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Abstract

Random k-SAT is the single most intensely studied example of a random constraint satisfaction problem. But
despite substantial progress over the past decade, the threshold for the existence of satisfying assignments is not
known precisely for any k ≥ 3. The best current results, based on the second moment method, yield upper and
lower bounds that differ by an additive k · ln 2

2
, a term that is unbounded in k (Achlioptas, Peres: STOC 2003). The

basic reason for this gap is the inherent asymmetry of the Boolean value ‘true’ and ‘false’ in contrast to the perfect
symmetry, e.g., among the various colors in a graph coloring problem. Here we develop a new asymmetric second
moment method that allows us to tackle this issue head on for the first time in the theory of random CSPs. This
technique enables us to compute the k-SAT threshold up to an additive ln 2− 1

2
+O(1/k) ≈ 0.19. Independently of

the rigorous work, physicists have developed a sophisticated but non-rigorous technique called the “cavity method”
for the study of random CSPs (Mézard, Parisi, Zecchina: Science 2002). Our result matches the best bound that
can be obtained from the so-called “replica symmetric” version of the cavity method, and indeed our proof directly
harnesses parts of the physics calculations.

1 Introduction
Since the early 2000s physicists have developed a sophisticated but highly non-rigorous technique called the “cavity
method” for the study of random constraint satisfaction problems. This method allowed them to put forward a very
detailed conjectured picture according to which various phase transitions affect both computational and structural
properties of random CSPs. In addition, the cavity method has inspired new message passing algorithms called Be-
lief/Survey Propagation guided decimation. Over the past few years there has been significant progress in turning bits
and pieces of the physics picture into rigorous theorems. Examples include results on the interpolation method [2, 7]
or the geometry of the solution space [1, 28, 29] and their algorithmic implications [3, 9].

In spite of this progress, substantial gaps remain. Perhaps most importantly, in most random CSPs the threshold for
the existence of solutions is not known precisely. In the relatively simple case of the random k-NAESAT (“Not-All-
Equal-Satisfiability”) problem the difference between the best current lower and upper bounds is as tiny as 2−Ω(k) [11].
By contrast, in random graph k-coloring, a problem already studied by Erdős and Rényi in the 1960s, the best current
bounds differ by Θ(ln k) [5]. Hence, the difference is unbounded in terms of the number of colors. Even worse, in
random k-SAT the gap is as big as Θ(k) [6]. Yet random k-SAT is probably the single most important example of a
random CSP, not least due to the great amount of experimental and algorithmic work conducted on it (e.g., [22, 24]).

The reason for the large gap in random k-SAT is that the satisfiability problem lacks a certain symmetry property.
This property is vital to the current rigorous proof methods, particularly the second moment method, on which most
of the previous work is based (e.g., [4, 5, 6]). More precisely, in random graph coloring the different colors all play
the exact same role: for any proper coloring of a graph, another proper coloring can be obtained by simply permuting
the color classes (e.g., color all red vertices blue and vice versa). Similarly, in k-NAESAT, where the requirement is
that in each clause at least one literal must be true and at least one false, the binary inverse of any NAE-solution is a
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NAE-solution as well. By contrast, in k-SAT there is an inherent asymmetry between the Boolean values ‘true’ and
‘false’.

As has been noticed in prior work [4, 6], the second moment method is fundamentally ill-posed to deal with
such asymmetries. Roughly speaking, the second moment method is based on the assumption that in a random CSP
instance, two randomly chosen solutions are perfectly uncorrelated. But in random k-SAT, this is simply not the case.
Indeed, suppose that a variable x appears much more often positively than negatively throughout the formula. Then
it seems reasonable to expect that most satisfying assignments set x to ‘true’, thereby satisfying all clauses where x
appears positively. More generally, define the majority vote σmaj to be the assignment that sets variable x to true if it
appears more often positively than negatively, and to false otherwise. Then we expect that the satisfying assignments
of a random formula “gravitate toward” σmaj . Unfortunately, the correlations among satisfying assignments induced
by this drift toward σmaj doom the second moment method. Previously this issue was sidestepped by symmetrizing
the problem artificially [4, 6]. But this inevitably leaves a Θ(k) gap.

The main contribution of the present work is a new asymmetric second moment method that enables us to tackle
this problem head on. A key feature of this method is that we harness the Belief Propagation calculation from physics,
called the “replica symmetric case” of the cavity method in physics jargon. We are going to employ Belief Propagation
directly as an “educated guess” in the design the random variable upon which our proof is based in order to quantify
how much a typical satisfying assignment leans toward σmaj .

This is in contrast to most prior work on the subject, where individual statements hypothesized on the basis of
physics arguments were proved via completely different methods (with the notable exception of the interpolation
technique [2, 7, 17]). Hence, we view the present work as a pivotal step in the long-term effort of providing a rigorous
foundation for the physicists’ cavity method. In fact, the general approach developed here does not hinge on particular
properties of the k-SAT problem, and thus we expect that the technique will extend to other asymmetric problems as
well. Examples include not only other random CSPs that are asymmetric per se, but also instances of random problems
that arise at intermediate steps of message passing algorithms such as Belief/Survey Propagation guided decimation,
even if the initial problem is symmetric. In particular, we believe that getting a handle on asymmetric problems is a
necessary step to analyze such message passing algorithms accurately.

To state our results precisely, we let k ≥ 3, n > 0 be integers and we let V = {x1, . . . , xn} be a set of n Boolean
variables. Further, let Φ = Φk(n,m) denote a Boolean formula with m clauses of length k over the variables V
chosen uniformly at random among all (2n)km such formulas. Let r = m/n denote the density. We say that an event
occurs with high probability (‘w.h.p.’) if its probability tends to 1 as n→∞.

Friedgut [18] showed that for any k ≥ 3 there exists a threshold sequence1 rk−SAT(n) such that for any (fixed)
ε > 0 w.h.p. Φ is satisfiable if m/n < (1 − ε)rk−SAT(n), while for m/n > (1 + ε)rk−SAT(n) Φ is unsatisfiable
w.h.p.

Upper bounds on rk−SAT can be obtained via the first moment method. The best current ones [17, 23] are

rk−SAT ≤ rupper = 2k ln 2− (1 + ln 2) /2 + ok(1), (1)

where ok(1) hides a term that tends to 0 for large k. The best prior lower bound is due to Achlioptas and Peres [6],
who used a “symmetric” second moment argument to show

rk−SAT ≥ rbal = 2k ln 2− k · ln 2

2
−
(

1 +
ln 2

2

)
+ ok(1). (2)

The bounds (1) and (2) leave an additive gap of k · ln 2
2 + 1

2 + ok(1), i.e., the gap is unbounded in terms of k.

Theorem 1.1 There is εk = ok(1) such that

rk−SAT ≥ rBP = 2k ln 2− 3 ln 2

2
− εk. (3)

Achlioptas and Peres asked whether the gap rupper − rk−SAT is bounded by an absolute constant (independent of
k). Theorem 1.1 answers this question, reducing the gap to ln 2− 1

2 ≈ 0.19. No attempt at optimizing the error term
εk has been made, but our proofs yield rather directly that εk = O(1/k).

1It is widely conjecture but as yet unproved that rk−SAT(n) converges for any k ≥ 3.
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Apart from the quantitative improvement, the main point of this paper is that we manage to solve the problem
of asymmetry in random CSPs for the first time. To explain this point, we start by discussing what we mean by
asymmetry and how it derails the second moment method. That this is so was already intuited in [4, 6]. In the next
section, we are going to verify and elaborate on those discussions.

2 Asymmetry and the second moment method
The second moment method. In general, the second moment method works as follows. Suppose that Z = Z(Φ) is a
non-negative random variable such that Z > 0 only if Φ is satisfiable. Moreover, suppose that for some density r > 0
there is a number C = C(k) > 0 that may depend on k but not on n such that

0 < E
[
Z2
]
≤ C · E [Z]

2
. (4)

We claim that then rk−SAT ≥ r. Indeed, the Paley-Zygmund inequality

P [Z > 0] ≥ E [Z]
2

E [Z2]
(5)

implies that P [Φ is satisfiable] ≥ P [Z > 0] ≥ 1/C. Because the right hand side remains bounded away from 0 as
n→∞, the following simple consequence of Friedgut’s sharp threshold result implies rk−SAT ≥ r.

Lemma 2.1 ([18]) Let k ≥ 3. If for some r we have

lim inf
n→∞

P [Φ is satisfiable] > 0,

then rk−SAT ≥ r − o(1).

Hence, we “just” need to find a random variable that satisfies (5). Let S(Φ) denote the set of satisfying assign-
ments; then certainly Z = |S(Φ)| is the most obvious choice. However, this “vanilla” second moment argument turns
out to fail spectacularly. We need to understand why.
Asymmetry and the majority vote. The origin of the problem is that k-SAT is asymmetric in the following sense.
Suppose that all we know about the random formula Φ is for each variable x the number dx of times that x appears
as a positive literal in the formula, and the number d¬x of negative occurrences. Then our best stab at constructing a
satisfying assignment seems to be the “majority vote” assigment σmaj where we set x to true if dx > d¬x and to false
otherwise. Indeed, by maximizing the total number of true literal occurrences, of which a satisfying assignment must
put one in every clause, σmaj also maximizes the probability of being satisfiable.

Our proof of Theorem 1.1 allows us to formalize this observation, thereby verifying a conjecture from [6]. Let
dist(·, ·) denote the Hamming distance.

Corollary 2.2 There is a number δ = δ(k) > 0 such that for 2k/k < r < rBP w.h.p. we have∑
σ∈S(Φ)

dist(σ, σmaj)
|S(Φ)|

≤
(

1

2
− δ
)
· n. (6)

Hence, the average Hamming distance of σ ∈ S(Φ) from σmaj is strictly smaller than n/2, i.e., the set S(Φ) is
“skewed toward” σmaj w.h.p.

This asymmetry dooms the second moment method. To see why, let

wmaj = wmaj(Φ) =
∑
x∈V

max {dx, d¬x}
km

denote the majority weight of Φ. Then the larger wmaj, the more likely σmaj and assignments close to it are to be
satisfying. In effect, the bigger wmaj , the more satisfying assignments we expect to have. The consequence of this
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is that the number |S(Φ)| of satisfying assignments behaves like a “lottery”: its expectation is driven up by a tiny
fraction of “lucky” formulas with wmaj much bigger than expected.

Let us highlight this tradeoff, as it is characteristic of the kind of trouble that asymmetry causes. For ξ > 0
independent of n but sufficiently small it turns out that for a certain constant c > 0,

P [wmaj ∼ E [wmaj] + ξ] = exp
[
−(cξ2 +O(ξ3))n

]
. (7)

That is, the probability is exponentially small but, like in the Chernoff bound, the exponent is a quadratic function
of ξ. By comparison, increasing the majority weight by ξ boosts the expected number of satisfying assignments by a
linear exponential factor: there is c′ > 0 such that

E
[
|S(Φ)|

∣∣ wmaj ∼ E [wmaj] + ξ
]

= exp
[
(c′ξ +O(ξ2))n

]
· E
[
|S(Φ)|

∣∣wmaj ∼ E [wmaj]
]
. (8)

The exponent in (8) is linear because for a typical assignment τ at distance ( 1
2 − δ)n from σmaj increasing wmaj by ξ

boosts the number of literals that are true under τ by 2δξ · km, a term that is linear in ξ.
Since the exponent is linear in (8) but quadratic in (7), there is a (small but) strictly positive ξ > 0 such that the

“gain” exp
[
(c′ξ +O(ξ2))n

]
in the expected number of satisfying assignments exceeds the “penalty” exp

[
−(cξ2 +O(ξ3))n

]
for deviating from E [wmaj]. With little extra work, this observation leads to

Lemma 2.3 For any k ≥ 3 and r > 2k/k we have

|S(Φ)| ≤ exp
(
−Ω(4−k) · n

)
· E [|S(Φ)|] w.h.p.

Lemma 2.3 entails rather easily that the “vanilla” second moment argument fails dramatically. Indeed, as already
noticed in [4, 6], we have E

[
|S(Φ)|2

]
≥ exp(Ω(n)) · E [|S(Φ)|]2. Hence, we miss our mark (4) by an exponential

factor. But Lemma 2.3 is witness to an even worse failure: not only does (4) fail to hold, but even the normally much
more dependable first moment overshoots the “actual” number of satisfying assignments by an exponential factor!
(Lemma 2.3 is an improvement of an observation from [1], showing that |S(Φ)| ≤ exp(−ξn)E [|S(Φ)|] w.h.p. for
some tiny ξ = ξ(k) > 0; we conjecture that the 4−k term in Lemma 2.3 is tight.)

In summary, the drift toward σmaj and the resulting fluctuations of the majority weight induce a tremendous source
of variance, derailing the “vanilla” second moment argument.
Balanced assignments. A natural way to sidestep this issue is to work with a ‘symmetric’ subset of S(Φ). Perhaps
the most obvious choice is the set SNAE(Φ) of NAE-solutions. In a landmark paper, Achlioptas and Moore [4] proved
that indeed there is C = C(k) > 0 such that for ZNAE = |SNAE(Φ)| we have

E
[
Z2

NAE

]
≤ C · E [ZNAE]

2 for r ≤ 2k−1 ln 2−Ok(1). (9)

As we saw above (cf. Lemma 2.1), this implies that rk−SAT ≥ 2k−1 ln 2 − O(1). However, a simple (first moment)
calculation shows that for r > 2k−1 ln 2, the set SNAE(Φ) is empty w.h.p. Thus, the idea of working with NAE-
solutions stops working at r ∼ 2k−1 ln 2, about a factor of two below the satisfiability threshold.

Achlioptas and Peres [6] obtained a better bound by precipitating symmetry in a more subtle manner. Let us call
σ ∈ {0, 1}n balanced if under σ out of the km literal occurrences in Φ exactly half are true (i.e., km2 ± 1). Thus,
balanced assignments are expressly forbidden from pandering to σmaj . Now, let Sbal(Φ) be the set of all balanced
satisfying assignments, and set Zbal = |Sbal(Φ)|. Achlioptas and Peres used a clever weighting scheme to prove that

E
[
Z2

bal

]
≤ C · E [Zbal]

2 for r ≤ rbal (cf. (2)). (10)

As before, this implies that rk−SAT ≥ rbal (Lemma 2.1).
Yet as in the case of NAE-solutions, balanced satisfying assignments cease to exist way before the satisfiability

threshold. Indeed, Achlioptas and Peres observed that Sbal(Φ) = ∅ for r > 2k ln 2− k ln 2
2 w.h.p. In effect, to close in

further on rk−SAT we will have to accommodate assignments that lean toward σmaj . How can this be accomplished?
A quick fix? We saw that to make an asymmetric second moment argument work, we need to rule out fluctuations of
the majority weight. A sensible way of implementing this is by actually fixing the entire vector d = (dx, d¬x)x∈V
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that counts the positively/negatively occurrences of each variable. More precisely, given a non-negative integer vector
d = (dx, d¬x)x∈V with

∑
x∈V dx + d¬x = km let Φd denote a uniformly random k-CNF in which each variable x

appears dx times positively and d¬x times negatively. Then we can split the generation of a random formula Φ into
two steps:

First, choose the occurrence vector d randomly from the “correct” distributionD.

Then, choose a random formula Φd.

The “correct” D is as follows. Let e = (ex, e¬x)x∈V be a family of independent Poisson variables with mean
kr/2 each. Moreover, let E be the event that

∑
x∈V ex + e¬x = km. LetD be the conditional distribution of e given

E . Then standard arguments show that the outcome of first choosing d and then Φd is exactly the uniformly random
Φ.

The point of generating Φ in two steps as above is that given the outcome d of the first step, the majority weight is
fixed. Hence, if we could show that given a “typical” d, the second moment succeeds for |S(Φd)| we would obtain a
lower bound on rk−SAT . Unfortunately, matters are not so simple.

Lemma 2.4 W.h.p. for a vector d chosen fromD we have E[|S(Φd)|2] ≥ exp (Ω(n)) · E [|S(Φd)|]2.

Let us stress the two levels of randomness in Lemma 2.4. First, there is the choice of d. Then, for a given d, we
compare E[|S(Φd)|2] and E [|S(Φd)|]2. Of course, both of these quantities depend on d, and we find that w.h.p. d is
such that the first exceeds the second by an exponential factor.

The explanation for this is that even if we fix d, various other types of fluctuations remain, turning |S(Φd)| into
a “lottery”. For instance, even given d the number of clauses that are unsatisfied under σmaj fluctuates. Hence, the
inherent asymmetry of k-SAT puts not only the majority weight but also various other parameters on a slippery slope.
What we need is a way of controlling all these fluctuations simultaneously. We will present our solution in Section 5.
Catching the k-SAT threshold? Before we come to that, let us discuss what it would take to eliminate the (small but
non-zero) gap left by Theorem 1.1, i.e., how far we are from “catching” the k-SAT threshold. The physicists’ cavity
method comes in two installments. The (relatively speaking) simpler “replica symmetric” version is based on Belief
Propagation. Theorem 1.1 provides a rigorous proof of the best possible bound on the k-SAT threshold that can be
obtained from this version of the cavity method (up to possibly the precise error term εk) [25].

Unfortunately, for r > rBP the replica symmetric version (and in particular the Belief Propagation predictions
that we depend upon) are conjectured to break down. According to the more sophisticated “1-step replica symmetry
breaking” (1RSB) version of the cavity method, the reason for this is that at r ∼ rBP a new type of correlation amongst
satisfying assignments arises. To deal with these correlations, the physics methods replace Belief Propagation by the
much more intricate Survey Propagation technique.

In [11] we managed to prove rigorously that the 1RSB prediction for the random k-NAESAT threshold is correct
(up to an additive 2−Ω(k)). However, [11] depends heavily on the fact that k-NAESAT is symmetric. While it would
be very interesting to combine the merits of the present paper with those of [11], this appears to be quite challenging.
Thus, putting the 1RSB calculation for random k-SAT on a rigorous foundation remains an important open problem.
That said, we believe that any such attempt would need to build upon the techniques developed in this paper.

3 Related work
The interest in random k-SAT originated largely from the experimental observation that there seems to be a sharp
threshold for satisfiability and, moreover, that for certain densities r < rk−SAT no polynomial time algorithm is
known to find a satisfying assignment w.h.p. [22, 24]. Currently, the precise k-SAT threshold is known (rigorously)
only in two cases. Chvatal and Reed [8] and Goerdt [21] proved independently that r2−SAT = 1. Of course, 2-SAT
is special because there is a simple criterion for (un)satisfiability, which enables the proofs of [8, 21]. Unsurprisingly,
these methods do not extend to k > 2. Additionally, the threshold is known precisely when k > log2 n, i.e., the clause
length diverges as a function of n [20]. In this case, the problem of asymmetry evaporates because the majority weight
is sufficiently concentrated for the “vanilla” second moment method to succeed. (Note that Proposition 2.3 holds for
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any fixed k, but not for k = k(n) → ∞.) The issue of asymmetry also disappears in the case of strongly regular
formulas [31] where for some fixed d we have dx = d¬x = d for all x ∈ V .

Also in random k-XORSAT (random linear equations mod 2) the threshold for the existence of solutions is known
precisely [14]. The proof relies on computing the second moment of the number of solutions (after the instance has
been stripped down to a suitable core). In contrast to random k-SAT, the random k-XORSAT problem is symmetric
(cf. Remark 5.5 below), albeit in a more subtle way than k-NAESAT.

Other problems where the second moment method succeeds are symmetric as well. Pioneering the use of the
second moment method in random CSPs, Achlioptas and Moore [4] computed the random k-NAESAT threshold
within an additive 1/2. By enhancing this argument with insights from physics this gap can be narrowed to a mere
2−Ω(k) [11, 12]. Moreover, the best current bounds on the random (hyper)graph k-colorability thresholds are based
on “vanilla” second moment arguments as well [5, 15]. In summary, in all the previous second moment arguments,
the issue of asymmetry either did not appear at all by the nature of the problem [4, 5, 11, 12, 14, 15, 20], or it was
sidestepped [6].

The best current algorithms for random k-SAT find satisfying assignments w.h.p. for densities up to 1.817 · 2k/k
(better for small k) resp. 2k ln(k)/k (better for large k) [9, 19], a factor of Θ(k/ ln k) below the satisfiability threshold.
By comparison, the Lovász Local Lemma and its algorithmic version succeed up to r = Θ(2k/k2) [30].

Apart from experimental work [24], very little is known about the physics-inspired message passing algorithms
(“Belief/Survey Propagation guided decimation”) [27]. The most basic variant of Belief Propagation guided decima-
tion is known to fail w.h.p. on random formulas if r > c·2k/k for some constant c > 0 [10]. However, it is conceivable
that Survey Propagation and/or other variants of Belief Propagation perform better.

4 Preliminaries
We shall make repeated use of the following local limit theorem for the sums of independent random variables, see [16]
and [11].

Lemma 4.1 Let X1, . . . , Xn be independent random variables with support on N0 with probability generating func-
tion P (z). Let µ = E[X1] and σ2 = Var[X1]. Assume that P (z) is an entire and aperiodic function. Then, uniformly
for all T0 < α < T∞, where Tx = limz→x

zP ′(z)
P (z) , as n→∞

Pr[X1 + · · ·+Xn = αn] = (1 + o(1))
1

ζ
√

2πnξ

(
P (ζ)

ζα

)n
, (11)

where ζ and ξ are the solutions to the equations

ζP ′(ζ)

P (ζ)
= α and ξ =

d2

dz2
(lnP (z)− α ln z)

∣∣∣
z=ζ

. (12)

Moreover, there is a δ0 > 0 such that for all 0 ≤ |δ| ≤ δ0 the following holds. If α = E[X1] + δσ, then

Pr[X1 + · · ·+Xn = αn] = (1 +O(δ))
1√

2πnσ
e(−δ2/2+O(δ3))n. (13)

From this we can rather easily derive the following well-known statement about the rate function of the binomial
distribution.

Lemma 4.2 Let 0 < p, q < 1. Let

ψ(p, q) = −q ln

(
q

p

)
− (1− q) ln

(
1− q
1− p

)
,

If p, q remain fixed as n→∞, then

P [Bin(n, p) = qn] = Θ(n−1/2) exp [ψ(p, q)n] .
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The following form of the chain rule will prove useful.

Lemma 4.3 Let g : Ra → Rb and f : Rb → R be of class C2, i.e, with continuous second derivatives. Then for any
x0 ∈ Ra and with y0 = g(x0) we have for any i, j ∈ [a]

∂2f ◦ g
∂xi∂xj

∣∣∣∣
x0

=

b∑
k=1

∂f

∂yk

∣∣∣∣
y0

∂2gk
∂xi∂xj

∣∣∣∣
x0

+

b∑
k,l=1

∂2f

∂yk∂yl

∣∣∣∣
y0

∂gk
∂xi

∣∣∣∣
x0

∂gl
∂xj

∣∣∣∣
x0

.

Finally, we need the following version of the inverse function theorem that states under which conditions a given
system of equations can be solved around a specific point u. A detailed exposition can be found in [32].

Lemma 4.4 Let U ⊂ Rh be open and let f ∈ C1(U). Assume that u ∈ U and λ > 0 are such that{
x ∈ Rh : ‖x− u‖2 ≤ λ

}
⊂ U.

Let Df(x) be the Jacobian matrix of f at x, id the identity matrix, and ‖·‖ denote the operator norm over L2(Rh).
Assume that Df(u) = id and

‖Df(x)− id‖ ≤ 1

3
for all x ∈ Rh such that ‖x− u‖2 ≤ λ,

Then for each y ∈ Rh such that ‖y − f(u)‖ ≤ λ/2 there is precisely one x ∈ Rh such that ‖x− u‖ ≤ r and
f(x) = y. Furthermore, the inverse map f−1 is C1 on

{
x ∈ Rh : ‖x− u‖2 < λ

}
, and Df−1(x) = (Df(x))−1 on

this set.

Notation. We will generally assume that n > n0, k > k0 for certain large enough constants n0, k0. We are going
to use the asymptotic symbols O(f(x)), Ω(f(x)), etc. It is understood that the asymptotic is with respect to the
parameter x of the function f(x). Thus, if f is a function of n, then the asymptotic notation refers to the limit n→∞,
and if f is a function of k, then the notation refers to k being large. We use the following convention for theO-notation
in the case that f is a constant: we let O(1) be a term that remains bounded in the limit of large n, but that may by
unbounded in terms of k. By constrast, Ok(1) refers to a term that remains bounded both in the limit of large k and
large n. Expressions such as ok(1) are to be interpreted analogously. Generally, all asymptotics are uniform in the
various other parameters (such as the degree sequence d or r). For a function f(k) > 0 use the symbol Õ(f(k)) to
denote a function g(k) such that for some constant c > 0 we have g(k) = O(f(k) · lnc f(k)). For vectors ξ, η we use
the symbol

η
.
= ξ

to denote the fact that ‖ξ − η‖∞ ≤ O(1/n).
Let V = {x1, . . . , xn} and let L = {x1,¬x1, . . . , xn,¬xn}. For a literal l ∈ L we let |l| denote the underlying

variable. Moreover, sign(l) = 1 if l is a positive literal, and sign(l) = −1 otherwise. For a k-CNF Φ we let Φi denote
the ith clause of Φ and Φij the jth literal of Φi.

From here on out, we let

r = 2−k ln 2− ρ with ρ =
3

2
ln 2− εk (14)

for some sequence εk = ok(1) that tends to 0 sufficiently slowly.

5 The random variable

5.1 The construction
Our goal is to make the second moment method work for a random variable that counts “asymmetric” satisfying
assignments. In this section, we develop this random variable. The starting point, and the key ingredient, is simply a
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map p : Z → [0, 1]. For the sake of clarity, we start by setting up the framework for generic maps p; below we will
use the Belief Propagation formalism to pick the “optimal” p.

The idea is that p prescribes how strongly the assignments that we work with lean toward the majority vote.
Informally speaking, we are going to work with assignments such that a variable x that occurs dx times positively and
d¬x times negatively has a p(dx − d¬x) chance of being set to ‘true’. Before we give a formal definition, we need to
fix the number of times that each variable appears positively or negatively.
Fixing the majority weight. As we saw in Section 2, in order to make the second moment argument work, we need to
rule out fluctuations of the majority weight. To achieve this, we follow the strategy outlined in Section 2. That is, we
are going to work with formulas Φd with a given vector d = (dx, d¬x)x∈V of occurrence counts, where each variable
x appears precisely dx times positively and d¬x times negatively. As in Section 2, we let D denote the (conditional
Poisson) distribution over sequences d such that first choosing d from D and then generating Φd is equivalent to
choosing a k-CNF Φ uniformly at random.
Fixing the marginals. Now, fix one such vector d. Then the map p : Z → [0, 1] induces a map pd from the set
L = {x,¬x : x ∈ V } of literals to [0, 1] in the natural way: we let

pd(x) = p(dx − d¬x) and pd(¬x) = 1− p(x). (15)

The idea is that, given d, we should set variable x to ‘true’ with probability pd(x).
To formalize this, we call pd(l) the pd-type of the literal l. Let T = Td = {pd(l) : l ∈ L} be the set of all possible

pd-types. We say that σ : V → {0, 1} has pd-marginals if for any type t ∈ Td we have∑
l∈L:pd(l)=t

(σ(l)− t) · dl = O(1).

i.e., among all occurrences of literals of type t, a t fraction is true under σ. This definition captures the above idea that
variable x has a pd(x) chance of being ‘true’.

Fixing the clause types. We define the pd-type of a clause l1 ∨ · · · ∨ lk as the k-tuple (pd (l1) , . . . , pd (lk)) ∈ [0, 1]
k

comprising of the individual literal types. Let L = Ld = T kd be the set of all possible clause types. For each ` ∈ Ld

let MΦd
(`) be the set of indices i ∈ [m] such that the ith clause of Φd has type `, and let mΦd

(`) = |MΦd
(`)|.

In addition to fluctuations of the majority weight, we also need to suppress fluctuations of the numbers mΦd
(`).

We are going to use the same trick as in the case of the majority weight. Namely, we split the generation of a random
formula Φd into two steps:

First, choose a vectorm = (m(`))`∈L from the “correct” distributionMd.

Then, generate a formula Φd,m uniformly at random in which each variable x appears exactly dx times posi-
tively and exactly d¬x times negatively and that has exactly m(`) clauses of type ` for all ` ∈ L.

Formally, the “correct”Md is just the distribution of the random vectormΦd
= (mΦd

(`))`∈L that counts the clauses
by types in the “unrestricted” formula Φd. It is easily verified that the overall outcome of the above experiment is
identical to Φd. From now on, we fix both d andm.

Given d,m there is a simple way of generating the random formula Φd,m. Namely, create dl clones of each literal
l, and put all the clones of a given pd-type on a pile. Then the formula Φd,m is simply the result of matching the
clones on the type t pile randomly to all the clauses where a literal of type t is required.

An assignment σ with pd-marginals splits each pile into two subsets, namely the clones that are true under σ and
those that are false. For each type t, among the clones in the type t pile, a t-fraction are true, since σ has pd-marginals.
Therefore, we expect that under the random matching, for each clause type ` = (`1, . . . , `k) and each index j, in an
`j-fraction of clauses the jth literal is matched to a ‘true’ clone.
Judicious assignment. This observation motivates the following definition. We say that an assignment σ is pd-
judicious in Φd,m if for all clause types ` = (`1, . . . , `k) ∈ L and all j ∈ [k] we have∑

i∈MΦd,m
(`)

σ(Φd,m,i,j) = m(`) · `j +O(1), (16)
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where Φd,m,i,j denotes the jth literal of the ith clause of Φd,m, and the sum is over all i such that the ith clause has
type `. Let Sp(Φd,m) be the set of p-judicious satisfying assignments, and set Zp(Φd,m) = |Sp(Φd,m)|.

Given that σ is p-judicious, in order for σ to be satisfying we just need that for each type ` the ‘true’ clones are
distributed so that each clause receives at least one. Thus, the event of being satisfying is merely a matter of how
exactly the ‘true’ clones are “shuffled” amongst the clauses of type `, while for each j the total number of ‘true’ clones
of type `j is fixed. In particular, this shuffling occurs independently for each clause type. Such random shuffling
problems tend to be amenable to the second moment method. Therefore, it seems reasonable to expect that a second
moment argument succeeds for Zp(Φd,m). This is indeed the case for r < rBP − 1 + ln 2 ≈ rBP − 0.3. However, to
actually reach rBP we need to control one further parameter.
Fixing the cluster size. According to the physics predictions [25, 27], for rbal < r < rBP the set of satisfying
assignments decomposes into an exponential number of well-separated ‘clusters’. More precisely, we expect that
w.h.p. for any two satisfying σ, τ either dist(σ, τ) < 0.01n (if σ, τ belong to the same cluster), or dist(σ, τ) > 0.49n
(different clusters). Formally, we simply define the cluster of σ as

Cσ(Φ) =

{
τ ∈ S(Φd,m) :

dist(σ, τ)

n
6∈
[

1

2
− k22−k/2,

1

2
+ k22−k/2

]}
.

The intuitive reason why the second moment argument for Zp(Φd,m) breaks down for r close to rBP is that the cluster
sizes |Cσ(Φd,m)| fluctuate. A similar problem occurred in prior work on random k-NAESAT [11, 12].

As in those papers, the problem admits a remarkably simple solution: let us call an assignment σ good in Φd,m if

|Cσ(Φd,m)| ≤ E [Zp(Φd,m)] . (17)

Let Sp,good(Φd,m) be the set of all good σ ∈ Sp(Φd,m). To avoid fluctuations of the cluster size, we are just going
to work with Zp,good = |Sp,good(Φd,m)|.
The second moment bound. We now face the task of estimating the first and the second moment of Zp,good(Φd,m).
The result can be summarized as follows.

Theorem 5.1 Suppose rbal < r < rBP. There exists C = C(k) and a map p = pBP : Z → [0, 1] such that for d
chosen fromD and form chosen fromMd w.h.p.

0 < E
[
Zp,good(Φd,m)2

]
≤ C · E [Zp,good(Φd,m)]

2
.

Together with Paley-Zygmund (5), Theorem 5.1 shows that with d chosen fromD andm chosen fromMd w.h.p.

P [Φd,m is satisfiable] ≥ P [Zp,good(Φd,m) > 0] ≥ E [Zp,good(Φd,m)]
2

E [Zp,good(Φd,m)2]
≥ 1

C
. (18)

The construction of D, Md ensures that choosing Φ at random is the same as first picking d from D and m from
Md and then generating Φd,m. Therefore, (18) implies lim infn→∞ P [Φ is satisfiable] > 0, so that Lemma 2.1
yields rk−SAT ≥ rBP. Hence, we are left to prove Theorem 5.1. We begin by constructing the map pBP.

Guessing the marginals. For a set ∅ 6= S ⊂ {0, 1}V and a variable x we define the S-marginal of x as

µS(x) =
∑
σ∈S

σ(x)

|S|
. (19)

The definition of ‘pd-judicious’ is guided by the idea that pd(x) should prescribe the marginal of x in the set of all
pd-judicious satisfying assignments. Hence, in order to make the set of pd-judicious assignments as good an approxi-
mation of the entire set of satisfying assignments as possible, we better pick p so that pd(x) is a good approximation
to the actual marginal µS(Φd)(x) of x in the set of all satisfying assignments. The problem is that, because of the
asymmetry of the k-SAT problem, these marginals are highly non-trivial quantities. Indeed, on general formulas Φ the
marginals µS(Φ)(x) are #P -hard to compute.

However, according to the physicists’ cavity method, on random formulas with density r < rBP the marginals can
be computed by means of an efficient message passing algorithm called Belief Propagation [25]. While the mechanics
of this are not important in our context, the result is.
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Conjecture 5.2 Suppose that rbal < r < rBP. Let d be chosen fromD and let x be a variable. Then w.h.p.

µS(Φd)(x) =
1

2
+
dx − d¬x

2k+1
+O

(
dx − d¬x

2k

)2

. (20)

We observe that (20) is in line with the notion that S(Φd) is “skewed toward” σmaj . Indeed, the conjecture quantifies
how much so. Motivated by Conjecture 5.2, we define

pBP(z) =


1

2
+

z

2k+1
if |z| ≤ 10

√
k2k ln k,

1

2
otherwise.

(21)

Under the distribution D, the random variables dx, d¬x are asymptotically independent Poisson with mean kr/2 (cf.
Section 2). Therefore,

Ed

[
(dx − d¬x)2

]
= kr ≤ k2k ln 2,

and standard concentration inequalities show that w.h.p. there are no more than n/k30 variables x with (dx−d¬x)2 >
100k2k ln k. Hence, pd = pBP,d is (asymptotically) equal to the conjectured value on the bulk of variables w.h.p.

In summary, the problem with the “vanilla” second moment argument is that the drift toward σmaj induces correla-
tions amongst the satisfying assignments. Indeed, they are correlated with the majority assignment and thus with each
other. We circumvent this problem by explicitly prescribing the marginal probability that each variable is set to ‘true’.
One could think of this as working with the intersection of S(Φ) with a particular “surface” within the Hamming cube
{0, 1}n, namely the assignments with pd-marginals. Within this surface, all assignments are slanted equally toward
σmaj . The Belief Propagation-informed definition of pBP is meant to ensure that the surface that we consider with is
(about) the most populous one, i.e., the one with the largest number of satisfying assignments in it. The core of our
argument will be to show that with respect to the marginal distribution pBP, i.e., within the surface that pBP defines,
two random elements of Sp(Φd,m) are typically uncorrelated. But before we come to that, we need to compute the
“first moment”, i.e., the expected number of good pBP -judicious satisfying assignments.

Remark 5.3 Belief Propagation actually leads to a stronger prediction than Conjecture 5.2. Namely, it yields a
conjecture for µS(Φd)(x) up to an additive error then tends to 0 as n → ∞. However, (a) this stronger conjecture is
not in explicit form, and (b) it does not only depend on dx, d¬x, but also on various other parameters. In any case,
even a more accurate prediction would not yield a better constant than 3

2 ln 2 in Theorem 1.1.

Remark 5.4 In the present framework, the notion of balanced satisfying assignments from [6] simply corresponds to
working with the constant map pbal : Z → [0, 1] , z 7→ 1

2 . This hightlights that the improvement that we obtain here
stems from choosing the non-constant map pBP inspired by Belief Propagation.

Remark 5.5 The definition (19) of the marginal of a set gives rise to a formal notion of ‘symmetric problem’. Namely,
we could call a (binary) random CSP symmetric if its set SCSP(Φ) of solutions is such that for each variable x w.h.p.
we have µx(SCSP(Φ)) = 1

2 +o(1). Clearly, k-NAESAT passes this test as µx(SNAE(Φ)) = 1
2 for all x with certainty.

Similarly, the problem of having a balanced satisfying assignment is symmetric [6], as is random k-XORSAT.

From here on out we keep the assumptions of Theorem 5.1. In particular, we assume rbal < r < rBP. Let d
be chosen fromD, and letm be chosen fromMd. Let p = pBP be as in (21) and pd as in (15).

5.2 Typical degree sequences
We need to collect a few basic properties of the sequence d chosen from D. Let us call a sequence d = (dl)l∈L of
non-negative integers such that

∑
l∈L dl = km a signed degree sequence. For a k-CNF Φ let d (Φ) = (dl (Φ))l∈L

denote the vector whose entry dl (Φ) is equal to the number of times that literal l occurrs in Φ. Then D = Dk(n,m)
is just the distribution of the signed degree sequence d(Φ).

The signature of a literal l ∈ L with respect to a signed degree sequence d is the triple (sign(l), d|l|, d¬|l|). We
omit the reference to d if it is clear from the context. Let T = T (d) be the set of all possible signatures. For
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each literal l we let T (l) denote its signature. Furthermore, for a signature θ = (sign(l), d|l|, d¬|l|) ∈ T we let
¬θ = (−sign(l), d|l|, d¬|l|).

Let d be a signed degree sequence. A k-CNF Φ over V is d-compatible if d(Φ) = d. Thus,

Φd = Φd,1 ∧ · · · ∧Φd,m

is a uniformly random d-compatible k-CNF.
In the sequel we are going to prove statements about the random formula Φd for a “typical” signed degree sequence

d. Formally, this means that we first choose d from the distribution D at random. Then, conditioning on d, we will
study the random formula Φd. Thus, there are two levels of randomness: the distribution of d and then, given d, the
choice of the random formula Φd. When referring to the random choice of d we use the notation Pd [·], Ed [·]. By
contrast, if we choose Φd randomly for d fixed, then we use P [·], E [·].

Lemma 5.6 1. Let E be an event such that P [Φ ∈ E ] = o(1). Then w.h.p. a signed degree sequence d chosen
from the distribution D is such that P [Φd ∈ E ] = o(1). Conversely, if w.h.p. for a random d chosen from D
we have P [Φd ∈ E ] = o(1), then P [Φ ∈ E ] = o(1).

2. For any random variable X ≥ 0 and any ε > 0 we have Pd [E [X(Φd)] > E [X(Φ)] /ε] ≤ ε.

Proof. The first claim follows from Markov’s inequality as P [Φ ∈ E ] = Ed [P [Φd ∈ E ]]. The second claim follows
from from Markov’s inequality as well because E [X(Φ)] = Ed [E [X(Φd)]]. 2

Lemma 5.7 For d chosen fromD the following statements hold w.h.p.

1.
∑
x∈V (dx − d¬x)2 ∼ km.

2. 1
n

∑
x∈V |dx − d¬x| = Õ(2k/2).

3. LetM contain the n literals of largest degree. Then 1
km

∑
l∈M dl = 1

2 + Õ(2−k/2).

Proof. We use the following description of the distribution D. Let e = (el)l∈L be a family of indepedent Po(kr/2)
variables. Moreover, let E be the event that

∑
l∈L el = km. It is well known that e given E has distribution D.

Furthermore, a simple calculation based on Stirling’s formula yields

P [E ] = Θ(n−1/2). (22)

Let êl = min
{
el, ln

2 n
}

. Employing Stirling’s formula once more, we find that P [êl 6= el] ≤ n−10 for all l ∈ L.
Hence, by the union bound,

P [∀l ∈ L : êl = el] ≥ 1− n−9. (23)

Furthermore, as ex, e¬x are independent for any x ∈ V , we have

E
[
(êx − ê¬x)2

]
= 2Var(êx) = 2Var(ex) +O(n−1) = kr +O(n−1). (24)

Because êl ≤ ln2 n and the random variables
{

(êx − ê¬x)2
}
x∈V are mutually independent, Azuma’s inequality yields

P

[∣∣∣∣∣∑
x∈V

(êx − ê¬x)2 − E
∑
x∈V

(êx − ê¬x)2

∣∣∣∣∣ > n2/3

]
≤ 2 exp

[
− n1/3

8 ln8 n

]
≤ n−10. (25)

Combining (22)–(25), we find

Pd

[∣∣∣∣∣∑
x∈V

(dx − d¬x)2 − km

∣∣∣∣∣ > n3/4

]
= P

[∣∣∣∣∣∑
x∈V

(ex − e¬x)2 − km

∣∣∣∣∣ > n2/3

∣∣∣∣ E
]

≤ Θ(n1/2)P

[∣∣∣∣∣∑
x∈V

(ex − e¬x)2 − km

∣∣∣∣∣ > n3/4

]

≤ o(1) + Θ(n1/2)P

[∣∣∣∣∣∑
x∈V

(êx − ê¬x)2 − E
∑
x∈V

(êx − ê¬x)2

∣∣∣∣∣ > n2/3

]
= o(1),
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thereby proving the first claim. The second claim follows from the first by means of the Cauchy-Schwarz inequality:
w.h.p. [

1

n

∑
x∈V
|dx − d¬x|

]2

≤ 1

n

∑
x∈V

(dx − d¬x)2 ∼ kr.

Finally, the third assertion is immediate from the second. 2

For a set S ⊂ L we let Vol(S) = Vold(S) =
∑
l∈S dl.

Lemma 5.8 Let d be chosen fromD. Then w.h.p. the following is true.

For any set S ⊂ L of literals we have Vol(S) ≤ 10|S|max {kr, ln(n/|S|)} . Furthermore, if
|S| ≥ n2−0.8k, then Vol(S) ≥ 1

3 |S|kr.
(26)

Proof. We use the alternative description of D from the proof of Lemma 5.7. That is, e = (el)l∈L is a family of
indepedent Po(kr/2) variables, and E is the event that

∑
l∈L el = km. Let λ = kr/2. For any fixed set S ⊂ L the

random variable XS =
∑
l∈S el has distribution Po(|S|λ) (because the sum of two independent Poisson variables is

Poisson). Therefore, letting µ = 10|S|max {kr, ln(n/|S|)}, we obtain from Stirling’s formula

P [XS > µ] ≤ O(
√
n)P [XS = dµe] ≤ O(

√
n) · λµ

µ! exp(λ)
≤ O(

√
n) ·

(
eλ

µ

)µ
exp(−λ). (27)

For 1 ≤ s ≤ 2n let Xs =
∑
S:|S|=s 1XS>µ. Then (27) yields

EXs ≤ O(
√
n)

(
2n

s

)
· exp(−λ− µ) ≤ O(

√
n)

(
2en

s

)s
· exp(−λ− µ) = o(1/n2),

because µ ≥ 10s ln(n/s). Thus, the first claim follows from (22) and the union bound.
To prove the second claim, we use Lemma 5.6. For S ⊂ L we let YS be the total number of occurrences of literals

from S in Φ. Then YS has distribution Bin(km, |S|/2n) with mean |S|kr/2. By the Chernoff bound,

P [YS < kr|S|/3] ≤ exp

[
−kr|S|

100

]
. (28)

Hence, letting Ys =
∑
S:|S|=s 1YS<kr|S|/3, we get from (28) for s ≥ n2−0.8k

E [Ys] ≤
(

2n

s

)
exp

[
−krs

100

]
≤ exp

[
s(2 + k)− krs

100

]
= o(n−2).

Thus, by the union bound P
[
∀s ≥ n2−0.8k : Ys = 0

]
= 1− o(1/n). Applying Lemma 5.6 completes the proof. 2

For any t ∈ T we let n(t) be the number of variables x ∈ V such that pd(x) = t.

Lemma 5.9 Let d be chosen fromD. Then w.h.p. for any type t ∈ T we have

n(t) ≥ 2−3k/4n.

Proof. We use the alternative description of the distribution D from the proof of Lemma 5.7. That is, let e = (el)l∈L
be a family of indepedent Po(kr/2) variables, and E be the event that

∑
l∈L el = km. For any s,∆ let X (s,∆)

denote the number of literals l such that sign(l) = s and e|l| − e¬|l| = ∆. Since Var(el) = kr/2 = Ωk(k2k), for any
s ∈ {±1} and any ∆ such that ∆2 ≤ 100k2k ln k we have E [X (s,∆)] ≥ nk−c for some absolute constant c > 0.
Furthermore, because the random variables (el)l∈L are mutually independent, the Chernoff bound implies that

P

[
X (s,∆) ≤ 1

2
nk−c

]
≤ exp(−Ω(n)) provided that ∆2 ≤ 100k2k ln k. (29)
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Similarly, if we let X ′s denote the number of literals l such that sign(l) = s and |e|l| − e¬|l|| > 100k2k ln k, then
E [X ′ (s)] ≥ nk−c′ for some absolute constant c′ and

P

[
X ′ (s) ≤ 1

2
nk−c

′
]
≤ exp(−Ω(n)). (30)

Thus, the assertion follows by combining (22), (29) and (30). 2

For each t ∈ T we let π(t) denote the fraction of literal occurrences of p-type t, i.e.,

π(t) =
∑

l∈L:pd(l)=t

dl
km

.

For each ` ∈ L let
γ` =

1

n
E [mΦd

(`)] .

Lemma 5.10 Let d be chosen fromD. Then w.h.p. γ` ∼
∏k
j=1 π(`j) for all ` = (`1, . . . , `k) ∈ L.

Proof. By the linearity of expectation, we just need to compute the probability that the first clause Φd,1 has type `.
Since

∣∣T −1(t)
∣∣ = Ω(n) for all t ∈ T , the types of the k literals of Φd,1 are asymptotically independent. Thus, the

assertion follows from the fact that π(`j) equals the marginal probability that a random lityal has type `j . 2

Lemma 5.11 W.h.p. for d chosen fromD we have P
[
∀` ∈ L : |mΦd

(`)− γ`n| ≤ n2/3
]

= 1− o(1).

Proof. Fix a type ` = (`1, . . . , `j). Because p is a feasible marginal, for any j ∈ [k] there are Ω(n) literals l with
p(l) = p(`j). Therefore, a straightforward calculation shows that

P [Φd,i has type `|Φd,h has type `] = P [Φd,i has type `] · (1 +O(1/n)) for any i 6= h.

Consequently, Var(mΦd
(`)) ∼ E [mΦd

(`)] = O(n). Hence, by Chebyshev’s inequality

P
[
|mΦd

(`)− E [mΦd
(`)] | > n2/3

]
= O(n−1/3) = o(1). (31)

Since |L| = O(1) as n→∞ by the construction of p, the assertion follows from (31) and the union bound. 2

6 The first moment

6.1 Outline
Let ρ > 3

2 ln 2 be such that r = 2k ln 2− ρ.

Proposition 6.1 W.h.p. d,m are such that

E [Zp,good(Φd,m)] = exp

[
n

2k

(
ρ− ln 2

2
+ ok(1)

)]
.

We begin by computing E [Zp(Φd,m)]. By definition, any assignment that is pd-judicious has pd-marginals. Thus,
letHp(d) ⊂ {0, 1}V denote the set of all assignments that have pd-marginals. Then by the linearity of expectation,

E [Zp(Φd,m)] =
∑

σ∈Hp(d)

P [σ ∈ Sp(Φd,m)] . (32)

Hence, we need to compute |Hp(d)| and the probability P [σ ∈ Sp(Φd,m)] for any σ ∈ Hp(d). Using basic properties
of the entropy, we obtain
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Lemma 6.2 Let χ(z) = −z ln z − (1− z) ln(1− z) denote the entropy function. Then w.h.p. d is such that

ln |Hp(d)| ∼ n ·
∑
x∈V

χ(p(x)).

Taylor expanding χ(z) around z = 1/2 and plugging in the definition (21) of p, we obtain that w.h.p. d is such
that

1

n
ln |Hp(d)| = ln 2− k ln 2

2k+1
+ ok(2−k). (33)

As a next step, we compute the probability of σ ∈ Sp(Φd,m) for σ ∈ Hp(d).

Lemma 6.3 W.h.p. d,m are such that for any σ ∈ Hp(d),

1

n
ln P [σ ∈ Sp(Φd,m)] = − ln 2 +

k ln 2

2k+1
+ 2−k

[
ρ− ln 2

2
+ ok(1)

]
. (34)

Let us defer the proof of Lemma 6.3, which is the core of the first moment computation, for a little while. Com-
bining (32)–(34), we see that w.h.p. over the choice of d,m we have

ln E [Zp(Φd,m)] = ln |Hp(d)|+ ln P [σ ∈ Sp(Φd,m)]

∼ 2−k
[
ρ− ln 2

2
+ ok(1)

]
· n (35)

To obtain the expectation of Zp,good, we show the following.

Lemma 6.4 W.h.p. over the choice of d,m we have

E [Zp,good(Φd,m)] ∼ E [Zp(Φd,m)] .

The proof of Lemma 6.4 is based on arguments developed in [1] for analyzing the geometry of the set of satisfying
assignments. Combining (35) and Lemma 6.4 yields Proposition 6.1.

6.2 Proof of Lemma 6.3
For a sequence m = (m(`))`∈L of non-negative integers we let Γm denote the event that mΦd

(`) = m(`) for all
` ∈ L. Let us call m feasible if Pm [Γm] > 0 and |m(`) − γ`n| ≤ n2/3 for all ` ∈ L. Let Z be the number of
pd-judicious satisfying assignments.

Proposition 6.5 Let d be chosen fromD. Then w.h.p. for any feasiblem = (m(`))`∈L the following statements hold.

1. We have

2−k
[
ρ− ln 2

2
− k−9

]
≤ 1

n
ln E [Z(Φd,m)] ≤ 2−k

[
ρ− ln 2

2
+ k−9

]
.

2. For any t ∈ T we have ∑
l∈L:pd(l)=t

d2
l ≤

2kmπ(t)

n(t)
.

3. For any σ ∈ {0, 1}V with p-marginals we have

1

km

∑
l∈L

dl1σ(l)=1 =
1

2
+O(2−k).
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The proof of Proposition 6.5 consists of two steps. We defer the proof of the following lemma to Section 6.3.

Lemma 6.6 With the assumptions of Proposition 6.5 and with δ, δ′ defined by

1

km

∑
x∈V

(
p(x)− 1

2

)2

= (1 + δ) 2−2k−2 and

Σ =
1

km

∑
x∈V

(1− 2p(x))(dx − d¬x) = −(1 + δ′)2−k

we have w.h.p.

1

n
ln E [Z(Φd,m)] = 2−k

[
ρ− ln 2

2

]
+O

(
k(δ + δ′)

2k

)
+ Õ(2−3k/2).

Proof of Proposition 6.5. Let ∆ = 100k2k ln k and let δ, δ′ be as in Lemma 6.6. Using the alternative description of
the distributionD from the proof of Lemma 5.7 and applying Azuma’s inequality, one can easily verify that w.h.p.∑

x∈V
1(dx−d¬x)2≤∆ · (dx − d¬x)2 ≥ (1− k−12)

∑
x∈V

(dx − d¬x)2. (36)

Therefore, Lemma 5.7 entails that w.h.p.

1

km

∑
x∈V

(
p(x)− 1

2

)2

=
1 +Ok(k−12)

km

∑
x∈V

(dx − d¬x)2

4k+1
=

1 +Ok(k−12)

4k+1
.

Consequently, w.h.p. we have

δ = Ok(k−12). (37)

Similarly, invoking (36) once more, we see that w.h.p.

−Σ =
1

km

∑
x∈V

(2p(x)− 1)(dx − d¬x) =
1

2kkm

∑
x∈V

1(dx−d¬x)2≤∆ · (dx − d¬x)2 =
1 +Ok(k−12)

2k
,

whence

δ′ = Ok(k−12) (38)

w.h.p. Thus, Proposition 6.5 is a direct consequence of Lemmas 5.9 and 6.6 and (37), (38). 2

6.3 Proof of Lemma 6.6
We begin by determining the number σ ∈ {0, 1}V with p-marginals. The following is an easy consequence of
Lemma 6.2.

Corollary 6.7 W.h.p. for d chosen fromD we have

1

n
ln |H(p)| = ln 2− 2

n

∑
x∈V

(
p(x)− 1

2

)2

+ Õ(2−3k/2).
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Proof. This follows from Lemma 6.2 by Taylor expanding χ(·) around 1
2 . 2

We need to compute the probability that an assignment σ ∈ {0, 1}V with p-marginals is a p-judicious satisfying
assignment. To this end, we introduce a new probability space (Ω̂, P̂). Let q = (q`,j)`∈L,j∈[k] be a matrix with entries
in [0, 1]. The elements of our new probability space Ω̂ are all 0/1 vectors

(σ̂ij(`))`∈L,i∈[m(`)],j∈[k].

The distribution P̂ is such that the entries σ̂ij(`) are mutually independent, and for each ` = (`1, . . . , `k) ∈ L,
i ∈ [m(`)], j ∈ [k] we let σ̂ij(`) = Be(q`,j) be a Bernoulli random variable. (It may be helpful to think of σ̂ij(`) as
the truth value of the jth literal of the ith clause of type ` in a random formula Φd,m.)

For ` = (`1, . . . , `k) ∈ L let Si(`) be the event that

max
j∈[k]

σ̂ij(`) = 1

(the intuition is that this corresponds to the event that the clause i of type ` is satisfied). Let S(`) =
⋂
i∈[m(`)] Si(`)

and S =
⋂
`∈L S(`). Moreover, for j ∈ [k] let B(`, j) be the event that

1

m(`)

∑
i∈[m(`)]

σ̂ij(`)
.
= p(t).

Let B(`) =
⋂k
j=1B(`, j) and B =

⋂
`∈LB(`). The connection between the probability space Ω̂ and Lemma 6.6 is

as follows.

Lemma 6.8 Suppose that σ ∈ {0, 1}V has p-marginals. Let S(σ) be the event that σ is a satisfying assignment of
Φd,m and let B(σ) be the event that σ is pd-judicious. Then P [S(σ)|B(σ)] = P̂ [S|B] .

Proof. Note that in P [S(σ)|B(σ)] probability is taken over the choice of the random formula Φd,m, while in P̂ [S|B]
probability is taken over σ̂ chosen from the above distribution. Thus, we need to relate the two probability spaces.

For any d-compatible formula Φ ∈ Γm we can define a map

σ ∈ {0, 1}V 7→ σ̂
∣∣
Φ

=
(
σij(`)

∣∣
Φ

)
`∈L,i∈[m(`)],j∈[k],

by letting σ̂ij(`)|Φ be the truth value of the jth literal of the ith clause of type ` in Φ under σ. In other words, σ̂|Φ
is the string of truth values that we get by “plugging the assignment σ into Φ”. Then σ is judicious iff σ̂Φ ∈ B.
Furthermore, σ is satisfying iff σ̂Φ ∈ S. Finally, if σ has p-marginals, then σ̂|Φd,m

becomes a random vector. Given
B(σ) its distribution is identical to the conditional distribution of σ̂ given B. 2

Corollary 6.9 With the notation of Lemma 6.8 we have P [S(σ) ∩ B(σ)] = P̂ [S|B] exp(o(n)). Moreover, for any σ
with p-marginals we have P [B(σ)] = Θ

(
n(|T |−k|L|)/2).

Proof. Since the total number |L| of clause types is bounded, the assertion follows from a repeated application of
Lemma 4.1 (the local limit theorem). 2

Thus, we have reduced the proof of Lemma 6.6 to the computation of P̂ [S|B]. The benefit of the probability space Ω̂
is that S,B can be decomposed easily into independent events. Indeed, for any ` ∈ L and any i ∈ [m(`)] we have

P̂ [Si(`)] = 1−
k∏
j=1

1− q`,j ,

because the σ̂ij(`) are independent. Moreover, due to independence and becausem is feasible,

1

n
ln P̂ [S(`)] =

1

n

∑
i∈[m(`)]

ln P̂ [Si(`)] ∼ γ` ln

1−
k∏
j=1

1− q`,j
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and thus
1

n
ln P̂ [S] ∼

∑
`∈L

γ` ln

1−
k∏
j=1

1− q`,j

 . (39)

Similarly,
1

n
ln P̂ [B] =

1

n

∑
`∈L

ln P̂ [B(`)] =
1

n

∑
`∈L

k∑
j=1

ln P̂ [B(`, j)] . (40)

A further benefit of the space Ω̂ is that we are free to choose the vector q as we please (subject only to the condition
that P̂ [B] > 0). To facilitate the computation of P̂ [S|B], we are going to choose q such that

P̂ [B|S] = exp(o(n)). (41)

For if (41) holds, then

P̂ [S|B] =
P̂ [S]

P̂ [B]
· exp(o(n)),

where P̂ [S], P̂ [B] can be calculated rather easily via (39) and (40). Thus, as a next step we need to find q such
that (41) is true. To this end, we define

q̂`,j = Ê [σ̂ij(`)|Si(`)] =
q`,j

1−
∏k
l=1 1− q`,l

(` ∈ L, j ∈ [k]). (42)

Lemma 6.10 There exists q such that q̂`,j = `j for all ` = (`1, . . . , `k) ∈ L, j ∈ [k]. Furthermore, this q satisfies

q`,j = `j − 2−k−1 + Õ(2−3k/2). (43)

Proof. For any `, j we have

∂q̂`,j
∂q`,j

=
1− (1− 2q`,j)

∏
l 6=j 1− q`,l

(1−
∏
l 1− q`,l)

2 ,

∂q̂`,j
∂q`,h

= −
q`,j

∏
l 6=h 1− q`,l

(1−
∏
l 1− q`,l)

2 (h 6= j).

Hence, for k large enough and 0.01 < qj < 0.99 for all j, the k × k matrix Dq̂ is close to id. In particular, this is true
for qj close to 1/2. Therefore, the assertion follows from the inverse function theorem (Lemma 4.4). 2

Corollary 6.11 With q from Lemma 6.10 we have P̂ [B|S] = Θ(n−k|L|/2) = exp(o(n)) and thus (41).

Proof. Equation (42) shows that for the vector q from Lemma 6.10 we have Ê [σ̂ij(`)|Si(`)] = `j for all `, j, i.
Therefore, a repeated application of Lemma 4.1 yields P̂ [B|S] = Θ(n−k|L|/2) = exp(o(n)). 2

From this point on we fix q as in Lemma 6.12.

Lemma 6.12 Letting

Σ =
1

km

∑
x∈V

(1− 2pd(x))(dx − d¬x), (44)

we have 1
n ln P̂ [S] = − ln 2 + 2−k

[
ρ− ln 2

2 − k ln 2
]
− kΣ ln 2 + Õ(2−3k/2).
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Proof. Starting from (39), we obtain

1

n
ln P̂ [S] ∼

∑
`∈L

γ` ln

1−
k∏
j=1

1− q`,j

 (45)

= −
∑
`∈L

γ`


 k∏
j=1

1− q`,j

+
1

2

 k∏
j=1

1− q`,j

2

+ Õ(8−k)

 ,
where we used the approximation ln(1 + x) = x− 1

2x
2 +O(x3). Thus, Lemma 5.10 yields

1

n
ln P̂ [S] = −

∑
`∈L

γ`

 k∏
j=1

1− q`,j

+
1

2
· 4−k + Õ(2−5k/2)


= −r

2
· 4−k + Õ(2−3k/2)− r

∑
`∈L

k∏
j=1

π(`j)(1− q`,j).

Further, by (43)

1

n
ln P̂ [S] = −r

2
· 4−k + Õ(2−3k/2)− r

∑
`∈L

k∏
j=1

π(`j)(1− `j + 2−k−1)

= −r
2
· 4−k + Õ(2−3k/2)− r

[∑
t∈T

π(t)(1− t+ 2−k−1)

]k

= −r
2
· 4−k + Õ(2−3k/2)− r

[
2−k−1 +

∑
t∈T

π(t)(1− t)

]k

= −r
2
· 4−k − kr · 4−k + Õ(2−3k/2)− r

[∑
t∈T

π(t)(1− t)

]k

= −r
2
· 4−k − kr · 4−k + Õ(2−3k/2)− r

[
1

2
−
∑
t∈T

π(t)

(
t− 1

2

)]k
.

Now, ∑
t∈T

π(t)

(
t− 1

2

)
=

∑
x∈V

dx
km

(
p(x)− 1

2

)
+
d¬x
km

(
1

2
− p(x)

)
=

1

km

∑
x∈V

(dx − d¬x)

(
p(x)− 1

2

)
= −Σ/2.

Hence,

1

n
ln P̂ [S] = −r

2
· 4−k − kr · 4−k − r

(
1 + Σ

2

)k
+ Õ(2−3k/2)

= −r · 2−k − r

2
· 4−k − kr · 4−k − krΣ2−k + Õ(2−3k/2).

Plugging in r = 2k ln 2− ρ, we get

1

n
ln P̂ [S] = − ln 2 + 2−k

[
ρ− ln 2

2
− k ln 2

]
− kΣ ln 2 + Õ(2−3k/2),

as claimed. 2
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Lemma 6.13 We have 1
n ln P̂ [B] = −k ln 2

2k+1 + Õ(2−3k/2).

Proof. Due to (40) we just need to estimate ln P̂ [B(`, j)] for any ` = (`1, . . . , `k) ∈ L and j ∈ [k]. By construction,

P̂ [B(t, `)] = P [Bin(m(`), q`,j) = `jm(`)] .

By Lemma 6.10 we have q`,j = `j − 2−k−1 + Õ(2−3k/2) = 1
2 + Õ(2−k/2). Hence, using Lemma 4.2, we find

1

m(`)
ln P̂ [B(`, j)] ∼ ψ(q`,j , `j) (46)

= − (q`,j − `j)2

2q`,j
− (`j − q`,j)2

2(1− q`,j)
+Ok(8−k)

= − (q`,j − `j)2

2

(
1

q`,j
+

1

1− q`,j

)
+Ok(8−k)

= −
(

2 + Õ(2−k/2)
)

(q`,j − `j)2

= −
(

2 + Õ(2−k/2)
)

(2−k−1 + Õ(2−3k/2))2 = −
(

1

2
+ Õ(2−k/2)

)
2−2k.

Hence, (40) yields

1

n
ln P̂ [B] = −

∑
`∈L

k∑
j=1

m(`)

n
·
[

1

2
· 2−2k + Õ(2−5k/2)

]

= −kr ·
[

1

2
· 2−2k + Õ(2−5k/2)

]
= −k ln 2

2k+1
+ Õ(2−3k/2),

as claimed. 2

Remark 6.14 In the second moment calculation we will need to know that

ln P̂ [S|B] =
∑
`∈L

m(`)

ln

1−
k∏
j=1

1− q`,j

− k∑
j=1

ψ(q`,j , `j)


which follows from (45) and (46).

Corollary 6.15 Let δ, δ′ > 0 be such that∑
x∈V

(
pd(x)− 1

2

)2

=
(1 + δ)km

22k+2
,

Σ = (1 + δ′)2−k with Σ from (44).

Then with r = 2−k ln 2− c we have

ln |H(p)|+ ln P̂ [S|B]

n
= 2−k

[
ρ− ln 2

2

]
+O

(
k(δ + δ′)

2k

)
+ Õ(2−3k/2).

Proof. By the above,

1

n
ln P̂ [S] = − ln 2 + 2−k

(
ρ− ln 2

2
− k ln 2

)
− kΣ ln 2 + Õ(2−3k/2)

= − ln 2 + 2−k
(
ρ− ln 2

2

)
+
kδ′ ln 2

2k
+ Õ(2−3k/2),

1

n
ln P̂ [B] = −k ln 2

2k+1
+ Õ(2−3k/2),

1

n
ln |H(p)| = ln 2− 2

n

∑
x∈V

(
pd(x)− 1

2

)2

= ln 2− k ln 2

2k+1
− δk ln 2

2k+1
.
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Summing up yields the result. 2

Proof of Lemma 6.6. Lemma 6.6 is a direct consequence of Corollaries 6.7, 6.9, 6.11 and 6.15. 2

6.4 Proof of Lemma 6.4
Assume thatm is feasible. Let Z denote the number of good p-satisfying assignments.

Proposition 6.16 Let d be chosen fromD and letm be chosen fromMd. Then E [Z(Φd,m)] ∼ E [Z(Φd,m)] w.h.p.

The proof of Proposition 6.16 is based on three lemmas.

Lemma 6.17 Let d be chosen fromD and letm be chosen fromMd.

1. Let E be an event such that P [Φ ∈ E ] = o(1). Then P [Φd,m ∈ E ] = o(1).

2. For any random variable X ≥ 0 and any ε > 0 we have Pd,m [E [X(Φd)] > E [X(Φ)] /ε] ≤ ε.

Proof. This follows from a similar application of Markov’s inequality as in the proof of Lemma 5.6. 2

Lemma 6.18 With the assumptions of Proposition 6.16 the random variable

Z ′ =
∣∣{σ ∈ S(Φd,m) :

∣∣{τ ∈ S(Φd,m) : dist(σ, τ) < 2−0.99kn
}∣∣ ≤ E [Z(Φd,m)]

}∣∣
satisfies E [Z ′(Φd,m)] ∼ E [Z(Φd,m)] w.h.p.

The proof of Lemma 6.18 can be found in Section 6.5. Moreover, in Section 6.6 we prove the following.

Lemma 6.19 Suppose that r ≤ 2k ln 2. Let ξ = k2−k/2. Let Z ′′ be the number of pairs (σ, τ) ∈ S(Φ)2 such that

dist(σ, τ) ∈
[
k2−k, 1

]
\
[

1

2
− ξ, 1

2
+ ξ

]
.

Then E [Z ′′] = o(1).

Finally, Proposition 6.16 follows immediately from Lemmas 6.17, 6.18 and 6.19.

6.5 Proof of Lemma 6.18
Let Φ be a k-CNF and σ ∈ S(Φ). We say that a variable x is ξ-rigid in (Φ, σ) if for any τ ∈ S(Φ) with τ(x) 6= σ(x)
we have dist(σ, τ) ≥ ξn. Let λ = kr/(2k − 1).

Lemma 6.20 1. The expected number of σ ∈ S(Φ) in which more than k122−kn variables support at most 12
clauses is ≤ exp(−nk9/2k)E |S(Φ)|.

2. The expected number of σ ∈ S(Φ) in which more than (1 + 1/k2)2−kn variables support no clause at all is
≤ exp(−n/(k62k))E |S(Φ)|.

Proof. Fix an assignment σ ∈ {0, 1}V , say σ = 1. Then the number of clauses supported by each x ∈ V is
asymptotically Poisson with mean λ. Let Ex be the event that x supports no more than 12 clauses. Then

P [Ex] ≤ λ12 exp(−λ) ≤ 1

2
k122−k.

The events (Ex)x∈V are negatively correlated. Therefore, the total number X of variables x ∈ V for which Ex occurs
is stochastically dominated by a binomial variable Bin(n, 1

2k
122−k). Hence, the first assertion follows from Chernoff

bounds.
With respect to the second assertion, let E ′x be the event that x supports no clause at all. Then P [Ex] ≤ exp(−λ).

Using negative correlation and Chernoff bounds once more completes the proof. 2

Let us call a set S ⊂ V self-contained if each variable in S supports at least ten clauses that consist of variables in
S only. There is a simple process that yields a (possibly empty) self-contained set S.
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• For each variable x that supports at least one clause, choose such a clause Cx randomly.

• Let R be the set of all variables that support at least 12 clauses.

• While there is a variable x ∈ R that supports fewer than ten clauses Φi 6= Cx that consist of variables of R
only, remove x from R.

The clauses Cx will play a special role later.

Lemma 6.21 The expected number of solutions σ ∈ S(Φ) for which the above process yields a set R of size |R| ≤
(1− k15/2k)n is bounded by exp(−nk3/2k)E |S(Φ)|.

Proof. Let σ ∈ {0, 1}V be an assignment, say σ = 1. Let Q be the set of all variables that support fewer than 12
clauses. By Lemma 6.20 we may condition on |Q| ≤ k122−kn. Assume that |R| ≤ (1− k15/2k)n. Then there exists
a set S ⊂ V \(R∪Q) of size 1

2k
15n/2k ≤ S ≤ k15n/2k such that each variable in S supports ten clauses that contain

another variable from S ∪Q. With s = |S|/n the probability of this event is bounded by(
m

10sn

)[
21−k

1− 21−k ·
k2|S ∪Q|2

n2

]10sn

≤
[
4ek2s

]10sn
.

Hence, the expected number of set S for which the aforementioned event occurs is bounded by(
n

s

)[
4ek2s

]10sn ≤
[e

s
· (4ek2s)2

]sn
≤ exp(−sn),

which implies the assertion. 2

Let us call a variable x is attached if x supports a clause whose other k − 1 variables belong to R.

Corollary 6.22 The expected number of σ ∈ S(Φ) in which more than n/(k22k) variables x 6∈ R that support at
least one clause are not attached is bounded by E |S(Φ)| · exp(−n/(k62k)).

Proof. Let F = V \R. By Proposition 6.21 we may assume that |F | ≤ nk15/2k. Therefore, for each of the “special”
clause Cx that we reserved for each x that supports at least one clause the probability of containing a variable from
F \ {x} is bounded by

(1 + ok(1))k · |F |
n
≤ 3k16

2k
.

Furthermore, these events are independent (because the clauses Cx were disregarded in the construction of R). Hence,
the number of variables x 6∈ R that support at least one clause but that are not attached is dominated by Bin(|F |, 3k16

2k
).

The assertion thus follows from Chernoff bounds. 2

Let us call S ⊂ V dense if each variable in S supports at least ten clauses and at most 2k clauses such that at least
ten of them feature another variable from S.

Lemma 6.23 For d chosen from D, m chosen from Md and any σ ∈ {0, 1}V the following holds w.h.p. Let A be
the event that σ is a p-satisfying assignment of Φd,m. Then

P
[
Φd,m has a dense S ⊂ V , |S| ≤ n2−0.99k | A

]
= o(1).

Proof. We may assume that d satisfies (26); we emphasize that this is a property of d only, regardless of m or the
event A. Let D(S) be the event that S ⊂ V is dense. We may fix (i.e., condition on) the specific clauses supported by
each variable x ∈ S. Let x ∈ S and let i ∈ [m] be the index of a clause supported by x. Let ` be the type of clause i.
For each t ∈ T let Vt be the set of literals l of type t. Then the probability that clause i contains another variable from
S is bounded by ∑

j∈[k]

Vol(V`j ∩ σ−1(0) ∩ S)

Vol(V`j ∩ σ−1(0))
≤ kmax

t∈T

(
Vol(Vt ∩ σ−1(0) ∩ S)

Vol(Vt ∩ σ−1(0))

)
.
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Since |Vt| ≥ n2−0.8k for all t w.h.p. by Lemma 5.9, we have Vol(Vt) ≥ 1
3kr|Vt| ≥ 30 · 20.2kn. Furthermore,

Vol(Vt ∩ σ−1(0)) ≥ 1
3Vol(Vt) by the choice of p(t). Hence, (26) yields

Vol(Vt ∩ S ∩ σ−1(0))

Vol(Vt ∩ σ−1(0))
≤ Vol(S)

1
3Vol(Vt)

≤ max {kr, ln(n/|S|)} |S|
20.2kn

.

Due to negative correlation, in total we obtain

P [Φd,m ∈ D(S)|A] ≤
(

2k

10

)|S|
·
(
kmax {kr, ln(n/|S|)} |S|

20.2kn

)10|S|

.

(The factor
(

2k
10

)|S|
accounts for the number of ways to choose 10 out of the at most 2k clauses that each variable in S

supports.)
For 0 < s ≤ 1/k5 let Xs be the number of sets S of size |S| = sn for which D(S) occurs. Then

E [Xs|A] ≤
(
n

sn

)(
2k

10

)|S|(
kmax {kr, ln(n/|S|)} |S|

20.2kn

)10|S|

≤

[
e
(
k2 max {kr,− ln(s)} s

)10

s4k

]sn

=

[
ek20 max

{
s9(kr)10, s9 ln10(s)

}
4k

]sn
.

There are two cases to consider. First, if s ≤ ln(n)/n, then the term in the brackets is clearly o(1). Second, if
s ≥ ln(n)/n, then we have the following bound. Since s ≤ smax = 2−0.99k and as x 7→ x9 ln10 x is monotonically
increasing for x < 0.1, we have

s9 ln10(s) ≤ s9
max ln10 smax ≤ s9

max(kr)10 ≤ 210k−8.91k = 21.09k.

Hence, the entire bracket is bounded by 2−k/2. Summing over all possible s and using Markov’s inequality completes
the proof. 2

Let us call a variable x ∈ V ξ-rigid in σ ∈ S(Φ) if for any τ ∈ S(Φ) with τ(x) 6= σ(x) we have dist(σ, τ) ≥ ξn.

Corollary 6.24 W.h.p. for d chosen from D and for m chosen from Md the following is true. Let σ ∈ {0, 1}V and
let A be the event that σ is a p-satisfying assignment of Φd,m. Moreover, let Y be the number of variables that are
not 2−0.99k-rigid. Then

P
[
Y (Φd,m) ≤ (1 + 2k−2)2−kn | A

]
= 1− o(1).

Proof. Let ξ = 2−0.99k. We condition on the event A. Consider a variable z that is either attached or in R. Let
τ ∈ S(Φd,m) be such that τ(z) 6= σ(x) and dist(σ, τ) < n/20.99k. Because z is attached or in R, the set

∆ = {x ∈ R : τ(x) 6= σ(x)}

is non-empty. Moreover, ∆ is dense by the construction of R. Thus, Lemma 6.23 shows that dist(σ, τ) ≥ |∆| ≥
n/20.99k w.h.p. Hence, w.h.p. all z that are either attached or in R are ξ-rigid.

Further, letR be the event that

• no more than (1 + 1/k2)2−kn variables support no clause at all and

• at most n/(k22k) variables x 6∈ R that support at least one clause are not attached

Then Lemma 6.20 and Corollary 6.22 imply together with Proposition 6.5 that

P [Φd,m ∈ R | A] = 1− o(1).

Hence, the total number of vertices that either do not support a clause or that are not attached is bounded by (1 +
2/k2)2−kn 2
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Proof of Lemma 6.18. Suppose that r = 2k ln 2− c. By Proposition 6.5 we have

1

n
ln E [Z(Φd,m)] ≥ 2−k

(
c− ln 2

2
+ ok(1)

)
w.h.p. Now, assume that in σ ∈ S(Φd,m) all but at most (1 + 2k−2)2−kn variables are ξ-rigid with ξ = 2−0.99k. If
τ ∈ S(Φd,m) is such that dist(σ, τ) ≤ ξn, then σ, τ agree on all ξ-rigid variables of σ. Hence,

1

n
ln {τ ∈ S(Φd,m) : dist(σ, τ) ≤ ξn} ≤ (1 + 2k−2)2−k = (1 + ok(1))2−k ln 2.

As c− ln 2
2 + ok(1) > (1 + ok(1)) ln 2 for c > 3

2 ln 2 + ε and k large enough, the assertion follows. 2

6.6 Proof of Lemma 6.19
By Markov’s inequality, it suffices to bound the expected number of paris (σ, τ) ∈ S(Φ) at the given Hamming
distances. More precisely, let Zx be the number of pairs (σ, τ) ∈ S(Φ) such that dist(σ, τ)/n = x. Let h(x) =
−x lnx− (1− x) ln(1− x) and set

q(x) = r · ln
(
1− 21−k + 2−k(1− x)k

)
.

Then
1

n
ln E [Zx] ≤ ln 2 + h(x) + q(x). (47)

We consider several cases.

Case 1: k2−k ≤ x ≤ (2k)−1. We have

h(x) + q(x) + ln 2 ≤ ln 2 + x(1− lnx) + r
(
−21−k + 2−k(1− x)k

)
≤ ln 2 + x(1− lnx) + 2k ln 2

(
−21−k + 2−k(1− x)k

)
+ c21−k [as r = 2k ln 2− c]

≤ x(1− lnx)− ln 2 + (1− x)k ln 2

≤ x(1− lnx)− ln 2 + (1− kx+ k2x2) ln 2

≤ x(1− lnx)− kx+ k2x2 = x
[
1− lnx− k + k2x

]
.

If k2−k ≤ x ≤ k−2, then 1 − lnx − k + k2x ≤ 1 − ln k + 1 < 0. Moreover, if k−2 ≤ x ≤ (2k)−1, then
1− lnx− k + k2x ≤ 1 + 2 ln k − 3

4k < 0.

Case 2: (2k)−1 < x < 0.01. We have

h(x) + q(x) + ln 2 ≤ ln 2 + x(1− lnx) + r
(
−21−k + 2−k(1− x)k

)
≤ ln 2 + x(1− lnx)− r

2k−1
+

r

2k
exp(−kx)

≤ x(1− lnx)− ln 2 +
c

2k−1
+ exp(−kx) ln 2

≤ x(1− lnx) +
c

2k−1
+ (exp(−1/2)− 1) ln 2

The last expression is negative for x < 0.05 (and k not too small).

Case 3: 0.01 < x < 1
2 − k2−k/2. We have

h′(x) = − lnx+ ln(1− x),

q′(x) = − kr(1− x)k−1

2k − 2 + (1− x)k
≥ −kr(1− x)k−1

2k − 2
= exp(−Ω(k)).
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Hence, for 0.01 ≤ x < 1
2 − k−2 we have h′(x) + q′(x) > 0. Thus, h(x) + q(x) + ln 2 is monotonically

increasing in this interval. Now, let x = 1
2 − ε for k−2 ≤ ε ≤ k2−k/2. Then

h(x) = ln 2− 2ε2 +O(ε3),

q(x) = (2k ln 2− c)

(
−21−k + 21−2k + 2−k

(
1

2
− ε
)k

+ Õ(8−k

)
= −2 ln 2 + 21−k (c+ ln 2) + Õ(4−k).

Consequently,

h(x) + q(x) + ln 2 = −2ε2 +O(ε3) +O(2−k) < 0.

Case 4: 1
2 + k2−k/2 ≤ x < 1. The function h(x) satisfies h(1 − y) = h(y) for 0 < y < 1/2. Furthermore, q(x) is

monotonically decreasing. Therefore, for any x ≥ 1
2 + k2−k/2 we have

ln 2 + h(x) + q(x) ≤ ln 2 + h

(
1

2
− k2−k

)
+ q

(
1

2
− k2−k

)
< 0.

In each case we have ln 2 + h(x) + q(x) < 0. Thus, the assertion follows from (47) and Markov’s inequality.

7 The second moment
Throughout this section we assume that r = 2−k ln 2 − ρ with ρ = 3

2 ln 2 − εk for some sequence εk = ok(1) that
tends to 0 sufficiently slowly. We also assume that k ≥ k0 for a large enough constant k0 > 3. We let d denote a
signed degree sequence d chosen from D and we let m denote a vector chosen from Md. By Lemma 5.11 we may
assume that |m(`) − γ`n| ≤ n2/3 for all `. Let σ, τ ∈ {0, 1}V denote a pair of assignments chosen uniformly and
independently from the set of all assignments with p-marginals. Finally, let ξ = k2−k/8.

7.1 Outline
The overlap of two assignments σ, τ ∈ {0, 1}V is the vector

O(σ, τ) =

 1

kmπ(t)

∑
l∈L:pd(l)=t

dl · 1σ(l)=1 · 1τ(l)=1


t∈T

.

In words, O(σ, τ) captures the fraction of occurrences of literals of each type t that are true under both σ, τ . Since
σ, τ are independent and have p-marginals, we have

E [O(σ, τ )] =
[
t2
]
t∈T .

Set O∗ =
[
t2
]
t∈T .

Let Z ′′ be the number of pairs (σ, τ) of pd-judicious satisfying assignments of Φd,m such that

dist(σ, τ) ∈
[

1

2
− k22−k/2,

1

2
+ k22−k/2

]
. (48)

Moreover, let Z ′ be the number of pairs (σ, τ) of pd-judicious satisfying assignments of Φd,m such that

‖O(σ, τ)−O∗‖∞ ≤ ξ.

Proposition 7.1 W.h.p. d,m are such that E [Z ′′(Φd,m)] ≤ E [Z ′(Φd,m)] + o(1).
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The proof of Proposition 7.1 can be found in Section 7.2. Let Z denote the number of p-satisfying assignments of Φd.
Furthermore, let Z signify the number of good p-satisfying assignments of Φd. In Section 8 we are going to establish
the following.

Proposition 7.2 W.h.p. d,m are such that E [Z ′(Φd,m)] ≤ C · E [Z(Φd,m)]
2
.

Corollary 7.3 W.h.p. d,m are such that E
[
Z2(Φd,m)

]
≤ C ′ · E [Z(Φd,m)]

2
.

Proof. Let Y be the number of pairs (σ, τ) of good p-satisfying assignments of Φd,m such that

dist(σ, τ) 6∈
[

1

2
− k22−k,

1

2
+ k22−k

]
. (49)

By definition, for any good σ there are at most E [Z(Φd,m)] p-satisfying τ such that (49) holds. Therefore,

E [Y (Φd,m)] ≤ E [Z(Φd,m)]
2
. (50)

Combining (50) with Proposition 7.1 and 7.2, we obtain for d chosen fromD w.h.p.

E
[
Z2(Φd,m)

]
≤ E [(Y + Z ′′)(Φd,m)]

≤ E [(Y + Z ′)(Φd,m)] + o(1) ≤ (C + 1)E [Z(Φd,m)]
2

+ o(1). (51)

By Proposition 6.5 we have E [Z(Φd,m)] = exp(Ω(n)). Furthermore, Proposition 6.16 yields E [Z(Φd,m)] ∼
E [Z(Φd,m)]. Consequently, (51) implies E

[
Z2(Φd,m)

]
≤ (C + 2)E [Z(Φd,m)]

2, as desired. 2

The second part of Theorem 5.1 follows directly from Corollary 7.3.

7.2 Proof of Proposition 7.1
We begin by relating the overlap to the Hamming distance.

Lemma 7.4 W.h.p. d,m are such that for all pairs σ, τ ∈ {0, 1}V satisfying (48) we have

Ō(σ, τ) =
1

km

∑
l∈L

dl1σ(l)=11τ(l)=1 =
1

4
+ Õ(2−k/2).

Proof. By Lemma 5.7 w.h.p.

O =
1

km

∑
x∈V

dx
2

1σ(x)=τ(x) +O(|d+
x − d−x |)

= Õ(2−k/2) +
1

km

∑
x∈V

dx
2

1σ(x)=τ(x)

= Õ(2−k/2) +
1

km

∑
x∈M

dx
2

=
1

4
+ Õ(2−k/2),

as claimed. 2

Lemma 7.5 W.h.p. d,m are such that for any σ, τ ∈ {0, 1}V that satisfy (48) and that have p-marginals we have

1

n
ln P [σ, τ ∈ S(Φd)] ≤ −2 ln 2 +O(k2−k).
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Proof. Much as in the first moment calculation in Section 6.3, here it is convenient to work with a different probability
space. Namely, we let Ω̂ be the set of all vectors (σ̂ij , τ̂ij)i∈[m],j∈[k] of 0/1 pairs. We define a probability distribution
on Ω̂ in which the pairs (σ̂ij , τ̂ij)i∈[m],j∈[k] are mutually independent random variables. For any i ∈ [m] , j ∈ [k] we
let P̂ [(σ̂ij , τ̂ij) = (a, b)] = qab, where the parameters qab are chosen so that the following equations hold:

q11 = Ō(σ, τ),

q10 = q01,

q11 + q10 =
1

km

∑
l∈L

dl1σ(l)=1,

1∑
a,b=0

qab = 1.

Let (σ̂, τ̂ ) denote a random pair chosen from this distribution.
Proposition 6.5 and Lemma 7.4 ensure that w.h.p. d is such that

q11 =
1

4
+ Õ(2−k/2), q11 + q10 =

1

2
+O(2−k). (52)

Thus, we may assume that (52) holds.
Let B be the event that∑

i,j

σ̂ij =
∑
l∈L

dl1σ(l)=1,
∑
i,j

τ̂ ij =
∑
l∈L

dl1τ(l)=1 and
∑
i,j

σ̂ij τ̂ ij = kmŌ(σ, τ).

In addition, let S be the event that maxj∈[k] σ̂ij = maxj∈[k] τ̂ ij for all i ∈ [m]. We claim that

P [σ, τ ∈ S(Φd)] = P [S|B] . (53)

Indeed, any d-compatible formula Φ induces a pair (σ̂|Φ, τ̂ |Φ) ∈ Ω̂ defined by σ̂ij |Φ = σ(Φij), τ̂ij |Φ = τ(Φij).
Clearly, the distribution of the random pair (σ̂|Φd

, τ̂ |Φd
) is identical to the distribution of (σ̂, τ̂ ) given B.

Due to independence, the probability of the event S is easy to compute. Indeed, with q = q10 + q11 inclu-
sion/exclusion yields

P̂ [S] =
[
1− 2qk + (1− 2q + q11)k

]m
Furthermore, P̂ [B] = exp(o(n)) by the local limit theorem for the multinomial distribution. Hence, (53) yields

1

n
ln P [σ, τ ∈ S(Φd)] =

1

n
ln P̂ [S|B] ≤ o(1) +

1

n
ln

P̂ [S]

P̂ [B]
= o(1) +

1

n
ln P̂ [S]

∼ r ln
[
1− 2qk + (1− 2q + q11)k

]
≤ −r

[
2qk − (1− 2q + q11)k

]
.

Using (52) and simplifying completes the proof. 2

Lemma 7.6 Let λ > 2−k and t ∈ T . For d chosen from D the following is true w.h.p. Let H′′ be the set of all pairs
σ, τ ∈ {0, 1}V such that |Ot(σ, τ)− 1/4| > λ. Then

|H′′| ≤ 4n exp

[
−λ

2n(t)

18

]
.

Proof. Let σ′′, τ ′′ ∈ {0, 1}V be chosen uniformly and independently. Then E [Ot(σ′′, τ ′′)] = 1
4 . Furthermore, Ot

satisfies the following Lipschitz condition.
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If σ′, τ ′′, σ′′, τ ′′ ∈ {0, 1}V are such that there is a literal l0 with T (l0) = t such that σ′′(l) = σ′(l), τ ′′(l) =
τ ′(l) for all l 6∈ {l0,¬l0}, then

|Ot(σ′′, τ ′′)−Ot(σ′, τ ′)| ≤
2dl0

kmπ(t)
.

Therefore, by Azuma’s inequality for any λ > 0 we have

P

[∣∣∣∣Ot(σ′′, τ ′′)− 1

4

∣∣∣∣ > λ

]
≤ exp

[
− λ2(kmπ(t))2

9
∑
l∈L:T (l)=t d

2
l

]
≤ exp

[
−λ

2n(t)

18

]
,

where the last step follows from part 2 of Proposition 6.5. 2

Proof of Proposition 7.1. Let H ′′ be the set of pairs (σ, τ) such that

• σ, τ satisfy (48) and have p-marginals, and

• ‖O(σ, τ)−O∗‖∞ > ξ.

Then by Lemma 7.6 and the second part of Proposition 6.5 w.h.p. (over the choice of d) we have

|H ′′| ≤ 4n exp

[
−ξ

2n(t)

36

]
≤ 4n exp

[
− k2n

36 · 2k

]
. (54)

Furthermore, by Lemma 7.5 w.h.p. (again over the choice of d) we have

P [σ, τ ∈ S(Φd)] ≤ 4−n exp

[
O(k)

2k

]
for any (σ, τ) ∈ H ′′. (55)

Combining (54) and (55), we obtain that w.h.p. d is such that

E [(Z ′′ − Z ′)(Φd)] ≤
∑

(σ,τ)∈H′′
P [σ, τ ∈ S(Φd)] ≤ |H ′′| 4−n exp

[
O(k)

2k

]
= o(1).

Therefore, the definition of the distributionMd entails that w.h.p. d is such that

Em [E [(Z ′′ − Z ′)(Φd,m)]] = E [(Z ′′ − Z ′)(Φd)] = o(1).

Thus, the assertion follows from Markov’s inequality. 2

8 Proof of Proposition 7.2
We keep the notation and the assumptions of Section 7.

8.1 Overview
For two assignments σ, τ and a formula Φ with signed degree distribution d we define a matrix

ω(σ, τ,Φ) = (ω`,j(σ, τ,Φ))`∈L,j∈[k]

by letting ω`,j(σ, τ,Φ) be equal to the fraction of clauses of type ` whose jth literal is true under both σ, τ . We
call ω`,j(σ, τ,Φ) the overlap matrix of σ, τ in Φ. Recalling that σ, τ denote two independent uniformly distributed
assignments with p-marginals, we define ω = ω(σ, τ ,Φd,m); thus, ω is a random matrix. We use the symbol ω to
denote (fixed, non-random) matrices ω = (ω`,j)`∈L,j∈[k] with entries in [0, 1]. Furthermore, we let ω` = (ω`,j)j∈[k]

denote the `-row of such a matrix ω. Finally, let ω∗ = (ω∗`,j) be the matrix with entries ω∗`,j = `2j for all `, j.
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In addition, let S(`) be the event that both σ, τ satisfy all clauses of type ` of Φd,m. Let S =
⋂
`∈L S(`). Further,

let B(`, j) be the event that under both

1

m(`)

∑
i∈MΦd,m

(`)

σ(Φd,m,i,j)τ (Φd,m,i,j)
.
= `j ,

i.e., the fraction of clauses of type ` whose jth literal is true equals `j +O(1/n). Let

B =
⋂

`∈L, j∈[k]

B(`, j).

In Section 9 we are going to prove the following.

Proposition 8.1 W.h.p. d,m are such that the following holds. Let L′ ⊂ L be a set of clause types and let S ′ =⋂
`∈L′ S(`).

1. For all ω = (ω`,j) such that |ω`,j − ω∗`,j
∣∣ ≤ k−12 for all ` ∈ L′, j ∈ [k] we have the bound

P [S ′|ω .
= ω, B] ≤ P [S ′|ω .

= ω∗, B] exp

[
Õ(4−k)

∑
`∈L′

m(`) ‖ω` − ω∗` ‖
2
2

]
.

2. We have

P [S|ω .
= ω∗, B] ≤ P [S ′|ω .

= ω∗, B] exp

−Θ(2−k)
∑
` 6∈L′

m(`)

 .
3. For any assignment σ with p-marginals we have

P [S|ω .
= ω∗, B] ≤ O(1) · P [σ ∈ Sp(Φd,m)|σ is p-judicious]2 .

For ω = (ω`,j) define O(ω) ∈ [0, 1]
T by letting

Ot(ω) =
∑
`∈L

∑
j∈[k]:`j=t

m(`)ω`,j
kmπ(t)

.

We also let ω̄ denote the matrix with entries ω̄`,j = O`j (ω) for all `, j. We say that ω is compatible with O ∈ [0, 1]
T

if O = O(ω). In Section 8.2 we are going to prove the following.

Proposition 8.2 W.h.p. d has the following property. For any ω = (ω`,j) such that
∥∥O(ω)− 1

41
∥∥
∞ ≤ 2ξ we have

P [ω
.
= ω|O(ω)

.
= O(ω), B] ≤ P [ω

.
= ω̄|O(ω)

.
= O(ω), B] exp

[
−Ωk (1) ·

∑
`∈L

m(`) ‖ω` − ω̄`‖22

]
.

Recall that O∗ = (t2)t∈T . In Section 8.3 we will prove the following.

Corollary 8.3 W.h.p. d,m are such that the following holds. For any O = (Ot)t∈T such that
∥∥O − 1

41
∥∥
∞ ≤ 2ξ we

have

P [S|O(σ, τ )
.
= O, B] ≤ O(1) · P [S|ω .

= ω∗, B] exp

[
n · Õ(2−k)

∑
t∈T

π(t)(Ot −O∗t )2

]
.
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In Section 8.4 we will show the following.

Proposition 8.4 There exists a constant η > 0 such that w.h.p. d,m are such that the following holds. For all O with∥∥O − 1
41
∥∥
∞ ≤ 2ξ we have

P [B|O(σ, τ )
.
= O] ≤ η · P [B|O(σ, τ )

.
= O∗] .

Furthermore, P [B|O(σ, τ ) = O∗] = Θ(n|T |−k|L|).

Recall that n(t) is the number of variables of type t ∈ T . In Section 10 we are going to prove the following.

Proposition 8.5 W.h.p. d,m are such that the following holds. For all vectors λ = (λt)t∈T with ‖λ‖∞ ≤ 1/8 we
have

P [∀t ∈ T : |Ot(σ, τ )−O∗t | ≥ λt] ≤ exp

[
−n · Ωk(1)

∑
t∈T

π(t)λ2
t

]
.

Proof of Proposition 7.2. Suppose that O ∈ [0, 1]
T satisfies ‖O −O∗‖∞ ≤ ξ. By Proposition 8.4 w.h.p.

P [S,B|O(σ, τ )
.
= O] = P [S|B,O(σ, τ )

.
= O] P [B|O(σ, τ )

.
= O]

≤ η · P [S|B,O(σ, τ )
.
= O] P [B|O(σ, τ )

.
= O∗] . (56)

Furthermore, by Corollary 8.3 w.h.p.

P [S|O(σ, τ )
.
= O,B] ≤ O(1) · P [S|ω .

= ω∗,B] exp

[
nÕ(2−k)

∑
t∈T

π(t)(Ot −O∗t )2

]
. (57)

Combining (56) and (57), we see that

P [S,B|O(σ, τ )
.
= O] ≤ O(1) · P [S|B,ω .

= ω∗] · P [B|O(σ, τ )
.
= O∗]

· exp

[
nÕ(2−k)

∑
t∈T

π(t)(Ot −O∗t )2

]
. (58)

For an assignment σ with p-marginals let

b = P [σ is p-judicious in Φd,m] , s = P [σ ∈ Sp(Φd,m)|σ is p-judicious in Φd,m] .

Then by part 3 of Proposition 8.1, Corollary 8.4 and Corollary 6.9 we have

P [S|B,ω .
= ω∗] · P [B|O(σ, τ )

.
= O∗] ≤ O(1) · (bs)2.

Therefore, (58) yields

P [S,B|O(σ, τ )
.
= O] ≤ O(1) · (bs)2 exp

[
nÕ(2−k)

∑
t∈T

π(t)(Ot −O∗t )2

]
. (59)

For a vector λ = (λt)t∈T let

h(λ) = P [∀t ∈ T : |Ot(σ, τ )−O∗t | ≥ λt] .

Moreover, for c = c(k) > 0 a sufficiently large number let Λ = c√
n
ZT≥0 be the positive T -dimensional grid scaled

by a factor of c/
√
n. In addition, let h be the number of assignments σ with p-marginals. Then by Proposition 8.5
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and (59) there is a number ζ = ζ(k) > 0 such that

E [Z ′(Φd,m)]

E [Z(Φd,m)]
2 ≤ O(1) · E [Z ′(Φd,m)]

(bhs)2
≤ O(1) ·

∑
λ∈Λ

h(λ) exp

[
nÕ(2−k)

∑
t∈T

π(t)(λt + c/
√
n)2

]

≤ O(1) ·
∑
λ∈Λ

h(λ) exp

[
nÕ(2−k)

∑
t∈T

π(t)λ2
t

]

≤ O(1) ·
∑
λ∈Λ

exp

[
n
∑
t∈T

π(t)λ2
t

[
Õ(2−k)− Ωk(1)

]]

≤ O(1) ·
∑
λ∈Λ

exp

[
−n · Ωk(1)

∑
t∈T

π(t)λ2
t

]
≤ O(1) ·

∑
λ∈Λ

exp
[
−ζn ‖λ‖22

]

≤ O(1) ·
∑

z∈ZT≥0

exp
[
−ζc2 ‖z‖22

]
= O(1)

[ ∞∑
z=0

exp
[
−ζc2z2

]]|T |
= O(1),

as desired. 2

Notation for the proofs of Propositions 8.1–8.4. It will be convenient to work with a different probability space.
Namely, let Ω̂ be the set of all pairs (σ̂, τ̂) of 0/1 vectors

(σ̂, τ̂) = (σ̂ij(`), τ̂ij(`))`∈L,i∈[m(`)],j∈[k].

Let B`,j ⊂ Ω̂ be the event that

1

m(`)

∑
i∈[m(`)]

σ̂ij(`)
.
= `j and

1

m(`)

∑
i∈[m(`)]

τ̂ij(`)
.
= `j

for all ` ∈ L, j ∈ [k]. Let B` =
⋂
j∈[k]B`,j and let B =

⋂
`∈LB`.

To define a measure P̂ on Ω̂, let q = (qab`,j)a,b∈{0,1},`∈L,j∈[k] be a vector with entries in [0, 1] such that

1∑
a,b=0

qab`,j = 1, q01
`,j = q10

`,j (60)

for all `, j. Define
q`,j = q11

`,j + q10
`,j (61)

so that
q00
`,j = 1− 2q`,j + q11

`,j . (62)

We define a measure P̂ = P̂q on Ω̂ as follows.

For any ` = (`1, . . . , `k) ∈ L, i ∈ [m(`)] and j ∈ [k] independently we choose a pair of values
(σ̂ij(`), τ̂ ij(`)) ∈ {0, 1}2 such that

P̂ [(σ̂ij(`), τ̂ ij(`)) = (a, b)] = qab`,j

for any a, b ∈ {0, 1}.
This probability space induces a random matrix ω̂ = (ω̂`,j)`,j with entries

ω̂`,j =
1

m(`)

∑
i∈[m(`)]

σ̂ij(`)τ̂ ij(`).

We will use the probability space (Ω̂, P̂) several times in the proof of the various propositions below, with various
choices of q.
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8.2 Proof of Proposition 8.2
Consider any ω = (ω`,j) such that

∥∥O(ω)− 1
41
∥∥
∞ ≤ 2ξ. We use the probability space (Ω̂, P̂) with the vector q

defined by
q11
`,j = ω̄`,j , q`,j = `j for all `, j;

the remaining entries of q are determined by (60)–(62). Then the following is immediate from the construction.

Fact 8.6 We have P [ω
.
= ω|O(ω)

.
= O(ω), B] = P [ω̂

.
= ω|O(ω̂)

.
= O(ω), B] .

Now,

P [ω̂
.
= ω|O(ω̂)

.
= O(ω), B] =

P [ω̂
.
= ω, O(ω̂)

.
= O(ω), B]

P [O(ω̂)
.
= O(ω), B]

.
=

P [ω̂
.
= ω, B]

P [O(ω̂)
.
= O(ω), B]

=
P [B|ω̂ .

= ω]

P [O(ω̂)
.
= O(ω), B]

· P [ω̂
.
= ω]

≤ O(1) · P [B|ω̂ .
= ω̄]

P [O(ω̂)
.
= O(ω̄), B]

· P [ω̂
.
= ω] ,

The last step follows from the local limit theorem for the multinomial distribution because

E

 ∑
i∈[m(`)]

σ̂ij(`)

∣∣∣∣ω̂ .
= ω̄

 = E

 ∑
i∈[m(`)]

τ̂ ij(`)

∣∣∣∣ω̂ .
= ω̄

 = m(`) · `j

for all `, j. Hence,

P [ω̂
.
= ω|O(ω̂)

.
= O(ω), B]

P [ω̂
.
= ω̄|O(ω̂)

.
= O(ω), B]

≤ P [ω̂
.
= ω]

P [ω̂
.
= ω̄]

.

For each ` ∈ L, j ∈ [k] the sum
∑
i∈[m(`)] σ̂ij(`)τ̂ ij(`) has a binomial distribution Bin(m(`), ω̄`,j). Furthermore,

these random variables are mutually independent. Therefore, Chernoff bounds yield

P [ω̂
.
= ω]

P [ω̂
.
= ω̄]

≤ exp

−Ωk(1)
∑
`∈L

∑
j∈[k]

m(`)(ω`,j − ω̄`,j)2

 ,
whence the assertion follows.

8.3 Proof of Corollary 8.3
Let ω be an overlap matrix such thatO .

= O(ω). Let L′ = L′(ω) be the set of all ` ∈ L such that |ω`,j − 1/4| ≤ ξ for
all j ∈ [k]. Let S ′ =

⋂
`∈L′ S(`). Then

P (ω) = P [S ′, ω .
= ω|O(ω)

.
= O, B]

= P [S ′|ω .
= ω, B] · P [ω

.
= ω|O(ω)

.
= O, B] .

Let

P̄ = P [S ′|ω .
= ω∗, B] · P [ω

.
= ω̄|O(ω)

.
= O, B] ;

observe that P̄ depends on O but not on the specific choice of ω. Then by Propositions 8.1 and 8.2

P (ω) ≤ P̄ · exp

[∑
`∈L

m(`)
[
1`∈L′ · Õ(4−k) ‖ω` − ω∗` ‖

2
2 − Ωk(1) ‖ω̄` − ω`‖22

]]

≤ P̄ · exp

[∑
`∈L

m(`)
[
1`∈L′ · Õ(4−k)

(
‖ω̄` − ω`‖22 + ‖ω̄` − ω∗` ‖

2
2

)
− Ωk(1) ‖ω̄` − ω`‖22

]]

≤ P̄ · exp

[∑
`∈L

m(`)
[
Õ(4−k) ‖ω̄` − ω∗` ‖

2
2 − Ωk(1) ‖ω̄` − ω`‖22

]]
.
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By the second part of Proposition 8.1,

1

n
ln

P [S ′|ω .
= ω∗, B]

P [S|ω .
= ω∗, B]

= Θ(2−k)
∑
` 6∈L′

m(`)

n
≤
∑
` 6∈L′

m(`)

kn
ξ2 ≤ 1

k

∑
` 6∈L′

m(`)

n
‖ω̄` − ω`‖22 .

Hence, letting P̃ = P [S|ω .
= ω∗, B] · P [ω

.
= ω̄|O(ω)

.
= O, B] , we obtain

P (ω) ≤ P̃ exp

[
Õ(4−k)

∑
`∈L

m(`) ‖ω̄` − ω∗` ‖
2
2 −

∑
`∈L

Ωk(1)m(`) ‖ω̄` − ω`‖22

]
.

To proceed, we note that∑
`∈L

m(`) ‖ω̄` − ω∗` ‖
2

=
∑
j∈[k]

∑
`∈L

m(`)(O∗`j −O`j )
2

=
∑
t∈T

∑
`∈L

∑
j∈[k]

m(`)(O∗t −Ot)2 · 1`j=t = km
∑
t∈T

π(t)(O∗t −Ot)2.

Thus,

P (ω) ≤ P̃ exp

[
nÕ(2−k)

∑
t∈T

π(t)(O∗t −Ot)2 −
∑
`∈L

Ωk(1)m(`) ‖ω̄` − ω`‖2
]
.

Summing over all possible overlap matrices ω of assignments with p-marginals, we get

P =
∑

ω:O(ω)
.
=O

P (ω) = P [S ′|O(ω)
.
= O, B] ≥ P [S|O(ω)

.
= O, B] ,

which we can bound by

P ≤ P̃ · exp

[
nÕ(2−k)

∑
t∈T

π(t)(O∗t −Ot)2

] ∑
ω:O(ω)

.
=O

exp

[
−
∑
`∈L

Ωk(1)m(`) ‖ω̄` − ω`‖22

]

= P [S|ω .
= ω∗, B] exp

[
nÕ(2−k)

∑
t∈T

π(t)(O∗t −Ot)2

]

·
∑

ω:O(ω)
.
=O

exp

[
−
∑
`∈L

Ω(1)m(`) ‖ω̄` − ω`‖22

]
P [ω

.
= ω̄|O(ω)

.
= O, B]

≤ O(1) · P [S|ω .
= ω∗, B] exp

[
nÕ(2−k)

∑
t∈T

π(t)(O∗t −Ot)2

]
,

as desired.

8.4 Proof of Proposition 8.4
Let ω be such that O .

= O(ω) and ‖ω − ω̄‖∞ ≤ n−1/3. We are going to work with the probability space (Ω̂, P̂)
defined by letting

q11
`,j = ω`,j , q`,j = `j .

We claim that there exist numbers 0 < ck < c′k (independent of ω) such that w.h.p. d is such that

ck ≤ nP [B`,j |ω̂
.
= ω] ≤ c′k for all `, j. (63)
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Indeed, given ω̂`,j
.
= ω`,j the total number of indices i ∈ [m(`)] such that (σ̂ij(`), τ̂ ij(`)) = (1, 0) has distribution

Bin

(
(1− ω`,j)m(`),

`j − ω`,j
1− ω`,j

)
.

Therefore, the probability that the total number of such i equals its expectation is in the interval
[
ck,1n

−1/2, ck,2n
−1/2

]
for certain ck,2 > ck,1 > 0. Furthermore, given this event, the number of i ∈ [m(`)] such that (σ̂ij(`), τ̂ ij(`)) = (0, 1)
has distribution

Bin

(
(1− `j)m(`),

`j − ω`,j
1− `j

)
.

Once more, the conditional probability that this random variable equals its expectation lies in
[
ck,3n

−1/2, ck,4n
−1/2

]
for certain ck,4 > ck,3 > 0. Hence, setting ck = ck,1ck,3 and c′k = ck,2ck,4, we obtain (63).

Summing (63) over all (finitely many) possible ω with P [ω
.
= ω̂] > 0 andO(ω)

.
= O and invoking Proposition 8.2,

we find that w.h.p. over the choice of d,

P [B`,j |O(ω̂)
.
= O] =

∑
ω

P [B`,j |ω̂
.
= ω] P [ω̂

.
= ω]

≤ o(1/n) +
∑

ω:‖ω−ω̄‖∞≤n−1/3

P [B`,j |ω̂
.
= ω] P [ω̂

.
= ω]

≤ o(1/n) + c′k/n ≤ 2c′k/n.

A similar calculation shows P [B`,j |O(ω̂)
.
= O] ≥ 1

2ck/n. As ck, c′k are independent of the specific vector O, the
assertion follows.

9 Proof of Proposition 8.1
We keep the notation and the assumptions of Section 7.

9.1 Outline
In Section 9.2 we will establish the following.

Proposition 9.1 There exist C2-functions P`(·) that range over matrices ω = (ω`,j)`∈L,j∈[k] such that

‖ω` − ω∗` ‖∞ < k−12 for all ` ∈ L′

with the following properties.

1. For all such ω we have

P [S ′|ω .
= ω, B] = exp

[
O(1) +

∑
`∈L′

m(`) · P`(ω`)

]
.

2. For each `, P` is a function of the row ω` only.

We need to analyse the functions P` from Proposition 9.1. Crucially, ω∗ turns out to be a stationary point.

Proposition 9.2 The differentials of the functions P` from Proposition 9.1 satisfy DP` (ω∗` ) = 0 for all `.

The proof of Proposition 9.2 can be found in Section 9.3. Furthermore, in Section 9.4 we derive the following
bound on the second derivatives of P`.

33



Proposition 9.3 The functions P` from Proposition 9.1 have the following property. For any j, j′, ` we have

∂2P`
∂ω`,j∂ω`,j′

≤ Õ(4−k)

on the entire domain of P`.

Corollary 9.4 For any ω in the domain of P we have

P`(ω`) ≤ P(ω∗` ) + Õ(4−k) ‖ω` − ω∗` ‖
2
2 .

Proof. This follows directly from Propositions 9.2 and 9.3 and Taylor’s formula. 2

Finally, in Section 9.6 we will show of Proposition 8.1 follows from Proposition 9.1 and Corollary 9.4.

9.2 Proof of Proposition 9.1
To construct the functions P`, we are going to work with the probability space (Ω̂, P̂) from Section 8 once more; we
are going to define the vector q that determines the measure P̂ so as to facilitate the definition of P` in due course. Fix
ω = (ω`,j)`∈L,j∈[k] such that ‖ω` − ω∗` ‖∞ < k−12 for all ` ∈ L′. Let B′ =

⋂
`∈L′ B`. Further, for ` ∈ L and j ∈ [k]

let C`,j be the event that ω̂`,j
.
= ω`,j . Let C` =

⋂
j∈[k] C

′
`,j and let C ′ =

⋂
`∈L′ C

′
`. Finally, let S′ =

⋂
`∈L′ S(`).

The following two facts are direct consequences of the definition of P̂.

Fact 9.5 If q is such that P̂ [B′ ∩ C ′] > 0, then P̂ [·|B′ ∩ C ′] is the uniform distribution over the set B′ ∩ C ′.

Fact 9.6 Suppose that q is such that the conditional distribution P̂ [·|B′ ∩ C ′] is uniform. Then P̂ [S′|B′, C ′] =
P [S ′|ω .

= ω, B] .

Thus, our goal is pick q such that P̂ [S′|B′, C ′] is easy to compute. Roughly speaking, we are going to accomplish
this by choosing q so that P̂ [B′, C ′|S′] is as big as possible. To implement this, we first need to determine the
unconditional probabilities P̂ [S′], P̂ [B′, C ′] as functions of q.

Lemma 9.7 Suppose that q is such that q`,j ∈ (0, 1) for all ` ∈ L′, j ∈ [k]. Then

P̂ [Si(`)] = 1− 2

k∏
j=1

(1− q`,j) +

k∏
j=1

(1− 2q`,j + q11
`,j) (64)

for all ` ∈ L′, i ∈ [m(`)], and

1

n
ln P̂ [S′] =

∑
`∈L

m(`)

n
ln

1− 2

k∏
j=1

(1− q`,j) +

k∏
j=1

(1− 2q`,j + q11
`,j)

 .
Proof. The first statement follows by inclusion/exclusion. The probability that maxj∈[k] σ̂ij(`) = 0 equals

∏k
j=1(1−

q`,j) as the components σ̂ij(`) are the results of independent Be(q`,j) experiments. For the event maxj∈[k] τ̂ ij(`) = 0
we get the exact same expression. Furthermore, the probability of maxj∈[k] σ̂ij(`) = maxj∈[k] τ̂ ij(`) = 0 equals∏k
j=1(1− 2q`,j + q11

`,j). To see this, note that for each individual j we have

P [σ̂ij(`) = τ̂ ij(`) = 0] = 1− 2q`,j + q11
`,j

by inclusion/exclusion, and these events are independent for j ∈ [k]. The second one is due to independence over `
and i. 2
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Lemma 9.8 For any q and any `, j we have

P̂ [C`,j ] = P̂
[
Bin(m(`), q11

`,j) = ω`,jm(`) +O(1)
]
. (65)

Furthermore, if q11(`, j) < 1 then

P̂ [B`,j |C`,j ] = Θ(n−1/2) · P̂

[
Bin

(
(1− ω`,j)m(`),

1− 2q`,j + q11
`,j

1− q11
`,j

)
= m(`)(1− 2`j + ω`,j)

]
.

Proof. Recall that C`,j is the event that∑
i∈[m(`)]

σ̂ij(`) · τ̂ ij(`) = ω`,jm(`) +O(1).

By construction, the random variables σ̂ij(`) · τ̂ ij(`) are independent Be(q11
`,j) variables, and thus their sum has

distribution Bin(m(`), q11
`,j). Hence we get (65).

Furthermore, once we condition on the event C`,j , the remaining (1−ω`,j)m(`) pairs (σ̂ij(`), τ̂ ij(`)) are chosen
conditional on the outcome being different from (1, 1). Hence, by construction each such pair takes the value (0, 0)

with probability
1−2q`,j+q

11
`,j

1−q11`,j
independently (with the numerator resulting from (62)). In effect, the probability that the

total number of (0, 0)s equals m(`)(1− 2`j + ω`,j) is just

P

[
Bin

(
(1− ω`,j)m(`),

1− 2q`,j + q11
`,j

1− q11
`,j

)
= m(`)(1− 2`j + ω`,j) +O(1)

]
.

Now, given that both this event and C`,j occur, the remaining 2(`j − ω)m(`) pairs (σ̂ij(`), τ̂ ij(`)) come up either
(1, 0) or (0, 1) with probability 1/2. By Stirling’s formula, the probability that both outcomes occur an equal number
of times is Θ(n−1/2). 2

Note that

P̂ [B′, C ′] =
∏
`∈L′

P̂ [B(`) ∩ C(`)] =
∏
`∈L′

k∏
j=1

P̂ [B(tj , `) ∩ C(tj , `)] (66)

because under P̂ the components of the vector (σ̂ij(`), τ̂ ij(`))`,i,j are independent.

Lemma 9.9 There exists a vector q such that

`j =
q`,j − (q`,j − q11

`,j)
∏
h 6=j(1− q`,h)

1− 2
∏k
h=1(1− q`,h) +

∏k
h=1(1− 2q`,h + q11

`,h)
, (67)

ω`,j =
q11
`,j

1− 2
∏k
h=1(1− q`,h) +

∏k
h=1(1− 2q`,h + q11

`,h)
. (68)

for all ` ∈ L′, j ∈ [k]. This vector q satisfies

q`,j = `j − 2−k−1 + Õ(2−3k/2) and q11
`,j = ω`,j +O(2−k).

Proof. This follows from applying the inverse function theorem in a similar way as in the proof of Lemma 6.10. 2

In the rest of this section, we fix q as in Lemma 9.9.
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Lemma 9.10 Let

P`(ω) = ln

1− 2

k∏
j=1

(1− q`,j) +

k∏
j=1

(1− 2q`,j + q11
`,j)


−
∑
j∈[k]

[
ψ(q11

`,j , ω`,j) + (1− ω`,j)ψ

(
1− 2q`,j + q11

`,j

1− q11
`,j

,
1− 2`j + ω`,j

1− ω`,j

)]
.

Furthermore, let

P(ω) =
∑
`∈L′

m(`)

n
P`(ω). (69)

Then
P̂ [S′|B′, C ′] = exp [nP(ω) +O(1)] .

Proof. The choice of q ensures that for any ` and j,

Ê

 ∑
i∈[m(`)]

σ̂ij(`) · τ̂ ij(`)
∣∣∣∣S′
 =

m(`)q11
`,j

1− 2
∏k
h=1(1− q`,h) +

∏k
h=1(1− 2q`,h + q11

`,h)
= ω`,jm(`); (70)

indeed, by (64) the denominator in the middle term equals the probability of the event Si(`). Furthermore, by con-
struction for any i, j, ` we have

P̂ [σ̂ij(`) = 1, τ̂ ij(`) = 0, Si(`)] = q10
`,j

1−
∏
h6=j

(1− q`,j)

 = (q`,j − q11
`,j)

1−
∏
h6=j

(1− q`,j)

 .

As a consequence, (67) ensures that

Ê

 ∑
i∈[m(`)]

σ̂ij(`)|S′
 =

q`,j − (q`,j − q11
`,j)
∏
h6=j(1− qh)

1− 2
∏k
h=1(1− q`,h) +

∏k
h=1(1− 2q`,h + q11

`,h)
= `jm(`). (71)

By inclusion/exclusion, we obtain from (70) and (71) that

Ê

 ∑
i∈[m(`)]

(1− σ̂ij(`)) · (1− τ̂ ij(`))
∣∣∣∣S′
 = (1− 2`j + ω`,j)m(`). (72)

Due to (70) and (72), a repeated application of Lemma 4.1 (the local limit theorem) yields

P̂ [B′, C ′|S′] = Θ(n−3k|L′|/2). (73)

Invoking Lemma 9.8 and using the large deviations principle for the binomial distribution (Lemma 4.2), we can
easily determine the unconditional probability of B′ ∩ C ′: we have

P̂ [B′, C ′] =
∏
`,j

P̂
[
C ′`,j

]
P̂
[
B′`,j |C ′`,j

]
= Θ(n−k|L

′|/2)
∏
`,j

P̂
[
Bin(m(`), q11

`,j) = ω`,jm(`)
]

·P̂

[
Bin

(
(1− ω`,j)m(`),

1− 2q`,j + q11
`,j

1− q11
`,j

)
= m(`)(1− 2`j + ω`,j)

]

= Θ(n−3k|L′|/2) exp

∑
`,j

m(`)

[
ψ(q11

`,j , ω`,j) + (1− ω`,j)ψ

(
1− 2q`,j + q11

`,j

1− q11
`,j

,
1− 2`j + ω`,j

1− ω`,j

)] .
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Thus,

ln P̂ [S′|B′, C ′] = ln

(
P̂ [S′] P̂ [B′, C ′|S′]

P̂ [B′, C ′]

)
= O(1) + ln P̂ [S′]

−
∑
`,j

m(`)

[
ψ(q11

`,j , ω`,j) + (1− ω`,j)ψ

(
1− 2q`,j + q11

`,j

1− q11
`,j

,
1− 2`j + ω`,j

1− ω`,j

)]
.

The assertion follows by plugging in the expression for P [S′] from Lemma 9.7. 2

Finally, Proposition 9.1 follows from Fact 9.6 and Lemma 9.10.

9.3 Proof of Proposition 9.2
We start with the following observation.

Lemma 9.11 Let q be the solution to (67) and (68) for ω = ω∗. There is γ = γ(k) > 0 such that for any ε > 0 and
any ` ∈ L′ we have

P̂ [‖ω̂` − ω∗` ‖∞ > ε |S`, B`] ≤ exp(−γε2n+ o(n)) and (74)

P̂ [‖ω̂` − ω∗` ‖∞ > ε |B`] ≤ exp(−γε2n+ o(n)). (75)

Proof. Equation (73) from the proof of Lemma 9.10 shows that

P̂ [B`|S`] = exp(o(n)). (76)

Therefore, it is going to be sufficient to estimate P̂
[
‖ω̂` − ω∗` ‖∞ > ε |S`

]
. If we just condition on the event S`, then

the k-tuples (σ̂ij(`), τ̂ ij(`))j∈[k] of 0/1 pairs are mutually independent for all i ∈ [m(`)]. Furthermore, given S`
modifying just one such k-tuple can alter any entry ω̂`,j by at most c/n, for some number c = c(k) > 0. Therefore,
Azuma’s inequality yields

P̂ [|ω̂`,j − E [ω̂`,j ] | > ε|S`] ≤ 2 exp(−γε2n), (77)

for some γ = γ(k) > 0. Since (68) ensures that Ê [ω̂`|S`] = ω∗` , (74) follows from (76), (77) and the union bound.
To obtain (75), let q′ be the vector with entries q′`,j = p(`j) for all `, j. Then

P̂q′ [B`] = exp(o(n)). (78)

Furthermore, applying Azuma’s inequality just as in the previous paragraph, we find that

P̂q′ [|ω̂`,j − E [ω̂`,j ] | > ε] ≤ 2 exp(−γε2n) (79)

for some γ = γ(k) > 0. Moreover, Êq′ [ω̂`] = ω∗` by the choice of q′. Thus, (75) follows from (78), (79) and the
union bound. 2

Proof of Proposition 9.2. Let ` ∈ L′. Let q be the solution to (67) and (68) for ω = ω∗. Then P̂ [ · |B′] is the uniform
distribution over pairs (σ̂, τ̂) ∈ Ω such that (σ̂, τ̂) ∈ B′. Indeed, for ω = ω∗ the solution q to (67) and (68) satisfies
q11
`,j = q2

`,j for all `, j. Therefore, for any (σ̂, τ̂) ∈ Ω we have

P̂ [σ̂ = σ̂, τ̂ = τ̂ ] = q
∑
`,i,j σ̂i,j(`)+τ̂i,j(`)

`,j (1− q`,j)km−
∑
`,i,j σ̂i,j(`)+τ̂i,j(`) (80)

Since the sums
∑
`,i,j σ̂i,j(`) + τ̂i,j(`) coincide for all σ̂, τ̂ ∈ B′, (80) shows that P̂ [ · |B′] is uniform.
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Let H(ω) be the number of pairs (σ̂, τ̂) ∈ Ω̂ such (σ̂, τ̂) ∈ B′ and ω̂(σ̂, τ̂) = ω. We claim that

1

n
D lnH(ω∗) = o(1). (81)

This can be verified either by representing H(ω) as a product of binomial coefficients and applying Stirlings formula
or, alternatively, by using (75). Indeed, assume that (81) is false. Then for small enough ε > 0 there is δ > 0 such that
for some ω′ with ‖ω′ − ω∗‖∞ ∼ ε we have

lnH(ω′) ≥ δn+ max
ω:‖ω−ω∗‖∞<ε/2

lnH(ω) (82)

(with both ε, δ possibly dependent on k but not on n). Letting

H̄ =
∑

(σ̂,τ̂)∈B′
H(ω̂(σ̂, τ̂)),

we obtain from (75) that

1 ∼ P̂ [‖ω̂ − ω∗‖∞ < ε/2|B′] =
1

H̄

∑
(σ̂,τ̂)∈B′

1‖ω̂(σ̂,τ̂)−ω∗‖∞<ε/2 ·Hω̂(σ̂,τ̂)

= exp(o(n)) · max
ω:‖ω−ω∗‖∞<ε/2

H(ω)/H̄. (83)

However, combining (82) and (83) we get

P̂ [‖ω̂ − ω∗‖∞ > ε/2|B′] ≥ H(ω′)/H̄ ≥ exp(δn) max
ω:‖ω−ω∗‖∞<ε/2

H(ω)/H̄

≥ exp(δn− o(n))P̂ [‖ω̂ − ω∗‖∞ < ε/2|B′] > 1,

which is a contradiction. Hence, (81) follows.
Now, assume for contradiction that DP`(ω∗) 6= 0. Because the function P`( · ) remains fixed as n → ∞, there

exists a fixed ε′ > 0 such that ‖DP`(ω∗)‖∞ > ε′. Therefore, (81) entails that for any ε > 0 small enough exist ω′,
δ > 0 such that ‖ω′ − ω∗‖∞ ∼ ε and

lnH(ω′) + n · P`(ω′) ≥ δn+ max
ω:‖ω−ω∗‖∞<ε/2

lnH(ω) + n · P`(ω), (84)

with ε, δ independent of n. Let

H̄` =
∑

(σ̂,τ̂)∈B′
H(ω̂(σ̂, τ̂)) exp [nP`(ω̂(σ̂, τ̂))] .

Then by (74),

1 ∼ P̂ [‖ω̂` − ω∗` ‖∞ < ε/2|S`, B′]

=
1

H̄

∑
(σ̂,τ̂)∈B′

1‖ω̂(σ̂,τ̂)−ω∗‖∞<ε/2 ·Hω̂(σ̂,τ̂) exp [nP`(ω̂(σ̂, τ̂)) +O(1)]

= exp(o(n)) · max
ω:‖ω−ω∗‖∞<ε/2

H(ω) exp(nP`(ω))/H̄`. (85)

However, combining (84) and (85) we get

P̂ [‖ω̂` − ω∗` ‖∞ > ε/2|S`, B′] ≥
H(ω′) exp [nP`(ω′) +O(1)]

H̄`

≥ exp(δn) max
ω:‖ω−ω∗‖∞<ε/2

H(ω) exp(nP`(ω))/H̄`

≥ exp(δn− o(n))P̂ [‖ω̂ − ω∗‖∞ < ε/2|S`, B′] > 1.

This contradiction shows that DP`(ω∗) = 0 for all `. 2
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9.4 Proof of Proposition 9.3
We need to compute the second derivative of P`. In particular, we also need to differentiate q = q(ω) the solution
to (67)–(68). Furthermore, we fix some type ` ∈ L for the rest of this section. LetW` denote the set of all vectors ω`
such that

∣∣ω`,j − 1
4

∣∣ ≤ k−4 for all j ∈ [k]. In Section 9.5 we are going to establish the following.

Lemma 9.12 OnW` we have

∂q11
`,h

∂ω`,i
= 1h=i + Õ(2−k),

∂2q11
`,h

∂ω`,i∂ω`,j
= Õ(2−k),

∂q`,h
∂ω`,i

= Õ(2−k),
∂2q`,h

∂ω`,i∂ω`,j
= Õ(2−k).

for any h, i, j ∈ [k].

We split the function P` into a sum of various contributions: let

φ`(q) = ln

1− 2

k∏
j=1

(1− q`,j) +

k∏
j=1

(1− 2q`,j + q11
`,j)

 and

ψ`(ω, q) =
∑
j∈[k]

ψ`,j(ω, q) + ψ̃`,j(ω, q) with

ψ`,j(ω, q) = ψ(q11
`,j , ω`,j),

ψ̃`,j(ω, q) = (1− ω`,j)ψ

(
1− 2q`,j + q11

`,j

1− q11
`,j

,
1− 2`j + ω`,j

1− ω`,j

)
.

Lemma 9.13 OnW` we have
∂2φ`(q)

∂ω`,h ∂ω`,j
≤ Õ(4−k) for all h, j ∈ [k] .

Proof. By Lemma 9.9 for all ω ∈ W` we have |q`,j − 1/2| ≤ 1/k2 and |q11
`,j − 1/4| ≤ 1/k2 for all j ∈ [k]. For such

vectors q` we obtain the bounds

∂φ`
∂q`,j

,
∂2φ`

∂q`,j∂q`,h
,

∂2φ`
∂q11
`,j∂q`,h

= Õ(2−k),

∂φ`
∂q11
`,j

,
∂2φ`

∂q11
`,j∂q

11
`,h

= Õ(4−k)

for all i, j, h ∈ [k]. Therefore, the assertion follows from Lemma 4.3 (the chain rule) and Lemma 9.12. 2

Let ε > 0. We say that Ψ ∈ C2((0, 1)2,R) is ε-tame on Y ⊂ (0, 1)2 if the following conditions hold:

T1. For all y ∈ (0, 1) we have Ψ(y, y) = 0.

T2. On Y we have
∣∣∣∑2

i=1
∂2Ψ
∂zi∂zj

∣∣∣ ≤ ε for any j = 1, 2.

T3. On Y we have
∣∣∣∑2

i,j=1
∂2Ψ
∂zi∂zj

∣∣∣ ≤ ε2.

T4. On Y we have | ∂
2Ψ

∂zi∂zj
| ≤ 100 for any i, j = 1, 2.

Let f : (0, 1)k → R2, (z1, . . . , zk) 7→ (f1(z1, . . . , zk), f2(z1, . . . , zk)) be a C2-function. We say that f is
ε-benign onW if the following statements are true onW:
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B1.
∣∣∣∂f1∂z1

− ∂f2
∂z1

∣∣∣ < ε.

B2.
∣∣∣ ∂fi∂zj

∣∣∣ < ε for any 1 < j ≤ k and i = 1, 2 and
∣∣∣ ∂fi∂z1

∣∣∣ ≤ 100.

B3.
∣∣∣ ∂2fi
∂zh∂zj

∣∣∣ < ε for any i and (h, j) 6= (1, 1).

B4.
∣∣∣∂2f1
∂z21
− ∂2f2

∂z21

∣∣∣ < ε and |∂
2f1
∂z21
| ≤ 100.

Lemma 9.14 There is an absolute constant C > 0 such that the following is true. Assume that f is ε-benign onW
and that Ψ is ε-tame on f(W). Then onW we have

∂2Ψ ◦ f
∂zi∂zj

≤ Cε2 for any i, j ∈ [k].

Proof. By Lemma 4.3 (the chain rule), we have

∂2Ψ ◦ f
∂zi∂zj

=
2∑

h=1

∂Ψ

∂yh

∂2fh
∂zi∂zj

+
2∑

a,b=1

∂2Ψ

∂ya∂yb

∂fa
∂zi

∂fb
∂zj

.

Since by T4 and Taylor’s formula we have ∂Ψ
∂yh

= Ok(ε), B3 implies that for (i, j) 6= (1, 1)

2∑
h=1

∂Ψ

∂yh

∂2fh
∂zi∂zj

= Ok(ε2).

Furthermore, as ∂Ψ
∂yh

= Ok(ε), B4 yields

2∑
h=1

∂Ψ

∂yh

∂2fh
∂z2

1

=
∂2f1

∂z2
1

2∑
h=1

∂Ψ

∂yh
+

2∑
h=1

∂Ψ

∂yh

[
∂2fh
∂z2

1

− ∂2f1

∂z2
1

]
= Ok(1)

2∑
h=1

∂Ψ

∂yh
+Ok(ε2) = Ok(ε2);

the last step follows from T2 and Taylor’s formula.
To deal with the second sum, we consider four cases.

Case 1: i 6= 1, j 6= 1. By B2 we have ∂fa
∂zi

∂fb
∂zj
≤ Ok(ε2), and thus

∂2Ψ

∂ya∂yb

∂fa
∂zi

∂fb
∂zj

= Ok(ε2)

by T4.

Case 2: i = 1, j 6= 1. We have

2∑
a,b=1

∂2Ψ

∂ya∂yb

∂fa
∂z1

∂fb
∂zj

=

2∑
b=1

∂fb
∂zj

2∑
a=1

∂2Ψ

∂ya∂yb

∂fa
∂z1

B2
=

2∑
b=1

Ok(ε)

2∑
a=1

∂2Ψ

∂ya∂yb

∂fa
∂z1

B1, T4
= Ok(ε2) +

∂f1

∂z1

2∑
b=1

Ok(ε)

2∑
a=1

∂2Ψ

∂ya∂yb

B2
= Ok(ε2) +

2∑
b=1

Ok(ε)

2∑
a=1

∂2Ψ

∂ya∂yb

T2
=Ok(ε2).

Case 3: i 6= 1, j = 1. The same argument as in case 2 applies.
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Case 4: i = j = 1. We have

2∑
a,b=1

∂2Ψ

∂ya∂yb

∂fa
∂z1

∂fb
∂z1

=

(
∂f1

∂z1

)2 2∑
a,b=1

∂2Ψ

∂ya∂yb
+

2∑
a,b=1

∂2Ψ

∂ya∂yb

[
∂fa
∂z1

∂fb
∂z1
−
(
∂f1

∂z1

)2
]

B2, T3
= Ok(ε2) +

2∑
a,b=1

∂2Ψ

∂ya∂yb

∂fa
∂z1

[
∂fb
∂z1
− ∂f1

∂z1

]
+

2∑
a,b=1

∂2Ψ

∂ya∂yb

∂f1

∂z1

[
∂fa
∂z1
− ∂f1

∂z1

]
B1
= Ok(ε2) +

2∑
b=1

Ok(ε)

2∑
a=1

∂2Ψ

∂ya∂yb

∂fa
∂z1

+

2∑
a=1

Ok(ε)

2∑
b=1

∂2Ψ

∂ya∂yb

∂f1

∂z1

B1
= Ok(ε2) +

2∑
a=1

Ok(ε)

2∑
b=1

∂2Ψ

∂ya∂yb

∂f1

∂z1

B1
=Ok(ε2) +

2∑
a=1

Ok(ε)

2∑
b=1

∂2Ψ

∂ya∂yb

T2
=Ok(ε2).

Hence, in all cases we obtain a bound of Ok(ε2). 2

Lemma 9.15 The functions (y1, y2) 7→ ψ(y1, y2) and (y1, y2) 7→ (1− y1)ψ(y1, y2) are Õ(2−k)-tame on

Y =

{
(y1, y2) ∈ (0, 1)2 : |y1 − y2| ≤ k32−k, max

i=1,2
|yi − 1/4| ≤ 1/k2

}
.

Proof. It is straightforward to work out the differentials of ψ: we have

∂ψ

∂y1
=
y2

y1
− 1− y2

1− y1
,

∂ψ

∂y2
= − ln

(
y2

y1

)
+ ln

(
1− y2

1− y1

)
,

∂2ψ

∂y1
2

= − y2

y1
2
− 1− y2

(1− y1)2
,

∂2ψ

∂y1∂y2
ψ =

1

y1
+

1

1− y1
,

∂2ψ

∂y2
2

= − 1

y2
− 1

1− y2
.

Differentiating once more with respect to y1, we get

∂3ψ

∂y3
1

=
2y2

y3
1

− 2(1− y2)

(1− y1)3
,

∂3ψ

∂y2
1∂y2

= − 1

y2
1

+
1

(1− y1)2
,

∂3ψ

∂y1∂y2
2

= 0.

Therefore, at y1 = y2 + ε the second derivatives work out to be

∂2ψ

∂y2
1

(y2 + ε, y2) = − 1

y2
− 1

1− y2
+ 2ε

(
1

y2
2
− 1

(1− y2)2

)
+O(ε2),

∂2ψ

∂y1∂y2
(y2 + ε, y2) =

1

y2
+

1

1− y2
+ ε

(
− 1

y2
2

+
1

(1− y2)2

)
+O(ε2),

∂2ψ

∂y2
2

(y2 + ε, y2) = − 1

y2
− 1

1− y2
.

Hence, ψ is tame. Furthermore, differentiating (y1, y2) 7→ (1− y2)ψ(y1, y2) yields

∂

∂y1
(1− y2)ψ(y1, y2) = (1− y2)

∂

∂y1
ψ(y1, y2),

∂

∂y2
(1− y2)ψ(y1, y2) = (1− y2)

∂

∂y2
ψ(y1, y2)− ψ(y1, y2),

∂2

∂y2
1

(1− y2)ψ(y1, y2) = (1− y2)
∂2

∂y2
1

ψ(y1, y2),

∂2

∂y2
2

(1− y2)ψ(y1, y2) = (1− y2)
∂2

∂y2
2

ψ(y1, y2)− 2
∂

∂y2
ψ(y1, y2),

∂2

∂y1∂y2
(1− y2)ψ(y1, y2) = (1− y2)

∂2

∂y1∂y2
ψ(y1, y2)− ∂

∂y1
ψ(y1, y2).
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Hence, the fact that (1− y2)ψ(y1, y2) is ε-tame follows from the fact that ψ is. 2

Lemma 9.16 With q = q(ω) the functions

ξ`,j : ω 7→
(
q11
`,j , ω`,j

)
,

ζ`,j : ω 7→ (ζ1,`,j , ζ2,`,j) =

(
1− 2q`,j + q11

`,j

1− q11
`,j

,
1− 2`j + ω`,j

1− ω`,j

)

are Õ(2−k)-benign onW =
{
ω :
∥∥ω − 1

41
∥∥
∞ ≤ k

−4
}

.

Proof. The fact that ξ`,j is benign follows directly from Lemma 9.12. With respect to ζ`,j we have

∂ζ2,`,j
∂ω`,j

=
2(1− `j)

(1− ω`,j)2
,

∂2ζ2,`,j
∂ω2

`,j

=
4(1− `j)

(1− ω`,j)3
,

∂ζ2,`,j
∂ω`,h

= 0,
∂2ζ2,`,j

∂ω`,h∂ω`,i
= 0 (h 6= j),

∂ζ1,`,j
∂ω`,j

=
(1− q11

`,j)
[
−2

∂q`,j
∂ω`,j

+
∂q11`,j
∂ω`,j

]
+

∂q11`,j
∂ω`,j

(1− 2q`,j + q11
`,j)

(1− q11
`,j)

2
=

2(1− q`,j)
(1− q11

`,j)
2

+ Õ(2−k),

∂2ζ1,`,j
∂ω2

`,j

=
4(1− q`,j)
(1− q`,j)4

+ Õ(2−k),

∂ζ1,`,j
∂ω`,h

= Õ(2−k),
∂2ζ1,`,j

∂ω`,h∂ω`,i
= Õ(2−k) (h 6= j).

Since |q`,j − `j | ≤ Õ(2−k) and |q11
`,j − ω`,j | ≤ Õ(2−k) by Lemma 9.9, the assertion follows. 2

Finally, Proposition 9.3 follows directly from Lemmas 9.13, 9.14, 9.15 and 9.16.

9.5 Proof of Lemma 9.12
Let

P`,j : q 7→
q`,j − (q`,j − q11

`,j)
∏
h 6=j(1− q`,h)

1− 2
∏k
h=1(1− q`,h) +

∏k
h=1(1− 2q`,h + q11

`,h)
,

Ω`,j : q 7→
q11
`,j

1− 2
∏k
h=1(1− q`,h) +

∏k
h=1(1− 2q`,h + q11

`,h)
.

A straightforward calculation shows that for q such that |q`,j − 1/2| ≤ 1/k2 and |q11
`,j − 1/4| ≤ 1/k2 we have

∂P`,j
∂q`,h

= 1j=h + Õ(2−k),
∂P`,j
∂q11
`,h

= Õ(2−k),

∂Ω`,j
∂q`,h

= Õ(2−k),
∂Ω`,j
∂q11
`,h

= 1j=h + Õ(2−k)

for any j, h ∈ [k]. Let F : q 7→
((P`,j(q))

j∈[k]
(Ω`,j(q))

j∈[k]

)
. Then the differential of F satisfies

DF =


((

∂P`,j
∂q`,h

)
h∈[k]

,
(
∂P`,j
∂q11`,h

)
h∈[k]

)
j∈[k]((

∂P`,j
∂q`,h

)
h∈[k]

,
(
∂P`,j
∂q11`,h

)
h∈[k]

)
j∈[k]

 = id + Õ(2−k)1, (86)
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where id is the matrix with ones on the diagonal and zeros elsewhere, and 1 signifies the matrix with all entries equal
to one. By the inverse function theorem, we have D(F−1) = (DF )−1. Furthermore, by (86) and Cramer’s rule,

(DF )−1 = id + Õ(2−k)1. (87)

Since q(ω) is the solution to F (q) =
((p(`j))j∈[k]

(ω`,j)j∈[k]

)
, (87) yields the assertions on the first derivatives

∂q11`,h
∂ω`,i

, ∂q`,h∂ω`,i
in

Lemma 9.12.
Proceeding to the second derivative, we highlight the following (folklore) fact.

Lemma 9.17 Let ε, δ = exp(−Ω(k)). LetA be the set of all k×k matrices A = (Aij) such that |Aii− 1| < ε for all
i and |Aij | < δ for all i 6= j. Then A is regular and the operator inv : A ∈ A 7→ A−1 = (invstA)s,t=1,...,k satisfies

∂invst
∂aij

∣∣∣∣
A

≤ Õ(δ)− 1i=j=s=t(1 + Õ(ε)) for any i, j, s, t ∈ [k].

Proof. This is a simple consequence of Cramer’s rule. Indeed, let A′ij be the matrix obtained from A by omitting row
i and column j. Then

invstA = (−1)s+t
detA′ts
detA

.

Thus, we need to differentiate detA′ts and detA. For any i 6= j we have

∂

∂aii
detA =

∏
h6=i

ahh + Õ(δ) = 1 + Õ(ε) + Õ(δ),
∂

∂aij
detA = Õ(δ).

Similarly, for i 6= j and s 6= t we have

∂

∂aii
detA′tt = 1i 6=t · (1 + Õ(ε)),

∂

∂aii
detA′ts = Õ(δ),

∂

∂aij
detA′ts = Õ(δ).

Thus, the assertion follows from the quotient rule. 2

A direct calculation shows that for q such that |q`,j − 1/2| ≤ 1/k2 and |q11
`,j − 1/4| ≤ 1/k2 we have

∂2P`,j
∂q`,h∂q`,i

,
∂2P`,j

∂q`,h∂q11
`,i

,
∂2P`,j

∂q11
`,h∂q

11
`,i

= Õ(2−k),

∂2Ω`,j
∂q`,h∂q`,i

,
∂2Ω`,j

∂q`,h∂q11
`,i

,
∂2Ω`,j

∂q11
`,h∂q

11
`,i

= Õ(2−k)

for any h, i, j ∈ [k]. Thus, ∥∥D2F
∥∥
∞ ≤ Õ(2−k). (88)

Because by the chain rule D(inv ◦ DF ) = (Dinv) ◦ (D2F ), the assertion on the second derivatives follows from
Lemma 9.17, (87) and (88).

9.6 Completing the proof of Proposition 8.1
The first assertion is a direct consequence of Proposition 9.1 and Corollary 9.4. Similarly, the second assertion follows
from Proposition 9.1 because P`(ω) ≤ −Ωk(2−k) for all `.

Finally, let ω = ω∗. It is straightforward to verify that by letting q`,j be as in Lemma 6.10 and by setting q11
`,j = q2

`,j

we obtain the unique solution to (67)–(68). We need to plug this solution into P(ω): we have

ln

1− 2

k∏
j=1

(1− q`,j) +

k∏
j=1

(1− 2q`,j + q11
`,j)

 = ln

1− 2

k∏
j=1

(1− q`,j) +

k∏
j=1

(1− q`,j)2


= 2 ln

1−
k∏
j=1

1− q`,j

 . (89)
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Moreover,

ψ(q11
`,j , ω`,j) = ψ(q2

`,j , `
2
j ) = −2`2j ln

(
`j
q`,j

)
− (1− `2j ) ln

(
1− `2j

1− q2
`,j

)

= −2`2j ln

(
`j
q`,j

)
− (1− `2j )

[
ln

(
1− `j

1− q`,j

)
+ ln

(
1 + `j

1 + q`,j

)]
. (90)

Further,

(1− `2j )ψ

(
1− 2q`,j + q11

`,j

1− q11
`,j

,
1− 2`j + ω`,j

1− ω`,j

)
= (1− `2j )ψ

(
(1− q`,j)2

1− q2
`,j

,
(1− `j)2

1− `2j

)

= (1− `2j )ψ
(

1− q`,j
1 + q`,j

,
1− `j
1 + `j

)
= −(1− `j)2 ln

(
1− `j

1− q`,j

)
− (1− `2j ) ln

(
1 + q`j
1 + `j

)
− 2`j(1− `j) ln

(
`j
q`,j

)
. (91)

Summing up (89)–(91), we find

nP(ω)

2
=

∑
`∈L

m(`)

ln

1−
k∏
j=1

1− q`,j

−∑
j∈[k]

ψ(q`,j , `j)

 .
Therefore, the third assertion follows from Remark 6.14.

10 Enumeration of Assignments with p-Marginals
In this section we will prove Lemma 6.2 and Proposition 8.5. Before we present the actual details we will introduce an
appropriate framework, which will enable us to perform the enumeration of assignments with p-marginals, and pairs
of such assignments with a given overlap.

In Section 5 we said that an assignment σ ∈ {0, 1}V has pd-marginals if for any type t ∈ T we have∑
l∈L:T (l)=t

1σ(l)=1 ·
dl
km

.
= p(t)π(t).

In words, the fraction of literal occurrences of type t that are true under σ equals p(t) up to an error of O(1/n).
However, due to technical reasons and because it simplifies some of our calculations significantly, we will actually
work with a slightly refined definition. Let us say that a signature (s, d+, d−) is good, if d+, d− < 3kr/4 and
0 < (d+ − d)2 ≤ 100k2k ln k. Instead of requiring that the fraction of literal occurrences of type t equals p(t), we
require that this is true for every good signature. That is, we say that an assignment σ ∈ {0, 1}V has pd-marginals if
for any good s ∈ T ∑

l∈L:T (l)=s

1σ(l)=1 ·
dl
km

= p(s)
∑

l∈L:T (l)=s

dl
km

,

and moreover, that fraction of literal occurrences of all other variables is 1/2, i.e.,∑
l∈L:p(l)=1/2

1σ(l)=1 ·
dl
km

=
1

2

∑
l∈L:p(l)=1/2

dl
km

.

We are going to prove Lemma 6.2 and Proposition 8.5 with this modified definition. It is easily checked that this
modification does not affect any of the arguments in the previous sections.
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Let s ∈ T be any signature and set Ls = {` ∈ L : T (`) = s}. Moreover, denote by Vs = {|`| : ` ∈ Lt}
and observe that Vs = V¬s. For any σ ∈ {0, 1}n let us denote by the s-weight ws(σ) the number of satisfied literal
occurrences, where only literals of signature s are considered, i.e.,

ws(σ) =
∑
`∈Ls

1[σ(`)=1]d`.

Let us also define similar quantities with respect to the types. Let t ∈ T and set, as previously, Lt = {` ∈ L : T (`) =
t}. Denote by ¬t ∈ T the type satisfying p(¬t) = 1 − p(t). Note that ¬t exists, and we have L¬t = {¬` : ` ∈ Lt}.
Moreover, note that if p(t) 6= 1/2 we have Lt ∩ L¬t = ∅, and Lt = L¬t otherwise. Finally, set Vt = {|`| : ` ∈ Lt} =
{|`| : ` ∈ L¬t}. In accordance with the case of signatures, let us for any σ ∈ {0, 1}n denote by the t-weight wt(σ)
the number of satisfied literal occurrences, where only literals of type t are considered, i.e.,

wt(σ) =
∑
`∈Lt

1[σ(`)=1]d`.

Let t1/2 be the type such that p(t1/2) = 1/2. Since Lt1/2 = L¬t1/2 it follows that in this special case

wt1/2(σ) =
∑

v∈Vt1/2

1[σ(v)=1]dv + 1[σ(v)=0]d¬v. (92)

With the above notation, an assignment σ has p-marginals if and only if

∀s ∈ T \ t1/2 : ws(σ) = p(s)π(s)km and wt1/2(σ) =
1

2
π(t1/2)km.

The next proposition is the first step towards the estimation of the total number of assignments with p-marginals, c.f.
Lemma 6.2. We denote byH(x) = −x lnx−(1−x) ln(1−x) the entropy of x, and with [zn]f(z) the n-th coefficient
in the Taylor series expansion of an analytic function f around 0.

Proposition 10.1 W.h.p. d chosen from D has the following property. There is a constant C > 0 such that if we
denote by S the set of signatures s ∈ T with the property p(s) > 1/2, then

|H| = (C + o(1))n−|S|/2 exp

{∑
s∈S
|Vs|H(p(s))

}
· [zπ(t1/2)km/2]

∏
v∈Vt1/2

(zdv + zd¬v ). (93)

Proof. First of all, note that if for an assignment σ and a signature s ∈ T with p(s) > 1/2 we have ws(σ) = π(s)km,
then the fraction of variables in Vs that are set to true is p(s). Thus, the fraction of variables set to false is 1− p(s) =
p(¬s), and we infer that

w¬s(σ) =
∑
`∈L¬s

1[σ(`)=1]d` =
∑
v∈Vs

1[σ(v)=0]d¬v = p(¬s)π(¬s)km.

Consequently, for any such s the number of partial assignments σs : Vs → {0, 1}, with the property that the fraction
of satisfied variables is p(s) is (

|Vs|
p(s)|Vs|

)
=

1√
2πp(s)(1− p(s))|Vs|

e|Vs|H(p(s)).

Since w.h.p. d is such that |Vs| = (1 + o(1))αsn for some αs = αs(k), this provides the exponential terms in (93).
It remains to bound the number of partial assignments σ′ : Vt1/2 → {0, 1} such that wt1/2 = 1

2π(t1/2)km. Define
the generating function

F (z) =
∑

σ′:Vt1/2→{0,1}

z
wt1/2 (σ′)
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By definition, the sought quantity is [zπ(t1/2)km/2]F (z). Moreover, the definition of F (z) and (92) imply that

F (z) =
∑

σ′:Vt1/2→{0,1}

∏
v∈Vt1/2

(1[σ′(v)=1]z
dv + 1[σ′(v)=0]z

d¬v )

The assertion follows. 2

Lemma 6.2 follows immediately from the next statement, which is shown in Section 10.1.

Proposition 10.2 W.h.p. d chosen from D has the following property. There is a constant C = C(k) > 0 such that is
we write N = |Vt1/2 |, then

[zπ(t1/2)km/2]
∏

v∈Vt1/2

(zdv + zd¬v ) = (C + o(1))N−1/22N .

We proceed with the proof of Proposition 8.5, i.e., we want to enumerate pairs of assignments with p-marginals that
have a specific overlap. Let s ∈ T be a signature. For any σ, τ ∈ {0, 1}n denote the by the s-overlap os(σ, τ) the
number of literal occurrences that are satisfied in both σ and τ , where we consider only literals of signature s, i.e.,

os(σ, τ) =
∑
`∈Ls

1[σ(`)=τ(`)=1]d`.

Similarly, for any type t ∈ T we denote by ot(σ, τ) the number of satisfied literal occurrences in both σ and τ , where
only literals of type t are considered. Note that ot(σ, τ) = O(σ, τ)tπ(t)km, where O is defined in Section 7.1. For
the special case t = t1/2 it follows

ot1/2(σ, τ) =
∑

v∈Vt1/2

1[σ(v)=τ(v)=1]dv + 1[σ(¬v)=τ(¬v)=0]. (94)

Let us begin with a simple observation. Let s ∈ t such that p(s) > 1/2, and let σ, τ be two assignments with p-
marginals. Note that if ws(σ, τ) = (1 + δ)p(s)2π(s)km, for some δ ≥ −1, then the fraction of variables in Vs that are
set to true in σ and τ is (1 + δ)p(s)2. Consequently, the number of variables that are set to false in both assignments
is (1− p(s))|Vs| − (p(s)|Vs| − (1 + δ)p(s)2|Vs|), and therefore

w¬s(σ, τ) = (1− p(s))π(¬s)km−
(
p(s)π(¬s)km− (1 + δ)p(s)2π(¬s)km

)
=

(
1− δ (1− p(¬s))2

p(¬s)2

)
p(¬s)2π(¬s)km.

In words, the overlap in s determines the overlap in ¬s. However, note that the s′-overlap, for any s′ 6= s,¬s, is not
affected by the quantities ws(σ, τ) and w¬s(σ, τ).

Let t ∈ T be a type. With the previous observation at hand we are able to estimate the number of pairs of
p-satisfying assignments with a given t- and ¬t-overlap. The proof can be found in Section 10.2.

Proposition 10.3 There is a c > 0 such that the following is true. Let ε, ε′ > 0. Let t ∈ T be a type such that
p(t) 6= 1/2. Denote byH2

t,¬t(ε, ε
′) the set of pairs σ, τ of assignments with p-marginals, such that

|wt(σ, τ)− p(t)2π(t)km| ≥ εp(t)2π(t)km and |w¬t(σ, τ)− p(¬t)2π(¬t)km| ≥ ε′p(¬t)2π(¬t)km.

Then,
|H2

t (ε, ε
′)| ≤ |H|2 · exp

{
−cn

(
ε2π(t) + ε′2π(¬t)

)}
.

What remains is to enumerate pairs of p-satisfying assignments with a given t1/2-overlap. The next proposition
provides this number as the coefficient of an appropriately defined generating function.
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Proposition 10.4 Let ε ∈ (−1/4, 1/4). Let H2
1/2(ε) denote the set of pairs σ′, τ ′ of assignments to the variables in

Vt1/2 such that

ot1/2(σ′, τ ′) =

(
1

4
+ ε

)
π(t1/2)km

and
wt1/2(σ′) = wt1/2(σ′) = π(t1/2km)/2.

ThenH2
1/2(ε) = [(xy)π(t1/2)km/2 u(1/4+ε)π(t1/2)km]F (x, y, u), where

F (x, y, u) =
∏

v∈Vt1/2

(
(xyu)dv + (xyu)d¬v + xdvyd¬v + xd¬vydv

)
.

Proof. Assign to a pair of assignments σ′, τ ′ to the variables in Vt1/2 the weight xwt1/2 (σ′)
y
wt1/2 (τ ′)

u
ot1/2 (σ′,τ ′).

Then, by using (92) and (94)∑
σ′,τ ′:Vt1/2→{0,1}

x
wt1/2 (σ′)

y
wt1/2 (τ ′)

u
ot1/2 (σ′,τ ′)

=
∑

σ′,τ ′:Vt1/2→{0,1}

∏
v∈Vt1/2

1[σ(v)=τ(v)=1](xyu)dv + 1[σ(v)=τ(v)=0](xyu)d¬v

+ 1[σ(v)=1,τ(v)=0]x
dvyd¬v + 1[σ(v)=0,τ(v)=1]x

d¬vydv .

Summing this expression up yields the claimed statement. 2

The next statement provides the asymptotic value of the sought coefficients of F (x, y, u) from the previous propo-
sition. The proof can be found in Section 10.3.

Proposition 10.5 W.h.p. d chosen from D has the following property. There is a constant C = C(k, ε) > 0 such that
if we write N = |Vt1/2 | and M = π(t1/2)km, then

[(xy)M/2 u(1/4+ε)M ]F (x, y, u) = (C + o(1)) · E ·N−3/2,

where
E = ρ−(1−4ε)M/2

∏
v∈Vt1/2

(2 + 2ρdv+d¬v ) (95)

and ρ is the solution to the equation

(1/4 + ε)M =
∑

v∈Vt1/2

dv + d¬v
2 + 2ρdv+d¬v

. (96)

In order to complete the proof of Proposition 8.5 we will estimate the exponential term in the previous statement as a
function of ε. Note that if ε = 0, then clearly ρ = 1 and E = 4N . Let |ε| < 1/100. We begin with providing bounds
for the value of ρ from Equation (96). Let fg(ρ) = g/(2 + 2ρg), where g ≥ 3. Then fg(1) = g/4, f ′g(1) = −g2/8
and

f ′′g (ρ) =
g2
(
gρ2 g−2 − gρg−2 + ρg−2 + ρ2 g−2

)
2 (1 + ρg)

3 .

Note that if 0 ≤ ρ ≤ 1, then, with room to spare, |f ′′g (ρ)| ≤ g3. Moreover, if ρ > 1, then we may estimate f ′′g as
follows:

|f ′′g (ρ)| <
g2
(
(g + 1)ρ2 g−2 + gρg−2 + ρg−2

)
2ρ3g

≤ g3

ρg
≤ g3.
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Let us write ρ = 1+δ. Taylor’s theorem then implies that |fg(ρ)− (g/4−g2δ/8)| ≤ g2δ2. By writing gv = dv +d¬v
and recalling that M =

∑
v∈Vt1/2

gv we infer from (96)

−δS2

8
− δ2S3 ≤ εM ≤ −δ

S2

8
+ δ2S3, where Si =

∑
v∈Vt1/2

giv, for i ∈ {2, 3}.

In view of these inequalities we might expect that whenever ε is not too large, then δ ≈ −ε8M/S2. This can be made
precise as follows. By solving the quadratic equations explicitly we infer that δ satisfies

1

16

−S2 +
√
S2

2 − 256S3εM

S3
≤ δ ≤ − 1

16

−S2 +
√
S2

2 + 256S3εM

S3

Note that d is such that w.h.p. S2 = Θ(krM) and S3 = Θ((kr)2M). Thus, for sufficiently large k

√
S2

2 + 256S3εM = S2

√
1 +

256S3εM

S2
2

= S2 +
128S3εM

S2
+O

(
S2

3ε
2M2

S3
2

)
.

The square-root with the minus sign can be estimated analogously. We infer that

ρ = 1 + δ, where δ = −ε8M

S2
+O((kr)−1ε2). (97)

With the approximate value of ρ at hand we can proceed with estimating the exponential term in (95). First of, we
rearrange terms to obtain

E = ρ−(1−4ε)M/2
∏

v∈Vt1/2

(2 + 2ρdv+d¬v ) = 4N · ρ2εM ·
∏

v∈Vt1/2

(ρ−gv/2 + ρgv/2)/2. (98)

The bounds on ρ imply that

ρ2εM =

(
1− ε8M

S2
+O((kr)−1ε2)

)2εM

≤ exp

{
−16ε2M

2

S2
+O(ε3(kr)−1M)

}
. (99)

Regarding the last term involving the product in (98), we bound it by the following probabilistic considerations. Note
that ∏

v∈Vt1/2

(ρ−gv/2 + ρgv/2)/2 =
∑

(sv):v∈Vt1/2 ,sv∈{−1,+1}

2−Nρ−1/2
∑
v svgv .

Let (Sv)v∈Vt1/2 be a family of independent random variables, which are uniformly distributed in {−1,+1}. Then the
last expression in the previous display is equal to the expected value of ρ {−1/2

∑
v svgv}. We obtain

µ := E

[
ρ
− 1

2

∑
v∈Vt1/2

Svgv
]
≤ 2

∑
t≥0

P

| ∑
v∈Vt1/2

Svgv| = t

 (ρt/2 + ρ−t/2)

Note that since either ρt/2 ≥ 1 or ρ−t/2 ≥ 1 we may assume without loss of generality that ρ ≥ 1. The advantage
of the above formulation is that we can estimate rather easily the probability for a large deviation of the sum S =∑
v Svgv . Indeed, if we change the value of any Sv to obtain a new sum S′, then |S − S′| = 2gv . By applying

Azuma-Hoeffding we obtain

P

| ∑
v∈Vt1/2

Svgv| = t

 ≤ exp

{
−2t2/

∑
v

(2gv)
2

}
= exp{−t2/2S2}.
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Thus, by using (97) and noting that ε ≤ 0 due to our assumption ρ ≥ 1 we obtain the bound

µ ≤ 4
∑
t≥0

e−t
2/2S2 · ρt/2 ≤ 4

∑
t≥0

e−t
2/2S2 ·

(
1− ε8M

S2

)t/2
≤ 4

∑
t≥0

exp

{
− t2

2S2
+ |ε|4Mt

S2

}
.

Since the exponent is convex in t, it can easily be seen that it is maximized at t = 4M |ε|, where its value equals

− (4M |ε|)2

2S2
+ |ε|4M(4M |ε|)

S2
= 8ε2M

2

S2
.

Thus, µ = O(
√
N)e8ε2M

2

S2 , and by combining (98) and (99) we infer thatE ≤
√
Ne−8ε2M

2

S2 . But since S2 = Θ(krM)

and M = Θ(krN), this is at most
√
Ne−cε

2N , for some c > 0.
Proposition 8.5 then follows immediately from Propositions 10.3-10.5, and the (aforementioned) observation that

the t- and t′-overlap of σ, τ are independent for t 6= t′,¬t.

10.1 Proof of Proposition 10.2
Set M = π(t1/2)km. By the virtue of Cauchy’s integral formula we obtain

I := [zM/2]F (z) =
1

2πi

∮
C

F (z)z−M/2−1dz.

Since F is analytic in C, C can be any curve enclosing the origin. To estimate the integral we will use the saddle point
method, which is commonly used to determine the asymptotic behavior of integrals that involve a large parameter,
and are simultaneously subject to huge variations. For an excellent overview and numerous applications we refer the
reader to [16].

The main idea is to choose C such that the integrand ’peaks’ at a unique point, so that the main contribution to the
integral comes from a small neighborhood of this maximum. We choose C to be the unit circle centered at the origin,
i.e., C = {eiθ : −π < θ < π}. Moreover, let θ0 = θ0(n) = N−2/5, and write C0 = {eiθ : |θ| ≤ θ0(n)} for the
restriction of C to the segment with |θ| ≤ θ0(n). Then we may write I = I0 + I1, where

I0 =
1

2πi

∮
C0

F (z)z−M/2−1dz and I1 =
1

2πi

∮
C\C0

F (z)z−M/2−1dz.

By changing variables, the first integral becomes

I0 =
1

2π

∫ θ0

−θ0
H(θ)dθ, where H(θ) = e−iθM/2 ·

∏
v∈Vt1/2

(eiθdv + eiθd¬v ). (100)

Moreover, by using the trivial bound for complex integrals and the fact |z| = 1 on C we obtain

I1 ≤ 2π · sup
z∈C\C0

|F (z)| (101)

Our subsequent proof strategy is as follows. We will first compute the asymptotic value of the integral over the ’central
region’; in particular, we show that

I0 = (c+ o(1))N−1/22N (102)

for an appropriate c > 0. Then, by using (101) we show that I1 = o(I0). The two statements combined yield then
immediately the conclusion of the proposition.

We proceed with showing (102). Recall that |θ| ≤ θ0 = N−2/5, and note that for any d, d′, by applying Taylor’s
Theorem

eiθd + eiθd
′

= 2 + i(d+ d′)θ − 1

2
(d2 + d′2)θ2 +O

(
(1 + i)(d3 + d′3)θ3

)
uniformly for all d, d′ ∈ N, |θ| ≤ θ0.
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Let us write

S2 =
1

4

∑
v∈Vt1/2

d2
v + d2

¬v + (dv + d¬v)
2 and Sj =

∑
v∈Vt1/2

(djv + dj¬v). for j ≥ 3.

Observe that d is w.h.p. such that Sj = (1 + o(1))cjN for some cj = cj(k) > 0, where 2 ≤ j ≤ 9. Using (100) we
infer that the integrand satisfies

H(θ) = e−iθM/2 ·
∏

v∈Vt1/2

(
2 + i(dv + d¬v)θ −

1

2
(d2
v + d2

¬v)θ
2 +O

(
(1 + i)(d3

v + d3
¬v)θ

3
))

= 2N exp
{
−S2θ

2 +O
(
(1 + i)(S3θ

3 + S4θ
4 + · · ·+ S9θ

9)
)}

= (1 + o(1))2N exp
{
− S2θ

2
}
, since θ ≤ N−2/5.

Thus,

(2π)I0 =

∫ θ0

−θ0
H(θ)dθ = (1 + o(1)) 2N

∫ θ0

−θ0
e−S2θ

2

dθ

= (1 + o(1))
2N√
c2N

∫ √c2N1/10

−√c2N1/10

e−x
2

dx = (1 + o(1))
2N√

2πc2N
.

This proves (102). To complete the proof we will show that supz∈C\C0
|F (z)| is asymptotically negligible com-

pared to I0. First, for any v ∈ Vt1/2

fv(θ) := |eiθdv + eiθd¬v | =
√

2 + 2 cos (θ (dv − d¬v))

Let us collect some basic properties of fv . Note that if dv = d¬v , then fv(θ) = 2 for any −π < θ < π. Otherwise, f
is maximized for any

θ ∈Mdv−d¬v =

{
j

2π

|dv − d¬v|
: |j| < |dv − d¬v|

2

}
,

where f(θ) = 2.
For a pair (d+, d−) ∈ N2 let Vd+,d− ⊆ Vt1/2 denote the set of variables v such that dv = d+ and d¬v = d−, and

write Nd+,d− = |Vd+,d− |. Then,

|F (eiθ)| =
∏

v∈Vt1/2

fv(θ) =
∏

s=(d+,d−)

(
2 + 2 cos(θ(d+ − d−))

)Ns/2
.

Note that
∑
s=(d+,d−)Ns = N . Thus, |F (eiθ)| ≤ 2N for all θ. However, this bound is achieved only if all factors are

maximized simultaneously. We will argue in the sequel that if |θ| ∈ (θ0, π), then a linear (in N ) fraction of the factors
is ≤ 2−O(N−4/5). It follows for some α > 0 that

|F (eiθ)| ≤ 2(1−α)N · (2−O(N−4/5))αN = 2N · e−O(N1/5) = o(N−1/22N ) = o(I0).

To see the claim, consider the specific pair (d′+, d
′
−) = (kr, kr − 1), and note that if k is sufficiently large, then

kr − 1 > kr/2 + 10
√
k2k ln k. So, indeed Vd+,d− ⊆ Vt1/2 . Furthermore, d is such that w.h.p. there is a constant

α = α(k) > 0 such that Nd+,d− ≥ αN . It follows that for all variables v ∈ Vd′+,d′−

fv(θ) =
√

2 + 2 cos(θ).

It can easily be verified that fv is monotone increasing for −π < θ < 0 and decreasing for 0 < θ < π. Thus, for any
|θ| ∈ (θ0, π) we have fv(θ) ≤ max{fv(θ0), fv(−θ0)}. By using the Taylor series expansion of the cosine and the
square root we obtain that

fv(ε) = 2− θ2

4
+O(θ4), uniformly for all − π < θ < π.

We conclude that fv(θ) ≤ 2−O(n−4/5) for at least αN variables v, and the proof is completed.
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10.2 Proof of Proposition 10.3
We will exploit a concentration inequality due to McDiarmid [26]. We present it here in a simplified form that is
appropriate for our purpose. Given a finite non-empty set B, we denote by Sym(B) the set of all |B|! permutations
of the elements of B. Let B1, . . . , BN be a family of finite non-empty sets, and denote by Ω = Sym(B1) × · · · ×
Sym(BN ). Moreover, let π = (π1, . . . , πN ) be a family of independent random permutations, where πi is drawn
uniformly from Sym(Bi).

Theorem 10.6 Let c and r be positive constants. Suppose that h : Ω→ R+ is such that for any π ∈ Ω the following
conditions are satisfied.

• If π′ can be obtained from π by swapping two elements, then |h(π)− h(π′)| ≤ c.

• If h(π) ≥ s, then there is a set of at most rs coordinates such that h(π′) ≥ s for any π′ ∈ Ω that agrees with π
on these coordinates.

Let Z = h(π) and let m be the median of Z. Then, for any t > 0

P [|Z −m| > t] ≤ 4 exp

(
− t2

16rc2(m+ t)

)
.

Let us proceed with the proof of Proposition 10.3. We will assume without loss of generality that t is such that
p(t) > 1/2. We will abbreviate p = p(t), q = p(¬t). Let σ be an arbitrary assignment with p-marginals. Moreover,
denote by τ an assignment that is obtained by selecting for any signature s ∈ t uniformly at random p|Vs| variables
from Vs and setting them to true, and setting all other variables in V \ Vt arbitrarily so that τ has p-marginals.
Equivalently, we may generate τ by permuting the variables in Vs randomly, and setting the first p|Vs| variables in that
permutation to true, for all s ∈ t. With this notation we obtain

|H2
t,¬t(ε, ε

′)| ≤ |H|2 · P
[
|wt(σ, τ )− p2π(t)km| ≥ επ(t)km

]
The latter probability can be estimated with Theorem 10.6. Indeed, note that

• if τ, τ ′ have p-marginals and can be obtained by swapping the truth assignment of two variables, then

|wt(σ, τ)− wt(σ, τ ′)| ≤ 2 max
v∈Vt

dv ≤ 4kr.

• if wt(σ, τ) ≥ s, then there is a set S of ≤ s/minv∈Vt dv ≤ 2s/kr variables that are set to true, and any τ ′ with
p-marginals that sets all variables is S to true satisfies wt(σ, τ ′) ≥ s.

We thus may apply Theorem 10.6 with c = 4kr and r = 2/kr. Moreover, trivially E [wt(σ, τ )] ≤ π(t)km. We infer
that

|H2
t,¬t(ε, ε

′)|
|H|2

≤ 4 exp

(
−Θ(1)

(επ(t)km)2

kr · π(t)km

)
= 4 exp

(
−Θ(1) ε2π(t)n

)
.

Exactly the same argument, where we interchange the roles of t and ¬t, shows that also

|H2
t,¬t(ε, ε

′)|
|H|2

≤ 4 exp

(
−Θ(1)

(ε′π(¬t)km)2

kr · π(¬t)km

)
= 4 exp

(
−Θ(1) ε2π(¬t)n

)
.

The claim follows.
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10.3 Proof of Proposition 10.5
Set M = π(t1/2)km. By applying Cauchy’s integral formula we obtain

I := [(xy)M/2 u(1/4+ε)M ]F (x, y, u) =
1

(2πi)3

∮
C1

∮
C2

∮
Co

F (x, y, u)(xy)−M/2−1u−(1/4+ε)M−1dudydx.

The function F is analytic in C3, implying that C1, C2, Co can be any curves enclosing the origin. We choose

C1 = {ρeiθ : |θ| < π}, C2 = {ρeiϕ : |ϕ| < π}, Co = {ρ−2eiψ : |ψ| < π},

where ρ is the solution to the Equation (96). Some remarks are in place here. The choice of the integration paths
may seem arbitrary at this point. Note, however, that F is symmetric with respect to x and y, and thus it is natural
to assume similar integration curves for them. Moreover, the choice of ρ is guided by the general principles of the
saddle-point method and is such that the integrand has a unique maximum at (θ, ϕ, ψ) = (0, 0, 0). Indeed, as we will
show subsequently, the integrand is around (0, 0, 0) of elliptic type; this allows us to reduce the estimation of the main
terms to the evaluation of a 3-dimensional Gaussian integral.

Denote by C the restriction of the circles C1, C2, Co to a small region around the origin, i.e.,

C = {ρeiθ : |θ| < N−2/5} × {ρeiϕ : |ϕ| < N−2/5} × {ρ−2eiψ : |ψ| < N−2/5}.

Then we may write I = I0 + I1, where

I0 =
1

(2πi)3

∮
C
F (x, y, u) (xy)−M/2−1z−(1/4+ε)M−1dzdydx,

and I1 is the integral over (C1 × C2 × Co) \ C. By changing variables we obtain

I0 =
1

(2π)3

∫
[−N−2/5,N−2/5]3

H(θ, ϕ, ψ)dψdϕdθ, where H = ρ−
(1−4ε)M

2 e−i
(θ+ϕ)M

2 −iψ(1/4+ε)M
∏

v∈Vt1/2

hv(θ, ϕ, ψ),

(103)
and

hv(θ, ϕ, ψ) = ei(θ+ϕ+ψ)dv + ei(θ+ϕ+ψ)d¬v + ρdv+d¬veiθdv+iϕd¬v + ρdv+d¬veiθd¬v+iϕdv .

Regarding I1, we will use the trivial bound

I1 ≤ (2π)3 sup
(x,y,u)∈(C1×C2×Co)\C

|H(x, y, u)| (104)

to show that I1 = o(I0).
We begin with estimating I0 by providing an appropriate asymptotic expansion of it for points around the origin.

First of all, note that for any v ∈ Vt1/2 we have hv(0, 0, 0) = 2 + 2ρdv+d¬v and thus

H(0, 0, 0) = ρ−(1−4ε)M/2
∏

v∈Vt1/2

(2 + 2ρdv+d¬v ) = E.

Moreover,

∂

∂θ
hv(0, 0, 0) =

∂

∂ϕ
hv(0, 0, 0) = (2 + 2ρdv+d¬v )

i

2
(dv + d¬v), and

∂

∂ψ
hv(0, 0, 0) = i(dv + d¬v).

The second derivatives at (0, 0, 0) are given by

∂2

∂θ2
hv =

∂2

∂ϕ2
hv = −(d2

v + d2
¬v)(1 + ρdv+d¬v ), and

∂2

∂ψ2
hv = −(d2

v + d2
¬v).
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Furthermore, the mixed second derivatives are

∂2

∂θ∂ϕ
hv = −(d2

v + d2
¬v + 2dvd¬vρ

dv+d¬v ) and
∂2

∂θ∂ψ
hv =

∂2

∂φ∂ψ
hv = −(d2

v + d2
¬v).

We will also need crude bounds for the third-order derivatives in order to establish an accurate approximation for H
around the origin. Note that hv linearly exponential in θ, ϕ, ψ and dv, d¬v . Thus, every time we take a derivative
with respect to some variable, the norm of each single term in the expression of hv can increase by at most mv =
max{dv, d¬v}. Thus, uniformly for (θ, ϕ, ψ) ∈ [−N2/5, N2/5] we have that∣∣∣∣ ∂3

∂ξ1∂ξ2∂ξ3
hv

∣∣∣∣ ≤ 2(1 + ρdv+d¬v )(dv + d¬v)
3, where ξ1, ξ2, ξ3 ∈ {θ, ϕ, ψ}.

By using the uniform estimate 1 + x = ex−x
2/2+Θ(x3), where we set 1 + x = hv(θ, ϕ, ψ)/hv(0, 0, 0) we infer that

ln
hv(θ, ϕ, ψ)

hv(0, 0, 0)
=
i

2
(dv + d¬v)(θ + φ) + i

dv + d¬v
2 + 2ρdv+d¬v

ψ + 2nd order + error, (105)

where the 2nd order terms are

− (dv − d¬v)2

8
(θ2+φ2)− (dv − d¬v)2 + 2ρdv+d¬v (d2

v + d2
¬v)

2(2 + 2ρdv+d¬v )2
ψ2+

(dv − d¬v)2(ρdv+d¬v − 1)

2(2 + 2ρdv+d¬v )
θϕ− (dv − d¬v)2

4 + 4ρdv+d¬v
(θ+ϕ)ψ.

Finally, since (θ, ϕ, ψ) ∈ [−N2/5, N2/5] the error term is of order at most (dv + d¬v)
3N−6/5. In order to obtain an

approximation for H we form the product over all v ∈ Vt1/2 . Observe that the (linear in the variables) exponential
factor e−i(θ+ϕ)M/2−iψ(1/4+ε)M cancels exactly with the first order terms in (105). By abbreviating

Sθ,θ =
∑

v∈Vt1/2

(dv − d¬v)2

8
, Sψ,ψ =

∑
v∈Vt1/2

(dv − d¬v)2 + 2ρdv+d¬v (d2
v + d2

¬v)

2(2 + 2ρdv+d¬v )2
,

and

Sθ,φ =
∑

v∈Vt1/2

(dv − d¬v)2(ρdv+d¬v − 1)

4 + 4ρdv+d¬v
, Sθ,ψ =

∑
v∈Vt1/2

(dv − d¬v)2

4 + 4ρdv+d¬v
, S3 =

∑
v∈Vt1/2

(dv + d¬v)
3

we obtain uniformly for any (θ, ϕ, ψ) ∈ [−N−2/5, N−2/5]3

ln

(
H

E

)
= −Sθ,θ(θ2 + ϕ2)− Sψ,ψψ2 + Sθ,φθφ− Sθ,ψ(θ + ϕ)ψ +O(S3N

−6/5).

Observe that d is such that w.h.p. all quantities S.,. and S3 are linear in N . Thus, we are left with computing

I0 = (1 + o(1))E ·
∫

[−N−2/5,N−2/5]3
e−Sθ,θ(θ2+ϕ2)−Sψ,ψψ2+Sθ,φθϕ−Sθ,ψ(θ+ϕ)ψdψdϕdθ.

In order to compute this integral we rescale each variable with N−1/2. By writing s.,. for S.,./N we obtain

I0 = (1 + o(1))E ·N−3/2 ·
∫

[−N1/10,N1/10]3
e−sθ,θ(θ2+ϕ2)−sψ,ψψ2+sθ,ϕθϕ−sθ,ψ(θ+ϕ)ψdψdϕdθ.

A termwise comparison and elementary algebraic manipulations yield that

4S2
θ,θ − S2

θ,ϕ ≥ 0 and 2Sψ,ψSθ,θ − S2
θ,ψ − Sψ,ψSθ,ϕ ≥ 0
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Thus, the squares can be completed and the integral in the above expression equals a constant depending on the family
s.,.; this shows that asymptotically I1 is proportional to N−3/2 · E.

In order to complete the proof we will use (104) to show that I1 is asymptotically negligible compared to I0. Recall
the definition of H from (103). It follows that the absolute value of H is given by

ρ−(1−4ε)M/2 ·
∏

v∈Vt1/2

fv(θ, ϕ, ψ), where fv(θ, ϕ, ψ) = |hv(θ, ϕ, ψ)|.

Let us abbreviate Dv = dv − d¬v . A lengthy calculation, which can be performed easily with the help of MAPLE,
yields that

fv(θ, ϕ, ψ)2 = 2 + 2ρ2(dv+d¬v) + 2 cos
(
Dv(θ + ϕ+ ψ)

)
+ 2ρ2(dv+d¬v) cos

(
Dv(θ − ϕ)

)
+ 2ρdv+d¬v

(
cos
(
Dvϕ+ dvψ

)
+ cos

(
Dvθ + dvψ

)
+ cos

(
Dvθ − d¬vψ

)
+ cos

(
Dvϕ− d¬vψ

))
.

Note that we can get an upper bound for fv if we replace all terms involving a cosine by one; this implies that
|H| ≤ ρ−(1−4ε)M/2

∏
v(2 + 2ρdv+d¬v ) = E. Moreover, the bound is achieved only if all factors are maximized

simultaneously, and this happens for example when we choose (θ, ϕ, ψ) = (0, 0, 0). We will argue in the sequel
that if (θ, ϕ, ψ) ∈ (C1 × C2 × Co) \ C, i.e., at least one of the variables θ, ϕ, ψ is assigned a value not lying in
[−N−2/5, N−2/5], then there is a subset of variables V ′ ⊂ Vt1/2 such that |V ′| ≥ αN for some α > 0 and for all
v ∈ V ′ it holds fv(0, 0, 0) ≤ fv(0, 0, 0)−O(N−4/5). Indeed, if this is true, then

|H| ≤ ρ−(1−4ε)M/2
∏

v∈Vt1/2\V
′

(2 + 2ρdv+d¬v )
∏
v∈V ′

(2 + 2ρdv+d¬v −O(N−4/5)).

Since ρ is bounded and d is such that w.h.p. dv + d¬v = o(log n), it follows that |H| smaller that E by an exponential
factor, which shows with (104) that I1 = o(I0).

To see that a set V ′ with the desired properties exists, let us assume that at least one of θ, ϕ, ψ is in absolute value
at least N−2/5. For a pair (d+, d−) ∈ N2 let Vd+,d− ⊆ Vt1/2 denote the set of variables v such that dv = d+ and
d¬v = d−, and write Nd+,d− = |Vd+,d− |. Consider the specific pair (d+, d−) = (kr, kr − 1), and note that for
all such variables we have Dv = 1. Furthermore, d is such that w.h.p. there is a constant β = β(k) > 0 such that
Nd+,d− ≥ βN . Then we may assume that

for all v ∈ Nd+,d− : fv(θ, ϕ, ψ) ≥ (2 + 2ρ2kr−1 −O(N−4/5)),

as otherwise there is nothing to show. This impliesthat the arguments of all cosines appearing in the expression of fv
are close to multiples of 2π, and in particular,

|θ + φ+ ψ|, |θ − ϕ|, |ϕ+ d+ψ| = O(N−2/5) (mod 2π); (106)

this follows directly from the series expansion of the cosine around integer multiples of 2π, which lack a linear term.
Next, consider the pair (d′+, d

′
−) = (kr, kr − 2); again d is such that w.h.p. there is a constant β′ = β′(k) > 0 such

that Nd′+,d′− ≥ β
′N . Note that for these variables we have Dv = 2. Then, as previously, we may also assume that

for all v ∈ Nd′+,d′− : fv(θ, ϕ, ψ) ≥ (2 + 2ρ2kr−2 −O(N−4/5)),

But then, by the same argument as above, |2ϕ+ d′+ψ| = O(N−2/5) (mod 2π). Since d+ = d′+ and, by assumption,
|ϕ| < π, by combining this with the third term in (106), we infer that |ϕ| = O(N−2/5). In turn, together with the
second term in (106), this implies that also |θ| = O(N−2/5). Finally, the fact |θ + ϕ + ψ| = O(N−2/5) (mod 2π)
from (106) then also implies that |δ| = O(N−2/5). Everything together yields that (θ, ϕ, ψ) ∈ C, a contradiction.
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11 Proof of Corollary 2.2
As a direct consequence of our second moment argument, the Paley-Zygmund inequality, and a concentration result
on the number of satisfying assignments from [1] we obtain the following.

Proposition 11.1 For r as in (14) we have |S(Φ)| ≥ E |S(Φ)| · exp
[
− nr
k94k

]
w.h.p.

We consider the following “planted model”: let Λ = Λk(n,m) be the the of all pairs (Φ, σ) of k-CNFs Φ over
V with m clauses and satisfying assignments σ ∈ S(Φ). Let PΛ signify the uniform distribution over Λ; PΛ is
sometimes called the planted model. Moreover, let PG be the distribution on Λ obtained by first choosing a random
formula Φ and then a uniformly random σ ∈ S(Φ) (provided that Φ is satisfiable); PG is sometimes called the Gibbs
distribution. Combining Proposition 11.1 with an argument from [], we obtain the following “transfer result”.

Corollary 11.2 For any B ⊂ Λ the following is true. If PΛ [B] ≤ exp
[
− 2nr
k94k

]
, then PG [B] = o(1).

Thus, in order to show that some ‘bad’ event B is unlikely under PG, we “just” need to show that PΛ [B] ≤
exp

[
− 2nr
k94k

]
is exponentially small.

Lemma 11.3 There is a number δ = δ(k) > 0 such that

PΛ

[
dist(σ, σmaj) >

1

2
− δ
]
≤ exp

[
− 2nr

k94k

]
.

Proof. We can generate a pair (Φ, σ) from the planted model as follows: first, choose σ ∈ {0, 1}V uniformly; then,
generate m clauses that are satisfied under σ uniformly and independently. Without loss of generality, we may assume
that σ = 1 is the all-true assignment. We need to study the distribution d = (dl)l∈L of literal degrees. To this end, let
(el)l∈L be a family of independent Poisson variables such that E [el] = E [dl] for all l. It is easily verified that there is
ζ = Θ(2−k) such that

E [dx] =
kr

2
(1 + ζ), E [d¬x] =

kr

2
(1− ζ) (107)

for all x ∈ V . Furthermore, if we let E be the event that
∑
l∈L el = km, then e = (el)l∈L given E has the same

distribution as d. Moreover,
P [E ] = Ω(n−1/2). (108)

Let
Y =

1

n

∑
x∈V

1ex>e¬x +
1

2
1ex=e¬x .

Viewing the difference ex−e¬x as a random walk of length Po(kr) and using limit theorems for resulting distribution
(the Skellam distribution), we obtain from (107) that E [Y ] ≥ 1

2 + Ω(
√
kr/2k). Further, applying Chernoff bounds to

Y (which is a sum of independent contributions), we find that for a certain δ = Ω(
√
kr/2k)

P

[
Y <

1

2
+ δ

]
≤ exp

[
−Ω(
√
kr/2k)2n

]
≤ exp

[
− 3nr

k94k

]
. (109)

Finally, the assertion follows from (108) and (109). 2

12 Proof of Lemma 2.3
The expected majority weight in Φ is easily computed. In Φ, for each x the numbers dx, d¬x of positive/negative
occurrences are asymptotically independently Poisson with mean kr/2. Therefore, for any d = Θ(kr) we obtain

E [|dx − d¬x| | dx + d¬x = d] =
√

2d/π +Ok(1).
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In effect,

E [wmaj(Φ)] ∼ 1

2
+

√
2

πkr
+Ok(1/kr). (110)

By comparison, given that, say, the all-true assignment is satisfying, the number dx of positive occurrences has
distribution Po((1+1/(2k−1))kr/2), while d¬x has distribution Po((1−1/(2k−1))kr/2). The normal approximation
to the Poisson distribution yields for d = Θ(kr),

E [|dx − d¬x| |1 ∈ S(Φ), dx + d¬x = d] =
√

2d/π + Θ(4−kd3/2) +Ok(1).

for a certain constant c > 0. Consequently,

E [wmaj(Φ) |1 ∈ S(Φ)] ∼ 1

2
+

√
2

πkr
+ Θ(4−k(kr)1/2). (111)

Both with and without conditioning on 1 ∈ S(Φ), wmaj enjoys the following Lipschitz property: changing one
single clause can alter the value of wmaj by at most k/(km) = 1/(rn). Therefore, Azuma’s inequality yields

P [|wmaj − E [wmaj ]| > λ] ≤ 2 exp

[
− (rλn)2

2m

]
= 2 exp

[
−rλ

2n

2

]
,

P [|wmaj − E [wmaj ]| > λ|1 ∈ S(Φ)] ≤ 2 exp

[
−rλ

2n

2

]
.

In effect, for a certain constant ζ > 0 we have

P

[
wmaj ≥

1

2
+

√
2

πkr
+ ζ4−k(kr)1/2

]
≤ exp

[
−Ω

(
k/4k

)
n
]
, (112)

P

[
wmaj ≤

1

2
+

√
2

πkr
+ ζ4−k(kr)1/2|1 ∈ S(Φ)

]
≤ exp

[
−Ω

(
k/4k

)
n
]
. (113)

Combining (112) and (113) with a simple counting argument yields Lemma 2 from the extended abstract.
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