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HIGHER DIMENSIONAL DISTORTION OF RANDOM COMPLEXES

DOMINIC DOTTERRER

Abstract. Using the random complexes of Linial and Meshulam [19], we exhibit a large

family of simplicial complexes for which, whenever affinely embedded into Euclidean space,

the filling areas of simplicial cycles is greatly distorted. This phenomenon can be regarded

as a higher order analogue of the metric distortion of embeddings of random graphs.

1. Introduction

One of the natural questions to ask when we come across a new geometric object is “How

does it compare to Euclidean space?” We examine objects from this viewpoint not only

because we all live in Euclidean space, but also because being a subset of Euclidean space

is one of the most stringent geometric conditions cf. [8], [21], [22]. The study of how well

discrete and continuous objects “fit” into Euclidean space, Banach spaces, or geometric space

forms is extensive (the literature is vast but the author might suggest [18], or [20], as a place

to start). Finding good embeddings (or obstructions to them) for discrete structures (graphs,

groups, finite metric spaces, etc.) into L2 or L1 is an industry in its own right, particularly

because of the direct applications to theoretical computer science.

1.1. Metric distortion. We begin by giving a seminal example of the quantitative study

of obstructions to “nice” embeddings:

Theorem (J. Bourgain, [5]).

Denote by Gn,p the Erdős–Rényi random graph on n vertices, i.e. the probability space of

graphs on n vertices with

P[G ∈ Gn,p] = pE(1− p)(
n

2)−E

where E is the number of edges in G.

If p = K logn
n

, then with probability tending to 1 as n→ ∞, any embedding φ : G → H of

G ∈ Gn,p into a Hilbert space must have

max
x,y∈X

‖φ(x)− φ(y)‖
d(x, y)

· max
x,y∈X

d(x, y)

‖φ(x)− φ(y)‖ ≥ C
log n

log logn
.

The left side of the inequality is referred to as the metric distortion of φ (we will denote

it by δ0(φ)). Metric distortion of embeddings is one of many avenues in which random
1
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constructions, such as Erdős–Rényi random graphs, have been of great value to geometry.

It is somewhat paradoxical that random (generic) objects can be good examples of extremal

geometries.

However, we have no intention of adding to this very lively discussion of the theory of

metric embeddings. Instead we will be most interested in higher order phenomena, namely

the properties of embeddings of random simplicial complexes into Euclidean space. First,

then, we must decide what we mean by “higher dimensional metric distortion.”

1.2. Filling distortion. In this paper, we will be seeking obstructions to the existence of

embeddings of geometric objects which preserve some higher geometric structure. With this

in mind we propose the following definition.

Definition 1.1.

Let X be a simplicial complex and φ : X → H a Lipschitz map from X to a Hilbert space.

The filling distortion of φ is given by:

δ1(φ) = sup
z∈Z1X

FillH φ∗z

FillX z
· sup
z∈Z1X

FillX z

FillH φ∗z

where Fill(z) is the size of the smallest chain, y, with ∂y = z.

Namely, the filling distortion measures how badly the filling areas of 1-cycles is distorted

in H (in turn, this can be thought of as the metric distortion of the induced map φ∗ : Z1X →
Z1H, each endowed with the flat metric [26]). We will discuss this definition in more detail

in the final section.

With a definition in place, we can then look for a candidate complex to achieve a high

level of distortion. Our main theorem addresses this:

Theorem 1.2.

For every large n and for ǫ > 0, there exists a 2-dimensional simplicial complex on n

vertices, with complete 1-skeleton (
(

n
2

)

edges), with the property that any affine map φ :

X → H into a Hilbert space must have

δ1(φ) ≥ Cn
1−2ǫ

4 .

We would like to draw the reader’s attention to the fact that, although we have chosen the

definition to complement the notion of metric distortion, it turns out that these quantities

reflect very different phenomena. Our main theorem gives a lower bound in terms of a power

(rather than the logarithm) of n.

In the course of proving our main theorem, we will prove an intermediate proposition:

Proposition 1.3.
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Let X be a 2-dimensional simplicial complex on n vertices, a complete 1-skeleton and the

smallest eigenvalue of the Laplacian acting on 1-forms given by λ1(X). Then for any affine

map φ : X →H, suitably scaled so that

FillH(φτ) ≥ FillX(τ)

for every triangle, τ . Then,

∑

f∈X(2)

(

Area(φf)
)2 ≥ λ1(X)

3(n− 2)

∑

τ

(

FillXτ
)2
.

where the first sum runs over 2-dimensional faces in X and the second sum runs over all

triangles in X.

With this inequality in mind, we will attempt to maximize the quantity,

λ1(X)

|X(2)|
∑

τ

(

FillXτ
)2

Just as Bourgain did with random graphs in [5], we rely on random complexes:

Definition (Linial and Meshulam, [19]).

Let Yn,p denote the Linial–Meshulam random complex, the probability space of 2-dimensional

simplicial complexes on n vertices, with complete 1-skeleton (i.e. ∆
(1)
n ⊂ Y ⊂ ∆

(2)
n ), such

that

P[Y ∈ Yn,p] = pF (1− p)(n3)−F where F is the number of faces in Y.

The random complexes of Linial and Meshulam end up giving the estimate in theorem 1.2

with 99% probability.

1.3. Other results on maps to Euclidean space. There have already been some recent

results on maps from random simplicial complexes to Euclidean space of a topological, rather

than explicitly geometric, nature. We have two in particular in mind. The first is Gromov’s

point selection theorem for random complexes:

Theorem (Gromov, [12] (combined with the main observation in [6])).

There exists a constant, c, such that if p > K logn
n

then with probability tending to 1 as n

tends to infinity, Y ∈ Yn,p has the property that for any continuous map φ : Y → R
2, there

exists a point p ∈ R
2 which lies in the image of at least c|Y (2)| of the 2-dimensional faces of

Y .

This theorem simply says that a Linial–Meshulam random complex, once it has enough

faces, will tend to pile up, or “overlap” ([11]) when mapped into R
2.

Another recent result addresses the question of topological embeddability:
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Theorem (Wagner, [25]).

If p > K
n
, then with probability tending to 1 as n tends to infinity, Y ∈ Yn,p does not

topologically embed in R
4

This is the higher dimensional analogue of the fact that Erdős–Rényi random graphs are

overwhelmingly non-planar (for a large enough p).

The reader should be informed that we did not state either of these theorems in nearly

their highest generality, but instead offered them in this form to lend them better to the

theme of this article.

1.4. Overview. In the next section we will develop our notation and be more explicit with

our definitions. Once our notation is in place we will prove proposition 1.3 in section 3. We

will follow up in section 4 by estimating the desired spectral and isoperimetric quantities of

Linial–Meshulam random complexes, thereby obtaining theorem 1.2. We reserve the final

section for a series of questions and remarks.

Acknowledgements. First and foremost, I must acknowledge Larry Guth, for his reassuring

interest in this project. Over a casual lunch, Larry suggested to me some version of definition

1.1 and I am indebted for that suggestion. Also, in the spring of 2011, I spent several

afternoons with Larry and Matt Kahle discussing systolic and isoperimetric inequalities in

random complexes; proposition 4.2 is a direct product of those discussions. Finally, I must

thank Alfredo Hubard for those long walks to and from the Dinky in which we discussed

several incarnations of this problem.

2. Notation and concepts

Throughout, we will concern ourselves with a simplicial complex, X , whose k-dimensional

faces are denoted X(k). This induces two chain complexes of interest:

0→ C−1
R
X

d−→ C0
R
X

d−→ C1
R
X

d−→ C2
R
X → 0

where Ck
R
X = {X(k) → R} and for β ∈ Ck−1

R
X , dβ(y) =

∑

x∈∂y β(x).

For real cochains, the norm is understood to be ‖β‖ =
√

∑

x∈X(k) |β(x)|2.

For a simplicial complex, X , we define the (up-down) k-th spectral gap to be

λk(X) = inf
β∈Ck

R
X

‖dβ‖2
infα∈Ck−1

R
X ‖β + dα‖2 = inf

β, ∂β=0

‖dβ‖2
‖β‖2
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(see [15], [10], [23] for more on the combinatorial Hodge decomposition, and see [6] for more

on coboundary expansion).

We will also consider the chain complex with Z2-coefficients:

0← C−1X
∂←− C0X

∂←− C1X
∂←− C2X

∂←− 0.

This chain complex will be endowed with the L1 (or Hamming) norm, ‖y‖ = |suppy|.

We will denote the space of k-cycles by ZkX = ker ∂k ⊂ CkX . The space of cycles has a

natural metric, the flat metric [26]:

‖z‖♭ = FillX(z) = inf{‖y‖ : ∂y = z}.

3. Dilation estimates for embeddings

The section will be devoted to proving our main proposition:

Proposition. Let ∆
(1)
n ⊂ X ⊂ ∆

(2)
n be a 2-dimensional simplicial complex with complete

1-skeleton. Let φ : X →H be an affine embedding of X into an infinite dimensional Hilbert

space, suitably scaled so that

FillH(ψτ) ≥ FillX(τ)

for every triangle, τ , then,

∑

f∈X(2)

(

Area(φf)
)2 ≥ λ1(X)

3(n− 2)

∑

τ

(

FillXτ
)2
.

where the first sum runs over 2-dimensional faces in X and the second sum runs over all

triangles in X.

Proof. We can assume that the image of the 0-skeleton, X(0) forms a linearly independent

set in H (since a small perturbation of the vertices does not change the areas of triangles

very much).

Choose orthonormal coordinates, x1, . . . , xn for spanX(0) ∼= R
n. We will let φ induce a

function ψ : X(1) → R
(n2) defined by

ψ(i<j)(e) =
1

2

∫

φ(e)

xidxj − xjdxi +
n

∑

m=0

∫

φ(e)

y(i<j)
m dxm for each e ∈ X(1)

(with the y
(i<j)
m as fixed constants to be chosen later).

Now we have dψ : X(2) → R
(n2), and by the Stokes theorem,

(dψ(f))(i<j) =

∫

φf

dxi ∧ dxj .
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Now it is easily seen that |dψ(f)|2 =
(

Area(φf)
)2
. This is because the area form of φf can

we written as

ωφf =
∑

i<j

a(i<j)dxi ∧ dxj where
∑

i<j

a2(i<j) = 1 and

∫

φf

dxi ∧ dxj = a(i<j)Area(φf).

Thus,

‖dψ‖2 =
∑

f∈X(2)

(

Area(φf)
)2
.

We will need to prove a small claim:

Claim. Consider the function, ξ : X(1) → R
(n2) given by

(ξ(e))(i<j) =
1

2

∫

φ(e)

xidxj − yjdxi.

Then for any α : X(0) → R
(n2), we can choose y

(i<j)
m so that ψ = ξ + dα.

Proof. If e = [v, w] ∈ X(1),

∑

m

∫

φ(e)

y(i<j)
m dxm = 〈y(i<j), φ(v)〉 − 〈y(i<j), φ(w)〉

Since φ(X(0)) is linearly independent, for every function f : X(0) → R, there exists a

corresponding y ∈ R
n such that

f(x) ≡ 〈y, φ(x)〉 for every x ∈ X(0).

Therefore, for every function, f : X(0) → R
(n2) we can choose

(

n
2

)

such y ∈ R
n (denoted

y(i<j)) such that

(f(1<2)(x), . . . , f(n−1<n)(x)) ≡ (〈y(1<2), φ(x)〉, . . . , 〈y(n−1<n), φ(x)〉 for every x ∈ X(0).

�

Since we can choose (y1, . . . , yn) so that ∂ψ = 0, we have the inequality:

∑

f∈X(2)

(

Area(φf)
)2

= ‖dψ‖2 ≥ λ1(X)‖ψ‖2.

Now we have only to prove that

‖ψ‖2 ≥ 1

3(n− 2)

∑

τ

(

FillX(τ)
)2
.

We observe that for a triangle τ formed by the edges e1, e2, and e3, we have (by the Stokes

theorem again),
[

ψ(e1) + ψ(e2) + ψ(e3)
]

(i<j)
=

∫

φτ

dxi ∧ dxj
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So that,
∑

(i<j)

[

ψ(e1) + ψ(e2) + ψ(e3)
]2

(i<j)
= FillH(φτ) ≥ FillX(τ)

and by Cauchy-Schwartz:

|ψ(e1)|2 + |ψ(e2)|2 + |ψ(e3)|2 ≥
1

3

(

|ψ(e1)|+ |ψ(e2)|+ |ψ(e3)|
)2
.

Summing over all triangles, each edge is contained in n− 2 triangles, we have

(n− 2)‖ψ‖2 ≥ 1

3

∑

τ

(

FillX(τ)
)2
.

�

In light of this proposition, it should be clear to the reader that we seek to find 2-

dimensional complexes which maximize the quantity,

λ1(X)

|X(2)|
∑

τ

(

FillX(τ)
)2
.

As we increase the number of 2-faces, λ1(X) will go up, but
∑

(FillX(τ))2

|X(2)|
will go down.

It is not clear to the author how to build exact optimizers for this quantity, so in the next

section we will resort to using random complexes a la Linial and Meshulam [19].

4. Filling estimates for random complexes

Since we have given ourselves the liberty to take estimates up to a constant, we will

exhibit a somewhat cavalier indifference to preserving sharp quantities. We have decided to

err on the side of keeping things simple and believe the reader will forgive us for this minor

transgression.

We will rely on the geometry of random complexes. We recall the definition:

Definition (Linial and Meshulam, [19]).

Let Yn,p denote the Linial–Meshulam random complex, the probability space of 2-dimensional

simplicial complexes on n vertices, with complete 1-skeleton (i.e. ∆
(1)
n ⊂ Y ⊂ ∆

(2)
n , where

∆n denotes the complete simplicial complex, the (n− 1)-dimensional simplex), such that

P[Y ∈ Yn,p] = pF (1− p)(n3)−F where F is the number of faces in Y.

Proposition 4.1. Let ∆
(1)
n ⊂ X ⊂ ∆

(2)
n be a p-random complex. There is a constant, C,

so that if p ≥ C logn
n

, then, with probability tending to 1 as n→∞,

λ1(X) ≥ 1

3
pn.
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Proof. The proof of this proposition is a simple consequence of theorem 2 in [13]:

Theorem (Gundert and Wagner, [13]). Let λ̂1(X) denote the spectral gap of normalized

Laplacian on 1-forms. For all c > 0, there exists a constant K such that if p ≥ K logn
n

and

X = Xn,p is a random 2-complex (with complete 1-skeleton) then

λ̂1(X ;R) ≥ 1− K√
pn

with probability greater than 1− n−c.

In order to prove proposition 4.1, we simply need to prove the following claim:

Claim. With probability tending to 1 as n tends to infinity, the degree of each edge is greater

than p(n−2)
2

.

Proof. Our argument is a standard one.

The expected degree of each edge is p(n− 2). By a form of Chernoff’s inequality [7], each

edge, e, has

P[deg(e) < (1− ǫ)p(n− 2)] ≤ e−
ǫ2p(n−2)

2 .

Taking ǫ = 1
2
, and taking a union bound:

∑

e

P

[

deg(e) <
p(n− 2)

2

]

≤ e
p(n−2)

8 ≤
(

n

2

)

· n−K
8 → 0 by taking K > 16.

�

Now applying this to the theorem of Gundert and Wagner (since the normalized Laplacian

is obtained simply by dividing the differential of an edge by its degree), we have

λ(X) ≥ p(n− 2)

2
−K√pn ≥ pn

3
for large n.

�

Now we are left to find an lower bound on
∑

τ

(

FillX(τ)
)2
.

Proposition 4.2. Let ∆
(1)
n ⊂ X ⊂ ∆

(2)
n be a p-random complex with p = nǫ−1, then, with

probability tending to 1 as n→∞,
∑

τ

(

FillX(τ)
)2 ≥ Cn4−2ǫ

Proof. First, shall examine a single triangle, τ , and bound the probability that Fill(τ) < nα.

To achieve this, we appeal to an estimate made in [3] (later revised to [2]), but attributed as

an observation of Eran Nevo, that a k-cycle in z ∈ Zk∆n which does not contain any smaller
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cycles as a subset and which is supported on f0(z) vertices and fd(z) faces of dimension d

must have

f0 ≤
fd + (d+ 2)(d− 1)

d
.

Now, a minimal filling (i.e. does not contain a smaller filling as a subset) of τ can be

obtained from a minimal cycle, z, which contains the face which τ bounds. Thus, the

number of fillings of τ of size m in ∆n can be bounded by,

(

n
f0−d−1

)(( f0
d+1)
m

)

≤ nf0−d−1
(

efd+1
0

m

)m

≤ n
m+(d+2)(d−1)−d2−d

d (Cmd)m

= n− 2
d (Cn

1
dmd)m

Therefore, setting d = 2, we have,

P[∃y, ∂y = τ, ‖y‖ < nα] ≤ n−1
nα
∑

m≥3

(Cpn
1
2m2)m ≤ n−1

∑

m≥3

(en2α+ǫ− 1
2 )m

So that,

P[∃y, ∂y = τ, ‖y‖ < nα] ≤ Cn3(2α+ǫ− 1
2
)−1n

(nα−2)(2α+ǫ− 1
2
) − 1

n2α+ǫ− 1
2 − 1

Therefore, if we set 2α+ ǫ− 1
2
< 0, then we have

P[FillX(τ) < nα]→ 0

and

E[FillXτ ] ≥ cn
1−2ǫ

4 for large enough n.

Now we will bound the quantity

EY

[

∑

τ

min{FillX(τ), n
1−2ǫ

4 }
]

.

On the one hand,

EY

[

∑

τ

min{FillX(τ), n
1−2ǫ

4 }
]

≥
(

n

3

)

n
1−2ǫ

4 P[FillX(τ) ≥ n
1−2ǫ

4 ] ≥ 99

100

(

n

3

)

n
1−2ǫ

4 .

On the other hand, if we let

H =

{

Y ∈ Yn,p : at least
1

100

(

n

3

)

triangles have FillXτ ≥
n

1−2ǫ
4

99

}

(Notice that H implies the proposition),

then,
(

n

3

)

n
1−2ǫ

4 P[H ] +

[

99

100

(

n

3

)

n
1−2ǫ

4

99
+

1

100

(

n

3

)

n
1−2ǫ

4

]

P[HC ] ≥ EY

[

∑

τ

min{FillX(τ), n
1−2ǫ

4 }
]
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So therefore, we have:

P[H ] +
1

50
(1− P[H ]) ≥ 99

100
⇒ P[H ] ≥ 97

98
.

�

Corollary 4.3. Let ∆
(1)
n ⊂ X ⊂ ∆

(2)
n be a p-random complex with p = nǫ−1. Then with

probability tending to 1 as n→∞, every affine embedding φ : X →H of X into an infinite

dimensional Hilbert space, H must have,

max
z∈Z1X

FillH(φ∗z)

FillX(z)
·max

z

FillX(z)

FillH(φ∗z)
≥ Cn

1−2ǫ
4

Proof. Taking an affine map, φ : X →H and scaling it so that FillH(φ∗τ) ≥ FillX(τ) (again,

the filling distortion is continuous with respect to small perturbations, so we may always

perturb φ slightly and then scale it as prescribed). Then there is a 2-face of X such that:

(

Area(φf)
)2 ≥ λ1(X)

3(n− 2)|X(2)|
∑

τ

(

FillXτ
)2 ≥ c

1

n3

∑

τ

(

FillXτ
)2 ≥ cn

1−2ǫ
2

Therefore,

δ1(φ) ≥ cn
1−2ǫ

4 .

�

5. Remarks and questions

In this section, we give a few remarks and a few open questions.

5.1. Remarks on defintion 1.1. It may be that our definition 1.1 needs further explanation

and motivation.

If X is a geodesic space (such as the geometric realization of a metric graph, or a Rie-

mannian manifold if you prefer) we could rewrite the definition of metric distortion in a

suggestive way. Namely, if φ : X → R
n, the metric distortion is,

δ0(φ) = sup
z∈Z0X

FillH φ∗z

FillX z
· sup
z∈Z0X

FillX z

FillH φ∗z

The 0-cycles here are taken with Z2 coefficients and the associated norm, the L1-norm.

The function Fill(z) is defined as Fill(z) = inf{‖y‖ : ∂y = z}.
The filling function defines a common metric on the space of cycles, referred to as the flat

metric (or flat norm) [26],

‖z − w‖♭ = Fill(z − w).
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This metric has been extensively studied (see [14] for a modern treatment). From this

perspective then, we can regard the filling distortion as the metric distortion of the induced

maps on flat cycles, i.e.

δk(X
φ→ Y ) = δ0(ZkX

φ∗→ ZkY )

This was our main motivation for defining filling distortion in the way that we did.

5.2. The volume-respecting embeddings of U. Feige. There is another noteworthy

generalization of the concept of metric distortion. Feige [9] defined the notion of volume-

respecting embeddings; let us define it here.

Definition (Feige, [9]). If (S, d) is a finite metric space, the volume of S is defined as the

supremum of the volume of the convex hull of the image of S under a 1-Lipschitz map from

S to R
|S|−1. More formally,

Vol(S) := sup
φ, 1−Lipschitz

vol|S|−1

[

convex(φ(s1), . . . , φ(s|S|))
]

.

Now, let (X, d) be a finite metric space endowed with an additional hypergraph structure,

χ ∈ 2X (we can take, for example, all subsets ofX of size less thanM). Then for a 1-Lipschitz

map Φ : X →H the volume distortion of Φ is defined as

η(Φ) := max
S∈χ

[

Vol(S)

vol|S|−1convex(Φ(S))

]
1

|S|−1

where Vol(S) is the volume of S as a metric space in its own right.

Example. Let (X, d) be a finite metric space and let χ be the hypergraph structure consisting

of all pairs of points in X , then for any map φ : X →H,

η(φ) = δ0(φ).

So Feige’s volume distortion is indeed a generalization of metric distortion.

Volume distortion, however, is distinct from filling distortion as we have defined it. For

example, every simplicial complex on n vertices with complete 1-skeleton (and any hyper-

graph structure desired) can be embedded by some φ into R
n with η(φ) = 1. This shows, in

particular, the dependence of volume distortion on the underlying metric.

5.3. Filling distortion and the fundamental group. In the last few years there has

been some innovative work of the topology of Linial–Meshulam complexes. The work of

Babson, Hoffman and Kahle is a prime example.



12 DOMINIC DOTTERRER

Theorem (Babson, Hoffman, Kahle, [4]). Let ω(n) be any function of n which tends to

infinity as n does. If p >
(

3 logn−ω(n)
n

)
1
2
, then with probability tending to 1 as n → ∞,

Y ∈ Yn,p has π1(Y ) = 0.

For any δ > 0, if p < n
1
2
−δ, then asymptotically almost surely, Y ∈ Yn,p has π1(Y ) 6= 0.

Now if we reexamine our main theorem, we notice that our estimates on filling distortion

break down when, ǫ = 1
2
. The reason for this is explained in [4]: The fundamental group

of Y vanishes at the same threshold that every triangle, τ , is the boundary of a disk with

a bounded number of faces. Therefore, our lower bound on
∑

τ (FillXτ)
2 must degenerate

at the threshold p = n
1
2 and we can no longer obtain a sensible bound on filling distortion.

This phenomenon is real because,

inf
φ
δ1(φ) ≤ max

τ
FillXτ

(just by embedding the vertices of the complex as the standard basis of Rn).

5.4. Higher dimensions. We have chosen to state all of the theorems and propositions

in this article in terms of 2-dimensional complexes. We felt that writing all arguments in

their generality was cumbersome and of little use to the reader. However, we would like

to reassure the reader (or the reader can reassure themselves) that every argument can be

made to apply to (k + 1)-dimensional complexes with simple modifications. All of these

modifications are straightforward with the possible exception of the definition of ψ in the

proof of proposition 1.3, so we provide it here.

In general, use the function, ψ : X(k) → R
( n

k+1) defined by

ψ(i0<···<ik)(σ) =
∫

φσ

∑

j(−1)jxijdxi0 ∧ · · · ∧ ˆdxij ∧ · · · ∧ dxik
+
∫

φσ

∑

(j1<···<jk)
y
(i0<···<ik)
(j1<···<jk)

dxj1 ∧ · · · ∧ dxjk .

In light of this cumbersome formula, it may occur to the reader now why we decided to

omit the general case. With all these considerations, theorem 1.2 comes out to:

Theorem. For every large n and every ǫ, there exists a (k + 1)-dimensional simplicial

complex on n vertices and complete 1-skeleton with the property that every affine map φ :

X → H has,

δ1(φ) ≥ Cn
k−(k+1)ǫ

(k+1)2

5.5. Manifolds. If one emulates the proof [20] that a k-regular graph, G, (with its shortest

distance metric) requires C(k)
√
λ0 log |G| metric distortion to embed into Euclidean space,

we immediately see that the proof extends to manifolds:
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Proposition 5.1. Let (Mn, g) be a hyperbolic manifold whose Laplacian (on functions) has

spectral gap λ0(M, g). Then any map φ :M →H has metric distortion,

δ0(φ) ≥ C
√
λ0 log voln(M, g).

It seems natural then, to ask if there is an estimate,

δk(φ) ≥ F (λk(M, g), voln(M, g)),

for every map, φ, from a hyperbolic manifold into H.

5.6. Heilbronn triangle problem. A problem dating back to the late 1940’s asks, “Ar-

ranging n points in a unit disk, how big can we make the area of every triangle [24]?” More

specifically, for a given arrangement, X , of n points in a disk, consider all the triangles, τ ,

formed among these points and define

H(n) := sup
X

min
τ

Area(τ).

The problem of estimating H(n) is commonly called the Heilbronn triangle problem. The

problem has stubbornly resisted a complete solution despite the attention of many suitors

(see [17] for a short history). The current bounds, which have stood since the early 1980’s

[16] [17], are,

C
logn

n2
≤ H(n) ≤ Kn− 8

7
−ǫ.

Now, we can always choose a simplicial complex (with n vertices and complete 1-skeleton)

to our liking after a configuration of points has been chosen (e.g. including all the faces which

are empty triangles [1] or some other scheme). Provided we are able to estimate the spectral

gap λ1(X) and
∑

τ (FillXτ)
2, can our distortion estimates shed any light on the Heilbronn

problem?

5.7. Extremal complexes. Given the estimate in proposition 1.3, it seems a natural ques-

tion to ask: What simplicial complexes (on n vertices and complete 1-skeleton) maximize

the quantity:

λ1(X)

|X(2)|
∑

τ

(

FillX(τ)
)2

?

The author has no idea how to systematically optimize this quantity, but the optimizers

may be very interesting.
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