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1 Introduction

A k-uniform hypergraph H = (V,E) on vertex set V = [n] is a collection E = {e1, e2, . . . , em}
where ei ∈

(
V
k

)
, 1 ≤ i ≤ m i.e. each ei is a k-element subset of V . A factor or perfect matching

of H is a set of disjoint edges ei, i ∈ I that partition V . The existence of a perfect matching or

1-factor requires that n is a multiple of k. When k = 2 this reduces to the ordinary notion of a

perfect matching in a graph.

Next let Hn,m;k denote the uniform random hypergraph where E is a random m-subset of
(
V
k

)
and

let Hn,p;k denote the random hypergraph where each element of
(
V
k

)
is included independently with

probability p.

Theorem 1.1. [Johannson, Kahn, Vu]

Fix k ≥ 2. Then there exists a constant K > 0 such that if m ≥ Kn log n then

lim
n→∞

P(Hkn,m;k has a factor) = 1.

In the following, K will be taken to be sufficiently large that all inequalities involving it are valid.

2 Proof of Theorem 1.1

Assume from now on that k divides n and let e1, e2, . . . , eN , N =
(
n
k

)
be a random ordering of

the edges of Hk,n, the complete k-uniform hypergraph on vertex set V = [n]. Let Hi = Hk,n −
{e1, . . . , ei} and Ei = E(Hi) and mi = N − i = |Ei|.
Hi is distributed as Hn,mi;k and the idea is to show that w.h.p. Hi has many factors as long as

mi ≥ Kn log n.

For a k-uniform hypergraph H = (V,E), where k | |V | we let F(H) denote the set of factors of H

and

Φ(H) = |F(H)|.

Let Ft = F(Ht). Then

|Ft| = |F0|
|F1|
|F0|
· · · |Ft|
|Ft−1|

= |F0|(1− ξ1) · · · (1− ξt)
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or

log |Ft| = log |F0|+
t∑
i=1

log(1− ξi).

where

log |F0| = log
n!

(n/k)!(k!)n/k
=
k − 1

k
n log n−O(n). (2.1)

We also have

Eξi = γi =
n/k(

n
k

)
− i+ 1

≤ 1

kK log n
. (2.2)

for i ≤ T = N −Kn log n.

Equation (2.2) becomes, with

pt =

(
n
k

)
− t(
n
k

) ,

t∑
i=1

Eξi =

t∑
i=1

γi =
n

k

(
log

(
n
k

)(
n
k

)
− t

+O

(
1(

n
k

)
− t

))
=
n

k

(
log

1

pt
+O

(
1(

n
k

)
− t

))
(2.3)

using the fact that
∑N

i=1
1
i = logN + (euler′s constant) +O(1/N).

For t = T this will give

pT =
Kn log n

N

and so
T∑
i=1

γi =
k − 1

k
n log n− n

k
log log n+O(n).

Our basic goal is then to prove that if

At =

{
log |Ft| > log |F0| −

t∑
i=1

γi −O(n)

}
then

P(Āt) ≤ n−K/10 for t ≤ T. (2.4)

We need the following notation: Suppose w : A→ [0,∞) where A is a finite set. Then

w̄(A) = |A|−1
∑
a∈A

w(a), maxw(A) = max
a∈A

w(a), maxr w(A) =
maxw(A)

w̄(A)

and

medw(A) is the median value of w(a), a ∈ A.

We let Vr =
(
V
r

)
. For Z ∈ Vk we let wi(Z) = |Φ(Hi − Z)|. Now define property

Bi = maxr wi(Ei) ≤ L = K1/2.

We also define

Ri = For each x ∈ V,
∣∣∣∣D(x,Hi)−

(
n− 1

k − 1

)
pi

∣∣∣∣ ≤ 1

K1/2

(
n− 1

k − 1

)
pi
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where

D(x,Hi) = | {e ∈ Ei : x ∈ e} | is the number of edges of Hi that contain x.

We consider the first time t ≤ T , if any, where At fails. Then,

Āt ∩
⋂
i<t

Ai ⊆

[⋃
i<t

R̄i

]
∪

[⋃
i<t

AiRiB̄i

]
∪

[
Āt ∩

⋂
i<t

(BiRi)

]

We can therefore write

P

(
Āt ∩

⋂
i<t

Ai

)
<
∑
i<t

P(R̄i) +
∑
i<t

P(AiRiB̄i) + P

(
Āt ∩

⋂
i<t

(BiRi)

)
. (2.5)

The hypergraph Hi is distributed as H(n,mi; k), the random k-uniform hypergraph on vertex set

[n] with mi = N − i edges. It is easier to work with H(n, pi; k) where each possible edge occurs

independently with probability pi. Now P(H(n, pi; k) has exactly mi edges is Ω(m
−1/2
i ) and so we

can use H(n, pi; k) as our model if we multiply the probability of unlikely events by O(m
1/2
i ) –

P(A | B) ≤ P(A)/P(B). It then follows that the Chernoff bounds imply that

P(∃i ≤ T : ¬Ri) = O(n−K/3). (2.6)

This deals with the first sum in (2.5).

We show next that

Bi−1 ⇒ ξi ≤
1

K1/2 log n
.

This enables us to use a standard concentration argument to show that AT holds.

We first compute

wi−1(Ei−1) =
∑

e∈Ei−1

∑
F∈Fi−1

1e∈F

=
∑

F∈Fi−1

n

k
.

Hence, for any e ∈ Ei−1,

Φ(Hi−1) =
k

n
wi−1(Ei−1)

≥ k

Ln
|Ei−1|maxwi−1(Ei−1)

≥ kN

Ln
pi−1wi−1(e).

Hence,

ξi ≤ max
e∈Ei−1

wi−1(e)

Φ(Hi−1)
≤ Ln

kNpi−1
≤ L

kK log n
≤ 1

K1/2 log n
(2.7)

Now define

Zi =

{
ξi − γi Bj ,Rj hold for j < i

0 otherwise
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and

Xt =

t∑
i=1

Zi.

We show momentarily that

P(Xt ≥ n) ≤ e−Ω(n). (2.8)

So if we do have Bi,Ri for i < t ≤ T (so that Xt =
∑t

i=1(ξi − γi)) and Xt ≤ n then

t∑
i=1

ξi <
t∑
i=1

γi + n ≤ k − 1

k
n log n

and hence
t∑
i=1

ξ2
i ≤

1

K1/2 log n

t∑
i=1

ξi = O(n).

So,

log |Ft| > log |F0| −
t∑
i=1

(ξ + ξ2) > log |F0| −
t∑
i=1

γi −O(n).

This deals with the third term in (2.5). (If
⋂
i<t(BtRt) holds then At holds with sufficient proba-

bility).

Let us now verify (2.8). Note that |Zi| ≤ 1
K1/2 logn

and that for any h > 0

P(Xt ≥ n) = P(eh(Z1+···+Zt) ≥ ehn) ≤ E(eh(Z1+···+Zt))e−hn (2.9)

Since Zi = ξi − γi (or zero) and E(ξi | e1, . . . , ei−1) = γi and 0 ≤ ξi ≤ ε = log−1 n we have, with h

a sufficiently small positive constant,

E(ehZi | e1, . . . , ei−1) ≤ e−hγi
(

1− γi
ε

+
γi
ε
ehε
)
≤ eh2εγi .

So,

E(eh(Z1+···+Zt)) ≤ eh2ε
∑t

i=1 γi

and going back to (2.9) we get

P(Xt ≥ n) ≤ eh2ε
∑t

i=1 γi−hn.

Now
∑t

i=1 γi = O(n log n) and so putting h equal to a small enough positive constant makes the

RHS of the above less than e−hn/2 and (2.8) follows.

It only remains to deal with the second term in (2.5) and show

P(AiRiB̄i) < n−K/4 (2.10)

For |Y | ≤ k we let

Vk,Y = {Z ∈ Vk : Z ⊃ Y }

and

Ci =
{

maxwi(Vk,Y ) ≤ max
{
n−(k+1)Φ(Hi), 2medwi(Vk,Y )

}
for all Y ∈ Vk−1

}
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This event “replaces” the average of wi by the median of wi. A subtle, but vital idea.

We will prove

P(RiCiB̄i) < ε =n−δ1K where δ1 =
Kδ

20k!2k
. (2.11)

P(AiRiC̄i) < n−K/3 (2.12)

And then use

AiRiB̄i ⊆ AiRiC̄i ∪RiCiB̄i.

Proof of (2.11)

We make the following assumption: P(RiCi) ≥ ε, for if not, (2.11) will be trivially satisfied.

Suppose that |V | = n and w : Vk → <+. For X ⊆ V with |X| ≤ k we let ψ(X) = maxw(Vk,X).

The following lemma is proved in the appendix:

Lemma 2.1. Suppose that for each Y ∈ Vk−1 and ψ(Y ) ≥ B we have∣∣∣∣{Z ∈ Vk,Y : w(Z) ≥ 1

2
ψ(Y )

}∣∣∣∣ ≥ n− k
2

.

Then for any X ⊆ V with |X| = k − j and ψ(X) ≥ 2j−1B we have∣∣∣∣{Z ∈ Vk,X : w(Z) ≥ 1

2j
ψ(X)

}∣∣∣∣ ≥ (n− k2

)j 1

(j − 1)!
. (2.13)

Applying the lemma with B = (2n)−(k−1)Φ(Hi) we see that if Ci holds then ψ(Y ) > B implies that

2medwi(Vk,Y ) ≥ maxwi(Vk,Y ) and so∣∣∣∣{Z ∈ Vk,Y : wi(Z) ≥ 1

2
ψ(Y )

}∣∣∣∣ ≥ n− k
2

.

Putting j = k so that X = ∅ and ψ(∅) = maxwi(Vk),∣∣∣∣{K ∈ Vk = Vk,∅ : wi(K) ≥ maxwi(Vk)

2k

}∣∣∣∣ ≥ δ nk

(k − 1)!
(2.14)

where δ = 1/2k.

Let

E∗i = {e ∈ Ei : wi(e) ≥ δmaxwi(Ei)/2} .

We show that (2.14) implies

P
(
|E∗i | ≤

δ2

2(k!)2
nkpi

∣∣∣∣RiCi) ≤ n−δ1K . (2.15)

Now (2.14) implies that there are δ
k!n vertices x1 such that for δ

k!n
k−1 choices for x2, . . . , xk we have

wi(x1, . . . , xk) > δmaxwi(Ei). (2.16)
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Fix such an x1 and use H(n, pi; k), but condition on RiCi holding. For any x2, . . . , xk write e =

{x1, . . . , xk}. Then write, for some enumeration of the edges of Ei \ {e},

maxwi(Ei \ {e}) = max {wi(e2), . . . ,wi(em)} = max
{
w′i(e2) + w′′i (e2), . . . ,w′i(em) + w′′i (em)

}
where w′i(ei) ≤ wi(e) counts factors that include ei and e and w′′i (ei) counts factors that include

ei but do not include e. (This statement does not assume that e ∈ Ei). Now without conditioning

on the occurence of RiCi we have that {e ∈ Ei} is independent of maxw′′i (Ei \ {e}) and so, using

(2.16) and wi ≥ w′′i and the simple inequality P(A | B) ≤ P(A)/P(B) we see that with probability

at least

1− ε−1P(Bin(δnk−1/k!, pT ) ≤ δn/2k!) ≥ 1− ε−1n−1−2δ1K = 1− n−1−δ1K

there are δ
2k!n

k−1pi sequences x2, . . . , xk such that e is an edge and wi(e) ≥ δmaxw′′i (Ei \ {e}).
Let x2, . . . , xk be such a choice. Now maxwi(Ei) ≤ wi(e) + maxw′′i (Ei \ {e}) and so wi(e) ≥
δmaxwi(Ei)/2 for such x2, . . . , xk. (wi(e)/2 ≥ δmaxw′′i (Ei \ {e})/2 and wi(e)/2 > δwi(e)/2).

There are at most n choices for x1 and so with probability 1−n−δ1K we have that for each choice of

x1 there are δ
2k!n

k−1pi choices for x2, . . . , xk such that {x1, . . . , xk} is an edge and wi(x1, . . . , xk) >

δmaxwi(Ei)/2. This verifies (2.15) and we have∑
e∈Ei

wi(e)

maxwi(Ei)
≥
∑

e∈E∗
i
wi(e)

maxwi(Ei)
≥ δ|E∗i |

2
≥ δ3

4(k!)2
nkpi ≥

δ3

10k!
|Ei|

which implies property Bi if K1/2 ≥ 10k!δ−3.

Proof of (2.12)

We need the following two lemmas that are proved in the appendix:

Given y ∈ V we let X(y,H) denote the edge e containing y in a uniformly random factor of H.

We let

h(y,H) = −
∑
e3y

P(X(y,H) = e) logP(X(y,H) = e)

denote the entropy of X(y,H).

Lemma 2.2.

log Φ(H) ≤ 1

k

∑
y∈V

h(y,H).

For the next lemma let S be a finite set and w : S → <+ and let X be the random variable with

P(X = x) =
w(x)

w(S)
.

Let h(X) = −
∑

x∈S P(x) logP(x) be the entropy of X.

Lemma 2.3. If h(X) ≥ log |S| − O(1) then there exist a, b ∈ range(w) with a ≤ b ≤ O(a) such

that for J = w−1[a, b] we have

|J | = Ω(|S|) and w(J) > .7w(S).
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Assume that we have Ai and Ri and that Ci fails at Y . Let e = Y ∪ {x} ∈ Vk satisfy wi(e) =

maxwi(Vk,Y ). Note that

wi(e) > n−(k+1)Φ(Hi) = eΩ(n log logn). (2.17)

Choose y ∈ V \Y with wi(Y ∪{y}) ≤ medwi(Vk,Y ) and with h(y,Hi− e) maximum subject to this

restriction and set f = Y ∪ {y}. Note that y 6= x by its definition.

We argue that h(y,Hi − e) ≥ logD(y,Hi − e) and apply Lemma 2.3 to get J, a, b. Then we take

W = V \ (Y + {x, y}) and for Z ∈
(
W
k−1

)
we let f(Z) = Φ(Hi − (Y + Z + {x, y}). Then we let

W0 = {Z ∈W : f(Z) ∈ [a, b]}. Then we consider

α =
∑
Z∈W0

f(Z)1Z+y∈E and β =
∑
Z∈W0

f(Z)1Z+x∈E .

Because Z,Z ′ ∈W0 implies that f(Z)/f(Z ′) = O(1) we see that w.h.p. α ∼ β. But the definitions

imply that

α > .7wi(e) > .5wi(e) ≥ wi(f) ≥ β.

Continuing the more detailed argument, we have

wi(e) > 2medwi(Vk,Y ) ≥ 2wi(f).

Since we have Ai, we have

log |Φ(Hi)| > log |Φ(H0)| −
i∑
t=1

γt −O(n) =
k − 1

k
n log n+

n

k
log pi −O(n).

This and (2.17) implies that

log Φ(Hi − e) = logwi(e) ≥
k − 1

k
n log n+

n

k
log pi −O(n) (2.18)

But Lemma 2.2 implies that

log Φ(Hi − e) ≤
1

k

∑
z∈V \e

h(z,Hi − e)

and by our choice of y we have h(z,Hi− e) ≤ h(y,Hi− e) for at least half the z’s in V \ e and that

for all z ∈ V \ e we have

h(z,Hi − e) ≤ logD(z,Hi − e) ≤ log

(
(1 + o(1))

(
n

k − 1

)
pi

)
.

This implies that

log Φ(Hi − e) ≤
n

2k

(
log

(
(1 + o(1))

(
n

k − 1

)
pi

)
+ h(y,Hi − e)

)
. (2.19)

Combining (2.18) and (2.19) we get

h(y,Hi − e) > (k − 1) log n+ log pi −O(1) = logD(y,Hi − e)−O(1). (2.20)
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Let W = V \ (Y + {x, y}) and for Z ∈Wk−1 let

w′i(Z) = Φ(Hi − (Y ∪ Z ∪ {x, y}).

Then define

wy on Wy = {K ⊆ V \ e : |K| = k, y ∈ K}

and

wx on Wx = {K ⊆ V \ f : |K| = k, x ∈ K}

by

wy(K) = w′i(K \ {y}) and wx(K) = w′i(K \ {x}).

Then X(y,Hi − e) is chosen according to the weights wy and X(x,Hi − f) is chosen according to

the weights wx. Note also that wy(Wy) = wi(e) and wx(Wx) = wi(f).

Let a, b ∈ range(wy) ⊆ range(w′i) be as defined in Lemma 2.3, using (2.20). Then with M =

|Wk−1| = Ω(nk−1),

wy(J = w−1
y [a, b]) =∑

Z⊆W
|Z|=k−1

Φ(Hi−(Y+Z+x+y))∈[a,b]

Φ(Hi − (Y + Z + x+ y))1Z+y∈E =

M∑
j=1

ajζ
(A)
1 > .7wy(Wy) = .7wi(e)

∑
Z⊆W
|Z|=k−1

Φ(Hi−(Y+Z+x+y))∈[a,b]

Φ(Hi − (Y + Z + x+ y))1Z+x∈E =

M∑
j=1

ajζ
(B)
1 ≤ wx(Wx) = wi(f) ≤ .5wi(e)

The probability of this is n−ω(1). This is because M = Ω(nk−1) and the aj ’s are all within O(1)

of each other and using H(n, pi; k), the ζ
(A)
i , ζ

(B)
i are both collections of independent 0-1 variables

with the same mean pi. This completes the proof of (2.12).
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Appendix

A Proof of Lemma 2.1

Write Ni for the r.h.s. of (2.13). We proceed by induction on i, with the case i = 1 given. Assume

X is as in the statement and choose Z ∈ H0(X) with w(Z) maximum (i.e. w(Z) = ψ(X)). Let
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y ∈ Z X and Y = X ∪ {y}. Then |Y | = v(i1) and ψ(Y ) = ψ(X) ≥ 2i1B(≥ 2i2B); so by our

induction hypothesis there are at least Ni1 sets Z ′ ∈ H0(Y ) with w(Z ′) ≥ 2(i1)ψ(Y )(= 2(i1)ψ(X)).

For each such Z ′, Z ′ \ {y} is a (v1)-subset of V with ψ(Z ′ \ {y}) ≥ w(Z ′) ≥ B. So (again, for each

such Z ′) there are at least (nv)/2 sets Z ′′ ∈ H0(Z ′ \ {y}) with

w(Z ′′) ≥ ψ(Z ′ \ {y})/2 ≥ 2iψ(X).

The number of these pairs (Z ′, Z ′′) is thus at least Ni1(nv)/2. On the other hand, each Z ′ associated

with a given Z ′′ is Z ′′ \ {u} ∪ {y} for some u ∈ Z ′′ \ (X ∪ {y}); so the number of such Z ′ is at most

i− 1 and the lemma follows.

B Proof of Lemma 2.2

This follows from what is referred to as “Shearer’s Lemma,“ or more precisely what Shearer’s proof

actually gives. The lemma may be stated as follows. Suppose that Y = (Yi : i ∈ I) is a random

vector and S a collection of subsets of I (repeats allowed) such that each i ∈ I belongs to at

least t members of S. Then the entropy h(Y ) ≤ t−1
∑

S∈S h(YS), where YS is the random vector

(Yi : i ∈ S). To get Lemma 2.2 from this, let Y be the indicator of the random factor (so that I is

the set of edges of the complete k-uniform hypergraph Hk,n ) and S = (Sv : v ∈ V ), where Sv is

the set of edges of Hk,n containing v.

C Proof of Lemma 2.3

Let

H(X) = log |S| −K (C.1)

and define C by logC = 4(K + log 3). With w̄ = w(S)/|S|, let a = w̄/C, b = Cw̄, L =

w−1([0, a)), U = w−1((b,∞]), and J = S \ (L ∪ U). We have

H(X) ≤ log 3 +
w(L)

w(S)
log |L|+ w(J)

w(S)
log |J |+ w(U)

w(S)
log |U |. (C.2)

Then we have a few observations. First, |U | < |S|/C implies that the r.h.s. of (C.2) is less than

log 3 + log |S|w(U)

w(S)
logC

which with (C.1) implies

w(U) <
K + log 3

logC
w(S) = w(S)/4. (C.3)

Of course this also implies |U | < |S|/4. Second, combining (C.3) with the trivial w(L) < w(S)/C,

we have (say) w(J) > .7w(S). But then (third) since the r.h.s. of (C.2) is at most

log 3 + log |S|+ w(J)

w(S)
log
|J |
|S|

< log 3 + log |S|+ .7 log
|J |
|S|

,

we have

|J | ≥ exp
{

(.7)1(K + log 3)
}
|S|(= Ω(|S|)).
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