the number of indicese U, such that: occurs positively in®; for any
variablex. Moreover, letQ;, be the set of indicese [m] such thai®; is unsatisfied under the assignment
oz, that sets the variables iy to false and all others to true. Fop> 1 we proceed as follows.

PI1" If Q;_, = 0, the process stops. Otherwisedgt= min Q;_,.

P12’ If there are three indicefs; < j < k — 5 such thatr,_, (¢, 7) € {1,—1} andU;_,(|Py,;|) = 0,
thenletk; < j1 < j2 < j3 < k—5 be the lexicographically first sequence of such indicese@®ilse
letk — 5 < j1 < j2 < j3 < k be the lexicographically first sequence of indiées 5 < j < k such
that|®@,,;| ¢ Z,_,. LetZ] = Z]_ U{|DPy,;,| : 1 =1,2,3}.

PI3’ LetU] be the set of all € [m] that satisfy the following condition. There is exactly dne [k] such
that®;, € V' \ (Z/ U Zy) and for allj # | we have®,;; € Zr U Z; UV \ Zp. LetU/(x) be the
number of indices € U/ such that: occurs positively in®; (x € V).

P14’ Let

(i) = 451-]: . if (i =veNj> ki) V|®i;| € Z, U Zr Vv (i € Ul Amo(i, §) = 1),
N 7 _,(i,) otherwise.

Let @} be the set of allZ7, Z})-endangered clauses that contain less than three varfaties’;.

Let T” be the stopping time of this process. Ear T” andz € V letn;, = nl.,, Ul = UL, Z] = Z7,, and
Ul(x) = Up (x).

The procesPI1'—Pl4’ models the execution of Phase Fafx (®). For in the terminology of Section 3,
a variabler is (Zr, Z])-secure iffU](x) = 0. Hence, the seZ’ computed in Phase 2 &fi x coincides
with Z%.,. Thus, our task is to prove thgt’, | < nk~'2 w.h.p.

The proces®11'-P14’ can be applied to any concreteSAT formula® (rather than the rando®).
It then yields a sequence [P] of maps, variables; [?], etc. In analogy to the equivalence relatisn
from Section 4, we define an equivalence relatighby letting® =, ¥ iff & =, ¥ for all s > 0, and
7wl [@] = 7l [@] forall 0 < s < t¢. Thus, intuitively® =, ¥ means that the proce®31-P14 behaves
the same on bott?, 7, and the procesBI1'—Pl4’ behaves the same @ ¥ up to timet. Let F] be the
o-algebra generated by the equivalence classes oThen(F;),> is a filtration.

Fact 25. For anyt > 0 the mapr;, the random variable); , ,, the random set§/ and Z}, and the random
variablesU; (z) for z € V are F/-measurable.

In analogy to Fact 14 we have the following (by “deferred diexis”).

Fact 26. Let&/ be the set of all pairsi, j) such thatr; (i, j) € {£1}. The conditional joint distribution of
the variables(|®;;|); jee; givenF; is uniform over(V \ Z;)%:.

Let
0" = |exp(—k*/1%)n|, and recall thad = [4nk ™' Inw|, wherew = (1 — ¢)In k.

To prove Proposition 10 it is sufficient to show ti¥t < 6" w.h.p., becauseZ;| = 3t forall ¢t < 7". To
this end, we follow a similar program as in Section 4.1: we gllow that|U]| is “small” w.h.p. for all
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t < ¢', and that therefore for < ¢’ there are plenty of variables such thatU;(xz) = 0. This implies
that fort < ¢’ the process will only “generate” very fe(r, Z;)-endangered clauses. This then entails a
bound on”, because each step of the process removes (at leagtyen€;)-endangered clause from the
set@®;. In Section 5.2 we will infer the following bound d&v/|.

Lemma 27. W.h.p. for allt < ¢’ we havdU; \ Ur| < n/k.

Corollary 28. W.h.p. the following is true for all < ¢’: there are at leastk*/3~! variablesz € V \
(Z; U Zr) such thatU] (z) = 0.

Proof. By Corollary 18 there are atleast*/*~* variables: € V\ Zr such thaliz (z) = O w.h.p. Hence,
uy = |{$ € V\ZT : UT(CC) = ()}l > nks/2-1

If x € V'\ (Z] U Zr) has the property//(z) > 0 butUr(z) = 0, then there is an indexe U, \ Ur such
thatz is the unique positive literal ab; in V' \ (Z; U Zr). Therefore, by Lemma 27 w.h.p.

ug = [{x € V\(Z{U Zr): Ur(z) =0 < U/(z)}| <|U/\ Ur| <n/k.
Finally, by P12’ we havelZ;| < 3t for all t. Hence,
{z e V\(Z/U Zr): Ul(x) = 0} > wy —uz — | Z{| > nk**"" —n/k — 3¢ > nk*/*71,
provided that: > k() is sufficiently large. 0

Corollary 29. Let) be the set of all < ¢’ such that there are less thanindicesk; < j < k — 5 such
thatm,_, (¢r,5) € {—1,1} andU;_,(|®y,;|) = 0. Then|Y| < 3¢’ exp(—k/*) w.h.p.

We defer the proof of Corollary 29 to Section 5.3, where we pi®ve the following.

Corollary 30. Letx = |k/*]. There are at mostk exp(—«)n indicesi € [m] such that®; contains
more thanx positive literals, all of which lie inZy U Zr.

Corollary 31. W.h.p. the total number ¢¥r, Z), )-endangered clauses is at maést

Proof. Recall that a claus®; is (Zr, Z) )-endangered if for any such that the litera®;; is true under
oz, the underlying variabled;;| lies in Z;,. Let Y be the set from Corollary 29, and I8t=  J,,, Z; \
'_1. We claim that if®; is (Zr, Z},)-endangered, then one of the following statements is true:

s—1-

a. There are two indicels< j; < jo < k such that®;;, | = |®;j,|.

b. There are indice8 # i, j1 # ja2, j1 # Jjs Such that®;;, | = (@, ;| and|P;;,| = [Py, |.
c. @, is unsatisfied under,,.

d. &, contains more than = |k*/*| positive literals, all of which lie inZy, U Zr.

e. @, has at mosk positive literals, is satisfied undet;,., and contains a variable frog.

To see this, assume thét is (Zr, Z), )-endangered and a.—d. do not hold. Observe that Z; N Z,

by construction (cfPI2’). Hence, if there ig such thab;; = z for somez € Zr, thenz € Z and thus

e. holds. Thus, assume that no variable frémoccurs negatively ;. Thend®, containg > 1 positive
literals fromV \ Zr, and we may assume without loss of generality that theseuatetje firstl literals
P;1,...,9,. Furthermore®;,, ..., P; € Z),. Hence, for each < j < [thereisl < t; < #' such that
b;; € Z;j \Z;j_l. Sinced; satisfies neither a. nor b., the numbars . ., ¢; are mutually distinct. (For if,
say,t; = to, then eithe®;; = &5, or P; andsl%1 have at least two variables in common.) Thus, we may
assume without loss of generality that< - -- < ¢;. Theni € Uj, _, by the construction in stepI3’, and
thus®;, € Z. Hence, e. holds.

Let X,,..., X. be the numbers of indicesc [m] for which a.,...,e. above hold. W.h.x,, + X, =
O(Inn) by Lemma 4. FurthermoreX,. < exp(—k*/%)n w.h.p. by Proposition 9. Moreover, Corollary 30
yields X; < 2kexp(—r/2)n w.h.p. Finally, since) < 36’ exp(—k*/*) w.h.p. by Corollary 29 and as
|Z| = 3|)|, Lemma 7 shows that w.h.p. fér> k() large enough

Xe<k-V|Z|/n-n<k- \/9exp(—k5/4)9’/n <0'/2 [as¢’ = |exp(—k*/1C)n]].

Combining these estimates, we obtaip + - - - + X. < 0’ w.h.p., provided that > kq(¢) islarge. O
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Proof of Proposition 10We claim that7” < ¢’ w.h.p.. This implies the proposition becay&e-| = 37"
and30’ = 3|exp(—k*/1%)n| < nk='2if k > ko(e) is sufficiently large. To see that' < ¢’ w.h.p., letX,
be the total number ofZ, Z}, )-endangered clauses, and }&t be the number ofZr, Z;,)-endangered
clauses that contain less than 3 variables figinSinceP12” adds 3 variables from@r, Z;,)-endangered
clauses taZ] at each time step, we have< X, < X, — tforallt < T’. Hence,IT" < X, and thus the
assertion follows from Corollary 31. a

5.2 Proof of Lemma 27

As in (15) we let

H,oo = 1 if Wtfl(i,j)zlandﬂt(i,j):,?}t S, — 1 |fTZtand7Tt(Z,j)€{1,—1}
% =1 0 otherwise, % =) 0 otherwise.

Note thatH,;;, St;; refer to the procesBI1-PI4 from Section 4. With respect l1’-PI4’, we let

1w (j) = 1, 70, j) € Z, andT <6,
tij — 1 0 otherwise.

In analogy to Lemma 20 we have the following.

Lemma 32. ForanyZ’ C [0'] x [m] x [k] we haveE \T];; »er M |]-'6} <(3/(n—0-— 39’))'7‘ .

!/
tij
Proof. LetZ} = {(i,) : (¢,4,j) € Z'} and Xy = []; ;)c7, H};;- Due to Lemma 5 it suffices to show

E[X|F_] < @3/(n—0-30)" forallt<e. (32)

To see this, let < ¢ < ¢’ and consider a formul@ such thaf’ [@] < 0,t < T’ [®], andr,_,(3,7) [®] = 1
for all (4,5) € Z;. We condition on the ever® =, , &. Then at timel stepsPI1’—PI2’ obtain Z; by
adding three variables that occur in clawgg,, which is (Zr, Z;_,)-endangered. Leti, j) € Z;. Since
& =, andm,_,(i,7)[P] = 1, we haver;_, (i, j) [®] = 1. By PI4’ this means tha®,; ¢ Zr U Z]_,

is a positive literal. Thusp; is not(Zr, Z,_,)-endangered. Hencé, # i. Furthermore, by Fact 26 in the
conditional distributior? [-|F;_,] (&) the variableg®;;); j)ez; are independently uniformly distributed
overthe set/ \ (Zr U Z/_,). Hence,

P& € Z||F, | @] =3/|V\(ZrUZ_,)| forany(i,j) €I}, (33)

and these events are mutually independent fafigfl) € Z;. Since|Zy| = n — T andT = T [¢] < ¢, and
becauseéZ; ;| = 3(t — 1), (33) implies (32) and hence the assertion. O

Lemma33.Let2 <1 < Vk, 1 <1I'<1-1,1<t<6,andl <t < ¢. For eachi € [m] let
X =X;(,U,t,t')=1if T > ¢, 7" > ¢, and the following four events occur:

a. @, has exactly positive literals.

b. I’ of the positive literals o®; lie in Z;, \ Z,.
c. [ — I’ — 1 of the positive literals of; lie in Z;.
d. No variable fromZ; occurs in®; negatively.

B(,I',t) = dwn - <@>l : <’;:ll,/: 11> <%>l“ (1—t/n)k" (34)

n

Let

ThenP [Y7", X; > B(l,I',t)] = o(n™3).
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Proof. We are going to apply Lemma 3. Set= [In*n] and letM C [m] be a set of size. Let £, be
the event thafX; = 1 forall i € M. Let P, C [k] be a set of sizé and letH;, H/ C P; be disjoint sets
such thalH; U H/| =1 — 1 and|H]| = I’ for eachi € M. LetP = (P,, H;, H!),c m. Furthermore, let
t; : H; — [t]andt, : H! — [t'] forall i € M, and setl’ = (¢;,t)icm. LetEx (P, T) be the event that
T >t,T" > ', and the following four statements are true foriadl M:

a'. The literal®;; is positive for allj € P; and negative for alj € [k] \ P;.
b. &;; € Z ) \Z (j)—l foralli € M andj € H/.

C. &, =z, (J) foralli € M andj € H;.

d’. No variable fromZ, occurs negatively ib;.

If £a¢ Occurs, then there exi$P, 7') such that (P, 7) occurs. Hence, we are going to use the union
bound. For each € M there are

k
(1’ . 1) ways to choose the sei3, H;, H..

Once these are chosen, there are
¢ ways to choose the map, and¢'~"'~1 ways to choose the map
Thus,
PEm] <) PEMP,T)] ¥ gl gt —1 ' P[Em(P,T) (35)
M—PT wm( LI l—1—1 ot lemUn 2L

Hence, we need to boul[Ex (P, T)] for any givenP, 7. To this end, let

I:Z(MapaT):{(S5la.])Z€M7.] GPMS:t’L(])}a
I'=T'(M,P,T) ={(s,i,j) :i € M,j € P, s = 1;(j)} ,

If E.4(P,T) occurs, then the positive literals of each cladse: € M, are preciselyp;; with j € P,
which occurs with probabilitg~* independently. In addition, we havé,;; = 1 for all (s,i,j) € Z,
H.,. = 1forall (s,i,7) € I/, andS,;; = 1 forall (s,i,7) € J. Hence,

sij

P[sMw,Tﬂsz—’W-E[ IT - II Heso II Swsl7

(t,i,5) €T’ (t,i,5)€T (t,i,5)eT

Since the variable®(;;; andS;;; areFj-measurable, Lemmas 20 and 32 yield

PEm(P,T) <27 " .E

H Hyij - H Sij| Fo

E [ H thg|‘7:(/)
(

t,i,j)€L’ (t,1,7)€T (t,5,7)eT
e (— 2 Yk T e T1 sum
- n—0—3¢ (t,i,)ET ? (tij)ET !
) G N S I o (G (36)

Combining (35) and (36), we see tHafE ] < A\¥, where

— k 3t/ ll t l*l,fl )
A=2 k(Ll/’l—l/_l) (n—9—39’) (n—b’) (1—1/n)(k l)t’ (37)
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whence Lemma 3 yields

=1
Thus, the remaining task is to estimate:: by (37) and sincen < n - 2¢w/k, we have
k—1 3t/ S N
’ a0 __apg : - _ (k—1)t
Am = mk2~ ( 4 )(n—@—i}@’) (l—l’—l) (n—@) (1—1/n)
60’k k—1—1 " -'-1 o
<wn - , t B a0
- ( n ) (l -1 - 1) (n) (1—t/n) , where (39)
(o T (e ym
=\ 1—t/n

1—1'—1
(1 " L) exp(kt® /n?) < exp(201/n + k0? [n?).

0

Sinced < 4k~ 'nlnk andl < vk, we havey < 2 for large enougtk > ko(e). Thus,2Am < B(l, U, t),
whence the assertion follows from (38) and (39). ad

Lemma34. Letlnk <1 <k, 1<I'<[,1<t<6,andl <t < ¢ Foreachi € [m]letY; =1if
T >t,T" > t', and the following three events occur:

a. &, has exactly positive literals.
b. I’ of the positive literals o, lie in Z,, \ Z,.
c. | — I’ — 1 of the positive literals o; lie in Z;.

ThenP [}, Y; > nexp(—1)] = o(n™?).

Proof. The proof is similar to (and less involved than) the proof efthma 33. We are going to apply
Lemma 3 once more. Sgt = [In*n] and letM C [m] be a set of size:. Let £ be the event that
Y; = 1foralli € [M]. Let P, C [k] be a set of sizé, and letH,;, H, C P, be disjoint sets such that
|H; UH!| =1—1and|H/| = foreachi € M. LetP = (P;, H;, H),c m. Furthermore, let; : H; — [t]
andt; : H — [t/ foralli € M, and setl = (t;,t,)iem. LetEpq (P, T) be the eventthal > ¢, 7" > t/,
and that the following statements are true foriadl M:

a'. @;; is positive for allj € P; and negative for alj ¢ P;.

b. &;; € Z;;(j) \ Z;WH foralli € M andj € H..

C. ®i; =z, foralli € Mandj € H;.

If £44 Occurs, then there afé®, 7') such that (P, T) occurs. Using the union bound as in (35), we get
P[Enm] < ZP[S (P,T)] < K =1 #maXP [Epm(P,T)) (40)
e A AN A P M
Hence, we need to boul[Ex4(P, T)] for any givenP, 7. To this end, let

IT=I(M,P,T)={(s,4,5) :i € M,j € P;,s=1:(j)},
=T'(M,P,T)={(s,i,5):i € M,j € P, s=t.(5)}.

If Em (P, T) occurs, then the positive literals of each cladsere preciselyp;; with j € P; (i € M). In
addition,H;; = 1 forall (s,i,j) € Z andH};; = 1 forall (s,4,j) € Z'. Hence, by Lemmas 20 and 32

©w

=) () e
o

PEm(P,T) <2 kuE[ I #i TI Hesl7o

(t,i,5)€T’ (t,i,7)€T
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Combining (40) and (41), we see tHafE (] < M\, where

N I 2y v N
—C \wri-v-1)\n—0-30) \n-0
g (k1 G Sy | to\ T
= o) \n—0-30 1—1—1)\n—9

Lo (6K ek —1 — 1)\
o (8 (251

Invoking Lemma 3, we g >, V; > 2Am] = o(n~?). Thus, we need to show thakm < exp(—I)n.
Case 10’ > 1/2. Sinced/n < 4k~ 'Inw andd’ /n < k=2, (42) yields

Am < wn (4delnw - 9//7”L)l//2 < exp(-I)n/2.

Case 2:I' < 1/2. Then (42) entailsun < wn exp(—21") (10eInw/) ™" ™1 < exp(—1)n/2.
Hence, in either case we obtain the desired bound. O

Proof of Lemma 27For1 < ¢ < #"andl < < k letI;(¢') be the set of indicese U, \ Ur such that®;

has precisely positive literals. Then
k

U, \Ur = L(#). (43)
1=2
To bound the size of the set on the r.h.s., we define (randaswxgé, /', ¢,¢') for1 <!’ <l—1,andt > 1
as follows. Ift > T ort’ > T', we letX (I,I',¢,¢') = (). Otherwise X (I,1’, t,t') is the set of all € [m]
such thai®; satisfies the following conditions a.—d. (cf. Lemma 33):

a. &, has exactly positive literals.

b. I’ of the positive literals of; lie in Z], \ Z,.
c. [ — I’ — 1 of the positive literals ofp; lie in Z,.
d. No variable fromZ; occurs in®; negatively.

We claim that

-1
L@t c |J X0, T, min {1, 1'}). (44)
I'=1

To see this, recall thdf contains alk € [m] such that®, has precisely one positive literd;; € V' \ Zr
and no negative literal frord. Moreover U/, is the set of ali € [m] such tha®; features precisely one
positive literal®,; ¢ Z;, U Zr and no negative literal frod. Now, leti € I;. Then a. follows directly
from the definition off;. Moreover, ag € I, C U]/, clause®; has no literal fromZy; this shows d. Further,
if ¢ € I;(t'), then at least one positive literal @ lies in Z], \ Zr, as otherwisé € Uy. Let!’ > 1 be
the number of these positive literals. THén< [, because there is exactly opsuch that,; ¢ Z U Z],
is positive (by the definition of/;,). Furthermore, as there é&xactlyone sucly, the remaining — I’ — 1
positive literals of®; are inZy. Hence, b. and c. hold as well.

With B(1,1’,t) as in Lemma 33 lef; be the event that

V2<I<VEI<I<I-1,1<t<0,1<t <0 :X(11tt)<B(IIl,1).
Further, lett, be the event that
Wh<l<k1<I'<l-1,1<t<0,1<t <0 : X1 tt)<nexp(—I).
Let & be the event thal’ < # and that bott€;, & occur. Then by Corollary 16, Lemma 33 and Lemma 34
P[=E] <P[T > 0] + P[=&] + P [=&)] < o(1) + 2k%06" - o(n™3) = o(1). (45)
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Furthermore, i€ occurs, then (44) entails that for all< ¢’

k 11
o)< ZXllem{T’t}gZZBll’
2<I<VE 2<i<VE V=1 1=11=1

<4‘*’”Z(69/ ) ZI: ( et 1) (%)j(l—T/n)’”'”

I'=1 =0

k 14
0'k 0'k
= 4wn E (6 ) < bwn - 6 <n/k? [as® <n/k*fork > ko(e) large]. (46)
n

Moreover, if€ occurs, then (44) yields that for all < ¢’

YL@ < > exp(-l)n < n/k? [provided thatk > ko(e) is large enough]. (47)
VE<I<k VE<i<k
Thus, the assertion follows from (43) and (45)—(47). a

5.3 Proof of Corollaries 29 and 30

As a preparation we need to estimate the number of clausgsacontain a huge number of literals from
7, for somet < 6. Note that the following lemma solely refers to the prodekis-P14 from Section 4.

Lemma 35. Lett < 6. With probability at leastt — o(1/n) there are no more than exp(—k) indices
i€ [m]suchthat{j: k1 <j <k, |®;| € Zi}| >k/4.

Proof. Foranyi € [m], j € [k], andl < s < 6 let

zo 1if |diij|:zs,7rs_1(i,j)€{—1,1},ands§T,
54 0 otherwise.

We claim that for any sef C [¢] x [m] x ([k] \ [k1]) we have

E{ I 2.

(5,6, €T

n—0)" . (48)

To see this, leZ, = {(i,5) : (s,i,7j) € I} and setZ, = ]_[(Z jyer, Zsij- Then for alls < 6 the random
variableZ; is F;-measurable by Fact 13. Moreover, we claim that

E|[Z,|Fs1] < (n — 6)~ %! (49)

for any s < 6. To prove this, consider any formu@asuch thats < T'[®] andnw,_1(i,5) [P] € {—1,1}
for all (¢,j) € Z,. Then by Proposition 14 in the probability distributi®n-|F;_1] (?) the variables
(Pij)(i,5)ez, are mutually independent and uniformly distributed dverZ, ;. They are also independent
of the choice of the variable,, becausg > k; for all (i,j) € Z, and the variable, is determined by
the firstk, literals of some claus®,, (cf. P12). Therefore, for all(é, j) € Z, the eveni®;; = z, occurs
with probability1/|V \ Z,_,| independently. A$Z,_1| = s — 1, this shows (49), and (48) follows from
Lemma5 and (49).

Fori € [m] let X; = 1if t < T and there are at least = [k/4] indicesj € [k] \ [k1] such that
|®,;| € Z;, and setX; = 0 otherwise. LetM C [m] be a set of sizgg = [In* n] and let€ be the event
that X; = 1 for all i € M. Furthermore, leP; C [k] \ [k1] be a set of size — 1 for eachi € M, and let
t; : P, — [t] be amap. LeP = (P;)iem and7 = (t;)iem, and let&aq (P, T) be the event that < T
andz,,;);; = 1foralli € Mandallj € P;. Let
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Then (48) entails that for arfy, 7

< (= 0)"T < (n — )=, (50)
(s,i,7)ET

P[5M(7>,T)]§E{ II 2.

Moreover, if€,4 occurs, then there exit, 7 such tha€ (P, 7) occurs. For any € M there ar kﬁj’“;)
ways to choos®; and+*~! ways to choose;. Hence, by the union bound

PEm] <Y PEMP,T) <X where

PT
P e e O =

Finally, Lemma 3 implies that for sufficiently largewe have with probability — o(n =)

ZXi < 2mA < n-27(120/n)""! < nexp(—k) lash = [4nk ' Inw]| < 4nk~'Inlnk],

=1
as desired. O

Proof of Corollary 29.The goal is to bound the numbi@r| of timest < ¢’ such that the clausg,;,, chosen
by P11’ features less than three literals,,; such thatr;_,(v,j) € {—1,1} andU/_,(|Py,;|) = 0
(k1 < 7 <k —5). We use a similar argument as in the proof of Corollary 19. Le

Qi =Nz eV\(Zruzy:Uj(x) = 0}
and defing /1 random variables; for ¢ > 1 by letting B; = 1 iff the following four statements hold:

a. T >t.

b. 9, ;> nke/3-1,

c. There are less thaty4 indicesk, < j < k such that®,;, ;| € Zr.

d. Atmosttwo indices; < j < k — 5 satisfyn;,_; (¢, 7) = —1 andU]_,(|®y,;|) = 0.

This random variable ig}-measurable by Fact 25. Lét= exp(—k/2/6). We claim
E[B)|F_1] <6  foranyt>1. (51)

To see this, let be a formula for which a.—c. hold. We condition on the ev@nt; _; @. Then at time

t the proces®11'-P14’ chooses), = v, [?] such tha@d,, is (Zr, Z,_,)-endangered and contains less
than three variables froi;_,. If m;_,(¢1,7) # —1, then eitherr;_, (¢, j) = 1 or®,,; € Zr U Z;_;.
Due to c. there are less thari4 indicesj > ky such thal®,, ;| € Zr. Further, sincé,;, is (Zr, Z;_,)-
endangered, there is ficuch thatr;_, (¢, j) = 1. Consequently, there are at leflst- k1 —5) — 1k — 2
indicesk; < j < k — 5 such thatr;_(¢¢,j) = —1. Let J be the set of all these indices. Assuming
k > ko(e) is sufficiently large, we have

\T| > (k—ki —5) — k/4d—2 > k/5. (52)

By Fact 26 the variable§®.,;|);cs are independently uniformly distributed over\ (Zr U Z;_,).
Therefore, the number gfe 7 such thall]_, (|®,,;|) = 0is binomialBin(|7 1, Q;_,/|V\(ZrUZ_,)]|).
Since b. require®,_, > nk*/3~1, (52) and the Chernoff bound (1) yield

provided that: is sufficiently large. Thus, we have established (51).
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Let)Y’ = |{t € [¢'] : B, = 1}|. We are going to show that
V' <20'6 w.h.p. (53)

To this end, letting: = [Inn], we will show that
pn—1
B, < @6y where(y"), = [[ ¥~ . (54)
7=0

This implies (53). For iy’ > 26’6, then for large: we have()”’),, > (26’6 — p)* > (1.9 - 6'6)*, whence
Markov's inequality entail® [} > 26'0] <P [()'), > (1.960'6)#] <1.97# = o(1).

In order to establish (54), we define a random varidijlefor any tupleZ = (¢4, ..., t,) of mutually
distinctintegers, ..., t, € [0'] by letting); =[]/, B; . Since()’),, equals the number gf-tuples7
such thay,- = 1, we obtain

Bl < 3 BV < 0" maxB[Vr). (5)
T

To bound the last expression, we may assumeZhistsuch that; < --- < t,. As B} is F;-measurable,
we have for all < p

l l -1
B [H 5, Hsuf;l] 5.
=1 =1 =1

Proceeding inductively froth= p down tol = 1, we obtainE [V’] < ¢/, and thus (54) follows from (55).
To complete the proof, 1&¢” be the number of indiceise [m] such thai®,;| € Zr for at leastk/4
indicesk; < j < k. Combining Corollary 16 (which shows thgfr| = 7' < 6 w.h.p.) with Lemma 35,
we see tha)”’ < nexp(—k) < 65 w.h.p. As|Y| < V' + )", the assertion thus follows from (53) and the
fact thatds + 260’5 < exp(—k*/*)n for k > ko(c) large enough. O

E =E .

<E

-1 51)
I8, EB,F, ]| <6-E
i=1

Proof of Corollary 30Letx = |k*/*]. The goal is to bound the numberiof [m] such thath; contains at
leastx positive literals, all of which end up i@ U Z,. SinceT’ < 6 w.h.p. by Corollary 16, we just need
to bound the number of of 7 € [m] such thai®; has at least positive literals among which at leastie

in Zy U Z),. LetVy; be the number of € [m] such thatb; has exactly’ positive literals among which
exactlyl’ lie in Z;, \ Zy while exactlyl — I’ of them lie inZ,. Then w.h.p.

koo k
> Vu <nkexp(-x) bylLemma34and Vi < nkexp(—x) byLemma 22
=k l'=1 =k

Thus,V < 2nkexp(—«) w.h.p., as desired. O

6 Proof of Proposition 11

As before, we let) < ¢ < 0.1. We assume thdt > k, for a large enougl, = ko(e), and thath > ng
for some large enoughy = ng(e, k). Furthermore, we letn = [n - (1 — )2k ' Ink|, w = (1 —
e)Ink andk; = [k/2]. We keep the notation introduced in Section 4.1. In particukecall thatd =
[4nk~tInw].

In order to prove that the graghi(®, Z, Z') has a matching that covers @if, Z’)-endangered clauses,
we are going to apply the marriage theorem. Basically we airgggo argue as follows. L&t C 7’ be a set
of variables. SinceZ’ is “small” by Proposition 10} is small, too. Furthermore, Phase 2 ensures that any
(Z, Z")-endangered clause contains three variables ffénTo apply the marriage theorem, we thus need
to show that w.h.p. for any” C Z’ the number of Z, Z’)-endangered clauses that contain only variables
fromY U (V' \ Z’) (i.e., the set of al(Z, Z’)-endangered clauses whose neighborhodd(i®, Z, Z') is a
subset ofY") is at mostY'|.
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To establish this, we will use a first moment argument (oves ¥¢. This argument does actually not
take into account thdt” C Z’, but is over all “small” sel” C V. Thus, letY” C V be a set of sizgn. We
define a family(y;;)ic(m),je[x) Of random variables by letting

N 1if |D;] €,
K O otherwise.

Moreover, define for each integer> 0 an equivalence relatios) on 2, (n, m) by letting® =) &' iff
75 [@] = 75 [@'] forall 0 < s < t andy,; [®] = y;; [@'] for all (4, j) € [m] x [k]. In other words@ =} &'
means that the variables frol occur in the same places, and that the pro€d3sPl4 from Section 4
behaves the same up to tim@hus,=;" is a refinement of the equivalence relatienfrom Section 4.1. Let
FY be thes-algebra generated by the equivalence classes ofThen the family(F) );> is a filtration.
Since F contains ther-algebraF; from Section 4.1, all random variables that &emeasurable are
FY-measurable as well. In analogy to Fact 14 we have the fafig\ideferred decisions”).

Fact 36. Let &Y be the set of all pairgi, j) such thatr, (i, j) € {1,—1} andy,;; = 0. The conditional
joint distribution of the variable$|®;;|); jycey givenF is uniform over(V \ (Z; U Y))gty

Foranyt > 1,¢ € [m], j € [k] we define a random variable

H 1 if Yij ZO,tST, Wt_l(i,j)z 1and7rt(i,j)=zt,,
tis = Y 0 otherwise.

Lemma 37. For any setZ C [f] x [m] x [k] we havetl [H(t,i,j)el' HIIFY | < (n—0)7 7
Proof. Due to Fact 36 the proof of Lemma 20 carries over directly. a

For a given set” we would like to bound the number ofe [m] such thap, contains at least three
variables fromY” and®; has no positive literal iV \ (Y U Z7). If for any “small” setY” the number of
such clauses is less thgn|, then we can apply this resulti6 C Z’ and use the marriage theorem to show
thatG(®, Z, Z') has the desired matching. We proceed in several steps.

Lemma 38. Lett < 6. Let M C [m] and sefu = | M|. Furthermore, letl, A be maps that assign a subset
of [k] to eachi € M such that

L(i)N A(i) = D and|A(i)| > 3 forall i € M. (56)
LetE(Y,t, M, L, A) be the event that the following statements are true fof allM:

a. |P;;| € Yforall j € A®4).
b. @,; is a negative literal for allj € [k] \ (L(z) U A(2)).
Cc. ®,; € Z,\Yforall j € L(i).

Letl = 3,00 [L()| andA = 32, |A(i)]. ThenP [E(Y, £, M, L, A)] < 2~ (2t /) (2y)".

Proof. Let& = £(Y,t, M, L, A). Lett; be a mapL(i) — [t] for eachi € M, letT = (¢;);cm, and let
E(T) be the event that a. and b. hold a#g = z;,(; foralli € M andj € L(i). If £ occurs, then there
is 7 such that(7) occurs. Hence, by the union bound

£ <) PET) <t max P [£(7)]. (57)

To bound the last term fix any. LetZ = {(s,4,5) : 4 € M,j € L(i),s = t;(j)}. If £(T) occurs, then
HY.. =1forall (s,i,5) € Z. Therefore, by Lemma 37

sij

<(mn-0)H=@m-0" (58)

[ ( |'7:O —= |: H Hsz_]lj:OY
(

s,1,5)€ET
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Furthermore, the event that a. and b. hold foi &l M is 7} -measurable. Since the litera#s; are chosen
independently, we have

P [a. and b. hold for all € M] < y*2*F# = (2y)* 27, (59)

Combining (58) and (59), we obtaiR [£(T)] < 27 *#(n — 6)~! (2y)" . Finally, plugging this bound
into (57), we get folkk > ko (e) is sufficiently large

l l
! 9) (2y) < 27k (ﬁ) (2y)" [ast = [4nk 'Inw] < 2],

n — n

PE] <27 <

as desired. O

Corollary 39. Lett < 6. Let M C V and sety = |M)|. Letl, A be integers such that > 3u. Let
E(Y,t, M, 1, ) be the event that there exist mapsA that satisfy (56) such that = >, |L(i)],
A=, m [A(9)], and that the everdl(Y, ¢, M, L, A) occurs. Then

PE(Y,t, M, 1, \)] < 277k (2k2y)N,

Proof. Givenl, A there are at mos{t{c’;) ways to choose the maps A (because the clauses.M contain
a total number o, literals). Therefore, by Lemma 38 and the union bound

l A 1
2P (E(Y, 1, M,1, \)] < <f§>(2t/n>l<2y>ksz-l <4ef"““) (%ﬁ“y) <o <w> (2ky)?
9 n

l
50puInw’

= 27(2ky)* - w0 @I wherea = (60)
Since—alna < 1/2, we obtainw=?0walne < ;250 < (Ink)25* < kA, Plugging this last estimate
into (60) yields the desired bound. a

Corollary 40. Lett < 6 and let&(¢) be the event that there are sétsC V, M C [m] of size3 <
Y| = |IM| = p < nk~'? and integerd > 0, A > 3u such that the everd(Y, ¢, M, [, \) occurs. Then
P[E(t)] = o(1/n).

Proof. Let us fix an integet < p < nk~'2? and leté(t, 1) be the event that there exist s@tsM of
the given sizex = yn and numberg, A such that&(Y, ¢, M, 1, A) occurs. Then the union bound and
Corollary 39 yield

PEnLW < Y > S PEM LML) < (") (m) 92kt (9)2y) 30
A>3 Y, M:|Y|=|M|=p 1>0 H H
<e22k Inw
< -
< T
Summing oves < u < nk~'2, we obtainP [£(t)] < >, P [E(t, u)] = O(n=3/2). O

Proof of Proposition 11Assume that the grap&(®, Z, Z') does not have a matching that covers all
(Z, Z")-endangered clauses. Then by the marriage theorem thesesaf€ C Z’ and a setM of (Z, Z')-
endangered clauses such thet| = |Y'| > 0 and all neighbors of indicese M in the graphG(®, Z, Z')
lie in Y. Indeed, as eacl”, Z’)-endangered clause contains at least three variables f'owe have
|Y'| > 3. Therefore, for each clause= M the following three statements are true:

a. Thereis asel(i) C [k] of size at leasB such thai®,;| € Y forall j € A(7).

b. Thereis a (possibly empty) skti) C [k] \ A(¢) such tha®,; € Z forall j € L(7).

c. Forallj € [k] \ (L(7) U A(¢)) the literal®;; is negative.

"
) .22—ku(2k2y)3u <4 [ykﬁ}# < y—p/2.

As a consequence, at least one of the following events occurs
1.T>0= 4k Inw|.
2. |Z'| > nk™12.
3. Thereig < 0 such that€(t) occurs.

The probability of the first event ig(1) by Proposition 9, the second event has probabiliy by Propo-
sition 10, and the probability of the third onefis o(n~!) = o(1) by Corollary 40. O
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