Bias reduction for traceroute sampling: towards a more accurate map of the internet

Abraham D. Flaxman, Microsoft Research

Juan Vera, University of Waterloo

December 11, 2007

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Introduction

Traceroute sampling Sampling bias from traceroute

Bias Reduction

Prior attempts Multiple-recapture population estimation Effects of bias reduction

(ロ) (同) (三) (三) (三) (三) (○) (○)

Conclusion

Networks in the real world

Real-world networks are complex

Networks in the real world

Real-world networks are complex

Networks in the real world

Real-world networks are complex

So complex, the structure has not been recorded.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ つへぐ

► The Internet.

A famous example

Figure 3: The rank plots. Log-log plot of the outdegree d_v versus the rank r_v in the sequence of decreasing outdegree.

 Measurements of the autonomous systems (AS) graph of the Internet in 1998 showed that the degree distribution follows a power law.
[M. Faloutsos, P. Faloutsos, C. Faloutsos, 1999]

A theorist's sketch:

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

A theorist's sketch:

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

A theorist's sketch:

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

A theorist's sketch:

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

A theorist's sketch:

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

A theorist's sketch:

・ コット (雪) (小田) (コット 日)

A theorist's sketch:

・ コット (雪) (小田) (コット 日)

Traceroute sampling has a problem: bias

What bias is introduced during traceroute sampling, and can we correct it?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Example: Counting triangles

How many triangles are in this graph?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Example: Counting triangles

How many triangles are in this graph?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Many present, none seen.

Rest of this talk: Degree distribution

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

A formal definition: The ccdf of the *degree distribution*, is given by

$$\overline{F}(k) = \Pr[\deg(u) > k] = \frac{\#\{v \in V : \deg(v) > k\}}{|V|},$$

where the vertex u is chosen uniformly at random from V.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Prior work: degree distribution

 A. Lakhina, J. W. Byers, M. Crovella, P. Xie, Sampling Biases in IP Topology Measurements, INFOCOMM 2003.

(日)

Prior work: degree distribution

 A. Lakhina, J. W. Byers, M. Crovella, P. Xie, Sampling Biases in IP Topology Measurements, INFOCOMM 2003.

ヘロト ヘ戸ト ヘヨト

 A. Clauset and C. Moore, Phys Review Letters 2005 Petermann and de los Rios, Euro Phys Journal 2004

Prior work: degree distribution

- A. Lakhina, J. W. Byers, M. Crovella, P. Xie, Sampling Biases in IP Topology Measurements, INFOCOMM 2003.
- A. Clauset and C. Moore, Phys Review Letters 2005 Petermann and de los Rios, Euro Phys Journal 2004
- D. Achlioptas, A. Clauset, D. Kempe, C. Moore, On the Bias of Traceroute Sampling, STOC 2005.

Perhaps we shouldn't have been so certain.

Use more than one monitor node

This is what the experimentalists have been doing for years.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Use more than one monitor node

This is what the experimentalists have been doing for years.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Using more monitors

Lakhina et al show, by computer experiment, union of edges from more monitors may not help in degree distribution estimation.

Using more monitors

Lakhina et al show, by computer experiment, union of edges from more monitors may not help in degree distribution estimation.

There is something better than taking the union of the edges.

► Go out one day, catch all the fish you can, tag and release.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

► Go out one day, catch all the fish you can, tag and release.

(日) (日) (日) (日) (日) (日) (日)

Next day, go out again, catch fish again.

► Go out one day, catch all the fish you can, tag and release.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- Next day, go out again, catch fish again.
- Record number of fish:
 - caught first day, A;
 - caught second day, B;
 - caught first day and again second day, C.

- ► Go out one day, catch all the fish you can, tag and release.
- Next day, go out again, catch fish again.
- Record number of fish:
 - caught first day, A;
 - caught second day, B;
 - caught first day and again second day, C.
- Estimate total number of fish: ÎN = A·B/C (Petersen estimate). [C. J. G. Petersen, The yearly immigration of young plaice into the Limfjord from the German sea, 1896.]

Apply Petersen estimate repeatedly to estimate the degree of each node:

- Population to count is number of edges incident to a fixed vertex v
- Fish are edges
- Days are monitor nodes
- We catch an edge if it is on shortest-path tree rooted at the day

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Apply Petersen estimate repeatedly to estimate the degree of each node:

- Population to count is number of edges incident to a fixed vertex v
- Fish are edges
- Days are monitor nodes
- We catch an edge if it is on shortest-path tree rooted at the day

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

If the animals caught on a given day are i.i.d., this is the maximum likelihood estimator, and it is asymptotically unbiased.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- If the animals caught on a given day are i.i.d., this is the maximum likelihood estimator, and it is asymptotically unbiased.
- In zoology (and in the United States Census), the validity of this assumption is debated.

(ロ) (同) (三) (三) (三) (三) (○) (○)

- If the animals caught on a given day are i.i.d., this is the maximum likelihood estimator, and it is asymptotically unbiased.
- In zoology (and in the United States Census), the validity of this assumption is debated.
- In traceroute sampling, there is no debate; the assumption does not hold.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

We won't give up, though.

- We won't give up, though.
- Experiments and theory led us to estimator

$$\widehat{\deg}_{s,t}(u) = \begin{cases} \frac{|N_s(u)| \cdot |N_t(u)|}{|N_s(u) \cap N_t(u)|}, & \text{if } |N_s(u) \cap N_t(u)| > 2; \\ \infty, & \text{otherwise;} \end{cases}$$

where $N_s(u)$ is the neighborhood of u in the shortest-path tree rooted at s.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- We won't give up, though.
- Experiments and theory led us to estimator

$$\widehat{\deg}_{s,t}(u) = \begin{cases} \frac{|N_s(u)| \cdot |N_t(u)|}{|N_s(u) \cap N_t(u)|}, & \text{ if } |N_s(u) \cap N_t(u)| > 2; \\ \infty, & \text{ otherwise;} \end{cases}$$

where $N_s(u)$ is the neighborhood of u in the shortest-path tree rooted at s.

(日) (日) (日) (日) (日) (日) (日)

► Rigorous proof: the estimator is asymptotically unbiased on $G_{n,p}$, for $p > \frac{\log n}{n}$.

- We won't give up, though.
- Experiments and theory led us to estimator

$$\widehat{\deg}_{s,t}(u) = \begin{cases} \frac{|N_s(u)| \cdot |N_t(u)|}{|N_s(u) \cap N_t(u)|}, & \text{ if } |N_s(u) \cap N_t(u)| > 2; \\ \infty, & \text{ otherwise;} \end{cases}$$

where $N_s(u)$ is the neighborhood of u in the shortest-path tree rooted at s.

- ► Rigorous proof: the estimator is asymptotically unbiased on G_{n,p}, for p > log n/p.
- Therefore, can reject a null hypothesis that the sampled graph is an Erdős-Rényi graph.

It's hard to prove things about 2 different shortest path trees on the same graph, so we also used simulations.

(a) $G_{n,m}$ with n = 100,000, d = 2m/n = 15.

It's hard to prove things about 2 different shortest path trees on the same graph, so we also used simulations.

(d) Western states power graph from [22].

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Note, in particular, the PA graph

It certainly changes the shape of the degree distribution if you're dealing with a preferential attachment graph.

(b) PA graph with n = 100,000, m = 15.

・ロン ・聞と ・ ヨン・

3

When does this work?

When neighborhoods are "sufficiently random". When there are not many triangles or other small cycles?

(c) $G(\mathcal{X}; r)$ with $n = 100,000, d = \pi r^2 = 25$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- The point of this talk is, be skeptical of anyone who says they really know.
- It works well on the Western States Power Grid, which is another network of "things connected with wires".

(ロ) (同) (三) (三) (三) (三) (○) (○)

Should bias reduction work on the Internet?

- The point of this talk is, be skeptical of anyone who says they really know.
- It works well on the Western States Power Grid, which is another network of "things connected with wires".

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Let's see what happens.

Going out on a limb

Effects of bias reduction in the AS graph, and the possible changes in degree distribution following technological trends.

Fig. 1. Degree sequence ccdf estimates for the AS graph (from CAIDA skitter). Main panel: March, 2004, with and without bias reduction. Inset: a portion of ccdf for March, 2004 and March, 2002, both with bias reduction. The nodes with degree between 65 and 90 in 2002 have disappeared in 2004.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

- Be careful, know your data.
- Statisticians have developed all kinds of techniques for going beyond assumptions of i.i.d. fishes. Can they be applied here?
- Find ways to apply bias reduction to other network statistics and other network sampling methods, e.g.
 PageRank computation or other centrality measures.

(ロ) (同) (三) (三) (三) (三) (○) (○)