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Traceroute sampling has a problem: bias

What bias is introduced during traceroute sampling, and can
we correct it?



Example: Counting triangles

How many triangles are in this graph?

I Many present, none seen.
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Rest of this talk: Degree distribution

I A formal definition: The ccdf of the degree distribution, is
given by

F (k) = Pr[deg(u) > k ] =
#{v ∈ V : deg(v) > k}

|V | ,

where the vertex u is chosen uniformly at random from V .
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Fig. 1. Evidence for a Frequency Vs Degree Power Law in (a) the Pansiot-Grad dataset and (b) a sampled subgraph of a random graph.

I A. Lakhina, J. W. Byers, M. Crovella, P. Xie, Sampling
Biases in IP Topology Measurements, INFOCOMM 2003.

I A. Clauset and C. Moore, Phys Review Letters 2005
Petermann and de los Rios, Euro Phys Journal 2004

I D. Achlioptas, A. Clauset, D. Kempe, C. Moore, On the
Bias of Traceroute Sampling, STOC 2005.
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Does the Internet really have a power-law?

Perhaps we shouldn’t have been so certain.



Use more than one monitor node

This is what the experimentalists have been doing for years.
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Using more monitors

I Lakhina et al show, by computer experiment, union of
edges from more monitors may not help in degree
distribution estimation.
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I There is something better than taking the union of the
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Multiple-recapture population estimates

How many fish are in the sea?

I Go out one day, catch all the fish you can, tag and release.
I Next day, go out again, catch fish again.
I Record number of fish:

I caught first day, A;
I caught second day, B;
I caught first day and again second day, C.

I Estimate total number of fish: N̂ = A·B
C (Petersen estimate).

[C. J. G. Petersen, The yearly immigration of young plaice into
the Limfjord from the German sea, 1896.]
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Application to bias reduction in traceroute sampling

Apply Petersen estimate repeatedly to estimate the degree of
each node:

I Population to count is
number of edges incident
to a fixed vertex v

I Fish are edges
I Days are monitor nodes
I We catch an edge if it is

on shortest-path tree
rooted at the day
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When is this a good estimate?

I If the animals caught on a given day are i.i.d., this is the
maximum likelihood estimator, and it is asymptotically
unbiased.

I In zoology (and in the United States Census), the validity
of this assumption is debated.

I In traceroute sampling, there is no debate; the assumption
does not hold.
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Never surrender

I We won’t give up, though.

I Experiments and theory led us to estimator

d̂egs,t(u) =

{ |Ns(u)|·|Nt (u)|
|Ns(u)∩Nt (u)| , if |Ns(u) ∩ Nt(u)| > 2;

∞, otherwise;

where Ns(u) is the neighborhood of u in the shortest-path
tree rooted at s.

I Rigorous proof: the estimator is asymptotically unbiased
on Gn,p, for p > log n

n .
I Therefore, can reject a null hypothesis that the sampled

graph is an Erdős-Rényi graph.
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Experimental results

It’s hard to prove things about 2 different shortest path trees on
the same graph, so we also used simulations.

n d nm nt % errbiased % errreduced

1,000 15 2 n/8 3.38 3.15
n/2 3.08 0.96

n 2.81 0.42
8 n/2 2.11 0.81

16 n/2 1.38 0.80

10,000 20 2 n/8 4.02 2.10
n/2 3.75 1.25

n 3.51 0.46

100,000 15 2 n 2.81 0.21

Table 1. �2 error in degree distribution estimation with and without bias reduction for Erdős-Rényi graph, Gn,m

where d = 2m/n, with nm monitors and nt targets (median values of 100 trials).
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Fig. 2. Degree sequence ccdf, biased, and bias reduced estimators for synthetic data, with 2 monitor nodes chosen
uniformly at random, n target nodes, and shortest path sampling used to approximate traceroute. Plots based on
100 trials, where data points correspond to trial with median �2 error, and dotted region shows pointwise bounds on
90% of trials.
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Note, in particular, the PA graph

It certainly changes the shape of the degree distribution if
you’re dealing with a preferential attachment graph.
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where d = 2m/n, with nm monitors and nt targets (median values of 100 trials).

True Distribution

Biased Estimate

Bias Reduced

100 101

k

10-4

10-3

10-2

10-1

100

]
k

>)
v(

ge
d[r

P

True Distribution

Biased Estimate

Bias Reduced

100 101 102 103

k

10-5

10-4

10-3

10-2

10-1

100

]
k

>)
v(

ge
d[r

P

(a) Gn,m with n = 100, 000, d = 2m/n = 15. (b) PA graph with n = 100, 000, m = 15.

True Distribution

Biased Estimate

Bias Reduced

100 101

k

10-4

10-3

10-2

10-1

100

]
k

>)
v(

ge
d[r

P

True Distribution

Biased Estimate

Bias Reduced

100 101

k

10-4

10-3

10-2

10-1

100

]
k

>)
v(

ge
d[r

P

(c) G(X ; r) with n = 100, 000, d = πr2 = 25. (d) Western states power graph from [22].

Fig. 2. Degree sequence ccdf, biased, and bias reduced estimators for synthetic data, with 2 monitor nodes chosen
uniformly at random, n target nodes, and shortest path sampling used to approximate traceroute. Plots based on
100 trials, where data points correspond to trial with median �2 error, and dotted region shows pointwise bounds on
90% of trials.

7



Conjectures

When does this work?
When neighborhoods are “sufficiently random”. When there are
not many triangles or other small cycles?
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Fig. 2. Degree sequence ccdf, biased, and bias reduced estimators for synthetic data, with 2 monitor nodes chosen
uniformly at random, n target nodes, and shortest path sampling used to approximate traceroute. Plots based on
100 trials, where data points correspond to trial with median �2 error, and dotted region shows pointwise bounds on
90% of trials.
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Should bias reduction work on the Internet?

I The point of this talk is, be skeptical of anyone who says
they really know.

I It works well on the Western States Power Grid, which is
another network of “things connected with wires”.

I Let’s see what happens.
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Going out on a limb

Effects of bias reduction in the AS graph, and the possible
changes in degree distribution following technological trends.
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Fig. 1. Degree sequence ccdf estimates for the AS graph (from CAIDA skitter). Main panel: March, 2004, with and
without bias reduction. Inset: a portion of ccdf for March, 2004 and March, 2002, both with bias reduction. The
nodes with degree between 65 and 90 in 2002 have disappeared in 2004.

bias in sampled networks has a long history in sociology, although the biases in that domain seem somewhat
different; see the surveys by Frank, by Klovdahl, or by Salganik and Heckathorn for an overview [8, 11, 20].

In addition to traceroute sampling, maps of the AS graph have been generated in two different ways,
using BGP tables and using the WHOIS database. A recent paper by Mahadevan, Krioukov, Fomenkov,
Dimitropoulos, claffy, and Vahdat provides a detailed comparison of the graphs that result from each of
these measurement techniques [14].

1.3 Outline of what follows

The new estimator for the degree of a node in the AS graph is developed from multiple-recapture population
estimation in Section 2. Section 3 argues that this estimator generates an asymptotically unbiased degree
distribution for the Erdős-Rényi graph Gn,p when p � log n, which rigorously demonstrates that the new
estimator can reject a null hypothesis. Section 4 presents additional evidence that the new estimator reduces
the bias of traceroute sampling, in the form of computer experiments on synthetic networks. Section 5 provides
a comparison between the degree sequence predicted by the new estimator and the previous technique, and
details how, after bias reduction, the degree distribution may reflect economic and technological factors
present in the system, i.e., there a significantly larger marginal cost of adding a 65th neighbor than adding
a 64th neighbor when using the Juniper T320 edge router. Section 6 provides a conclusion and focuses on
directions of future research to strengthen this approach.

2 Estimation Technique

The classical capture-recapture approach to estimating an animal population has two phases. First, an
experimenter captures animals for a given time period, marks them (with tags or bands), and releases them,
recording the total number of animals captured. Then, the experimenter captures animals for a second time
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Conclusion and future work

I Be careful, know your data.
I Statisticians have developed all kinds of techniques for

going beyond assumptions of i.i.d. fishes. Can they be
applied here?

I Find ways to apply bias reduction to other network
statistics and other network sampling methods, e.g.
PageRank computation or other centrality measures.
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