Expansion and lack thereof in randomly perturbed graphs

Abraham D. Flaxman

Theory Group, Microsoft Research

March 20, 2007

Abraham D. Flaxman Expansion in Perturbed Graphs

ヘロト 人間 ト ヘヨト ヘヨト

Outline

Introduction

- Random Graphs
- Randomly perturbed graphs

- Expansion in the real world
- Expansion in randomly perturbed graphs

・ 同 ト ・ ヨ ト ・ ヨ ト …

Random Graphs

- Started out as pure math
- Didn't have to answer to experiments

ヘロト 人間 ト ヘヨト ヘヨト

Random Graphs

- Started out as pure math
- Didn't have to answer to experiments

★ Ξ → ★ Ξ →

э

Introduction Expansion Random Graphs Randomly perturbed graphs

Experiments

Abraham D. Flaxman Expansion in Perturbed Graphs

ヘロト 人間 とくほとくほとう

Introduction Ra Expansion Ra

Random Graphs Randomly perturbed graphs

Experiments

ヘロン ヘアン ヘビン ヘビン

Introduction Rando Expansion Rando

Random Graphs Randomly perturbed graphs

ヘロト 人間 とくほとくほとう

Abraham D. Flaxman Expansion in Perturbed Graphs

ヘロト 人間 とくほとくほとう

Watts-Strogatz model gets clustering coefficient

ヘロン ヘアン ヘビン ヘビン

Attempts to keep up with the experiments

 Watts-Strogatz model gets clustering coefficient No heavy tail

ヘロン ヘアン ヘビン ヘビン

Attempts to keep up with the experiments

- Watts-Strogatz model gets clustering coefficient No heavy tail
- Barabasi-Albert model gets heavy tail

ヘロト 人間 ト ヘヨト ヘヨト

Attempts to keep up with the experiments

- Watts-Strogatz model gets clustering coefficient No heavy tail
- Barabasi-Albert model gets heavy tail Does not densify

ヘロト 人間 ト ヘヨト ヘヨト

Attempts to keep up with the experiments

- Watts-Strogatz model gets clustering coefficient No heavy tail
- Barabasi-Albert model gets heavy tail Does not densify
- Next?

ヘロト ヘアト ヘビト ヘビト

Attempts to keep up with the experiments

- Watts-Strogatz model gets clustering coefficient No heavy tail
- Barabasi-Albert model gets heavy tail Does not densify
- Next? Dorogovtsev-Mendes model,

くロト (過) (目) (日)

Attempts to keep up with the experiments

- Watts-Strogatz model gets clustering coefficient No heavy tail
- Barabasi-Albert model gets heavy tail Does not densify
- Next? Dorogovtsev-Mendes model, Kleinberg's Model,

ヘロト 人間 ト ヘヨト ヘヨト

Attempts to keep up with the experiments

- Watts-Strogatz model gets clustering coefficient No heavy tail
- Barabasi-Albert model gets heavy tail Does not densify
- Next? Dorogovtsev-Mendes model, Kleinberg's Model, Copying Model,

ヘロン ヘアン ヘビン ヘビン

Attempts to keep up with the experiments

- Watts-Strogatz model gets clustering coefficient No heavy tail
- Barabasi-Albert model gets heavy tail Does not densify
- Next? Dorogovtsev-Mendes model, Kleinberg's Model, Copying Model, Random surfer model,

ヘロト 人間 ト ヘヨト ヘヨト

Attempts to keep up with the experiments

- Watts-Strogatz model gets clustering coefficient No heavy tail
- Barabasi-Albert model gets heavy tail Does not densify
- Next? Dorogovtsev-Mendes model, Kleinberg's Model, Copying Model, Random surfer model, Forest fire model,

くロト (過) (目) (日)

- Watts-Strogatz model gets clustering coefficient No heavy tail
- Barabasi-Albert model gets heavy tail Does not densify
- Next? Dorogovtsev-Mendes model, Kleinberg's Model, Copying Model, Random surfer model, Forest fire model, Geometric Preferential Attachment,

ヘロト 人間 ト ヘヨト ヘヨト

- Watts-Strogatz model gets clustering coefficient No heavy tail
- Barabasi-Albert model gets heavy tail Does not densify
- Next? Dorogovtsev-Mendes model, Kleinberg's Model, Copying Model, Random surfer model, Forest fire model, Geometric Preferential Attachment, HOTS,

ヘロト 人間 ト ヘヨト ヘヨト

- Watts-Strogatz model gets clustering coefficient No heavy tail
- Barabasi-Albert model gets heavy tail Does not densify
- Next? Dorogovtsev-Mendes model, Kleinberg's Model, Copying Model, Random surfer model, Forest fire model, Geometric Preferential Attachment, HOTS, CIPA,

ヘロト 人間 ト ヘヨト ヘヨト

- Watts-Strogatz model gets clustering coefficient No heavy tail
- Barabasi-Albert model gets heavy tail Does not densify
- Next? Dorogovtsev-Mendes model, Kleinberg's Model, Copying Model, Random surfer model, Forest fire model, Geometric Preferential Attachment, HOTS, CIPA, etc.

くロト (過) (目) (日)

Introduction R Expansion R

Random Graphs Randomly perturbed graphs

Randomly perturbed graphs

ヘロト 人間 とくほとくほとう

∃ 𝒫𝔄𝔅

Randomly perturbed graphs

Start with a pretty arbitrary graph \overline{G} , and perturb it by adding sparse random graph *R*, to obtain

 $G = \overline{G} + R.$

ヘロト ヘアト ヘビト ヘビト

Introduction R Expansion R

Random Graphs Randomly perturbed graphs

Randomly perturbed graphs

ヘロト 人間 とくほとくほとう

∃ 𝒫𝔄𝔅

Introduction Random Graphs Expansion Randomly perturbed graphs

Randomly perturbed graphs

Based on

 Smoothed analysis [Spielman and Teng]

ヘロト 人間 ト ヘヨト ヘヨト

Randomly perturbed graphs

Based on

- Smoothed analysis [Spielman and Teng]
- Diameter of a cycle plus a random matching [Bollobás and Chung]
- How many random edges make a dense graph Hamiltonian?
 [Bohman, Frieze, and Martin]

ヘロト 人間 ト ヘヨト ヘヨト

A proposed approach for real-world graphs

Theorems that hold for

a sufficiently arbitrary graph and a sufficiently small perturbation

should be valid predictions for real-world networks.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Example

Theorem

Let \overline{G} be any connected *n*-graph, and let $R \sim \mathbb{G}_{n,\epsilon/n}$. Then, with high probability, $G = \overline{G} + R$ has

$$\mathsf{diam}(G) = \mathcal{O}\left(\epsilon^{-1} \log n\right).$$

イロト イポト イヨト イヨト

Example

Theorem

Let \overline{G} be any connected *n*-graph, and let $R \sim \mathbb{G}_{n,\epsilon/n}$. Then, with high probability, $G = \overline{G} + R$ has

$$\operatorname{\mathsf{diam}}(G)=\mathcal{O}\left(\epsilon^{-1}\log n
ight).$$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Introduction Random Graphs Expansion Randomly perturbed graphs

A scientific question

Is the randomly perturbed graph a good model for the real world?

ヘロン ヘアン ヘビン ヘビン

Introduction Expansion Expansion in the real world Expansion in randomly perturbed graphs

ヘロト 人間 とくほとくほとう

æ

Consider property of Expansion

Abraham D. Flaxman Expansion in Perturbed Graphs

Consider property of Expansion

• Vertex Expansion: For all $S \subset V$ with $|S| \leq n/2$,

 $|\Gamma(S)| \ge \alpha |S|.$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Consider property of Expansion

• Vertex Expansion: For all $S \subset V$ with $|S| \leq n/2$,

 $|\Gamma(S)| \ge \alpha |S|.$

• Conductance: For all $S \subset V$ with $2e(S) + e(S, \overline{S}) \leq |E|$,

$$\frac{e(S,\overline{S})}{2e(S) + e(S,\overline{S})} \ge \delta.$$

ヘロン 人間 とくほ とくほ とう

Consider property of Expansion

• Vertex Expansion: For all $S \subset V$ with $|S| \leq n/2$,

 $|\Gamma(S)| \ge \alpha |S|.$

• Conductance: For all $S \subset V$ with $2e(S) + e(S, \overline{S}) \leq |E|$,

$$\frac{\boldsymbol{e}(S,\overline{S})}{2\boldsymbol{e}(S)+\boldsymbol{e}(S,\overline{S})}\geq\delta.$$

• Eigenvalue gap: For matrix *M* given by

$$M_{i,j} = \begin{cases} \deg(i), & \text{if } i = j; \\ -1, & \text{if } \{i, j\} \in E; \\ 0, & \text{otherwise;} \end{cases} \quad \lambda_1(M) \ge \epsilon$$

ヘロト 人間 とくほとくほとう

э.

Consider property of Expansion

• Vertex Expansion: For all $S \subset V$ with $|S| \leq n/2$,

 $|\Gamma(S)| \ge \alpha |S|.$

• Conductance: For all $S \subset V$ with $2e(S) + e(S, \overline{S}) \leq |E|$,

$$\frac{\boldsymbol{e}(S,\overline{S})}{2\boldsymbol{e}(S) + \boldsymbol{e}(S,\overline{S})} \geq \delta.$$

• Eigenvalue gap: For matrix *M* given by

$$M_{i,j} = \begin{cases} \deg(i), & \text{if } i = j; \\ -1, & \text{if } \{i,j\} \in E; \\ 0, & \text{otherwise;} \end{cases} \quad \lambda_1(M) \ge \epsilon$$

Good to have expansion and good not to have expansion, too.

Introduction Expansion Expansion in the real world Expansion in randomly perturbed graphs

イロト 不得 とくほ とくほ とう

æ

What sort of expansion should we expect?

Abraham D. Flaxman Expansion in Perturbed Graphs

What sort of expansion should we expect?

E. Estrada, Spectral scaling and good expansion properties in complex networks, *Europhysics Letters*, 73 (4), pp. 649–655 (2006).

イロト 不得 とくほ とくほ とうほ

 Introduction
 Expansion in the real world

 Expansion
 Expansion in randomly perturbed graphs

In theory:

Abraham D. Flaxman Expansion in Perturbed Graphs

<ロト <回 > < 注 > < 注 > 、

∃ 𝒫𝔄𝔅

Depends on the base graph. For \overline{G} connected, and $G = \overline{G} + R$,

In theory:

イロト 不得 とくほ とくほ とう

In theory:

Depends on the base graph. For \overline{G} connected, and $G = \overline{G} + R$,

Theorem If $R \sim \mathbb{G}_{n,\epsilon/n}$, then G is not necessarily an expander.

イロト 不得 とくほ とくほ とう

Depends on the base graph. For \overline{G} connected, and $G = \overline{G} + R$,

Theorem If $R \sim \mathbb{G}_{n,\epsilon/n}$, then G is not necessarily an expander.

Theorem

In theory:

If $R \sim \mathbb{G}_{1-out}$ then G is an expander whp.

イロン 不同 とくほ とくほ とう

Proof if $R \sim \mathbb{G}_{n,\epsilon/n}$ then G not necess. expander

ヘロン ヘアン ヘビン ヘビン

Proof if $R \sim \mathbb{G}_{n,\epsilon/n}$ then G not necess. expander

Abraham D. Flaxman Expansion in Perturbed Graphs

イロト 不得 とくほ とくほ とう

Proof if $R \sim \mathbb{G}_{n,\epsilon/n}$ then G not necess. expander

イロト 不得 とくほと くほとう

Introduction Expansion Expansion in the real world Expansion in randomly perturbed graphs

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

Proof if $R \sim \mathbb{G}_{1-\text{out}}$ then *G* is expander

Abraham D. Flaxman Expansion in Perturbed Graphs

How do you prove that a *k*-out is an expander, for large *k*?

イロト 不得 トイヨト イヨト

How do you prove that a *k*-out is an expander, for large *k*?

$$\mathbb{P}\left[\exists S: \boldsymbol{e}(S,\overline{S}) \leq \delta \cdot |S|\right] \leq \sum_{\ell} \binom{n}{\ell} \mathbb{P}\big[\boldsymbol{e}(S,\overline{S}) \leq \delta\ell\big] = \boldsymbol{o}(1).$$

イロト 不得 トイヨト イヨト

How do you prove that a *k*-out is an expander, for large *k*?

$$\mathbb{P}\left[\exists S: \boldsymbol{e}(S,\overline{S}) \leq \delta \cdot |S|\right] \leq \sum_{\ell} \binom{n}{\ell} \mathbb{P}\big[\boldsymbol{e}(S,\overline{S}) \leq \delta\ell\big] = \boldsymbol{o}(1).$$

This doesn't work unless k is a large enough constant. (And it shouldn't, since it's not true for k = 1.)

<ロ> (四) (四) (三) (三) (三)

Introduction Expansion Expansion in the real world Expansion in randomly perturbed graphs

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

Proof if $R \sim \mathbb{G}_{1-\text{out}}$ then *G* is expander

Abraham D. Flaxman Expansion in Perturbed Graphs

Proof if $R \sim \mathbb{G}_{1-\text{out}}$ then *G* is expander

What if \overline{G} is a cycle?

→ Ξ → < Ξ →</p>

< < >> < </>

Proof if $R \sim \mathbb{G}_{1-\text{out}}$ then *G* is expander

What if \overline{G} is a cycle?

ヘロア 人間 アメヨア 人口 ア

Proof if $R \sim \mathbb{G}_{1-\text{out}}$ then *G* is expander

What if \overline{G} is a cycle?

ヘロト 人間 ト ヘヨト ヘヨト

Proof if $R \sim \mathbb{G}_{1-\text{out}}$ then *G* is expander

What if \overline{G} is a cycle?

$$\sum_{S: |S|=s} \mathbb{P}[\boldsymbol{e}(S,\overline{S}) \leq \delta \boldsymbol{s}] \leq \sum_{k} 2\binom{n}{2k} \mathbb{P}[\boldsymbol{e}_{R}(S,\overline{S}) \leq \delta \boldsymbol{s} - 2k]$$

ヘロト 人間 ト ヘヨト ヘヨト

Proof if $R \sim \mathbb{G}_{1-\text{out}}$ then *G* is expander

What if \overline{G} is a cycle?

$$\sum_{S: |S|=s} \mathbb{P}[e(S,\overline{S}) \le \delta s] \le \sum_{k} 2\binom{n}{2k} \mathbb{P}[e_{R}(S,\overline{S}) \le \delta s - 2k]$$

ヘロト 人間 ト ヘヨト ヘヨト

Introduction Expansion Expansion in the real world Expansion in randomly perturbed graphs

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

Proof if $R \sim \mathbb{G}_{1-\text{out}}$ then *G* is expander

Abraham D. Flaxman Expansion in Perturbed Graphs

For general \overline{G} , need something to take the place of the cycle.

ヘロト 人間 とくほとくほとう

For general \overline{G} , need something to take the place of the cycle.

G

ヘロン 人間 とくほ とくほ とう

For general \overline{G} , need something to take the place of the cycle.

ヘロト 人間 とくほとくほとう

For general \overline{G} , need something to take the place of the cycle.

<ロト <回 > < 注 > < 注 > 、

For general \overline{G} , need something to take the place of the cycle.

<ロ> <四> <四> <四> <三</td>

For general \overline{G} , need something to take the place of the cycle.

ヘロン 人間 とくほ とくほ とう

Curious extension of these techniques

Kleinberg's extension of Watts-Strogatz model

Figure 1 The navigability of small-world networks. **a**, The network model is derived from an $n \times n$ lattice. Each node, u, has a shortrange connection to its nearest neighbours (a, b, c and d) and a long-range connection to a randomly chosen node, where node vis selected with probability proportional to $r^{-\alpha}$, where r is the lattice ('Manhattan') distance between u and v, and $\alpha \ge 0$ is a fixed clustering exponent. More generally, for $p,q \ge 1$, each node u has a short-range connection to all nodes within p lattice steps, and qlong-range connection selenced independently from a distribution with clustering exponent a. **b**, Lower bound from my charac-

< < >> < </>

· < 프 > < 프 >

Curious extension of these techniques

Ð.

Curious extension of these techniques

Conclusion

Abraham D. Flaxman Expansion in Perturbed Graphs

ヘロト 人間 とくほとくほとう

Conclusion

- Real-world graphs are interesting
- Randomly perturbed graphs can model them
- Doesn't make a prediction on expansion
- This is consistent with the data

くロト (過) (目) (日)

Conclusion

- Real-world graphs are interesting
- Randomly perturbed graphs can model them
- Doesn't make a prediction on expansion
- This is consistent with the data

ヘロト 人間 ト ヘヨト ヘヨト

э