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Abstract

A permutation sum (resp. difference) set on a group G is a set F of bijections from
G to G such that fg (resp. f−1g) is again a bijection for all f, g ∈ F (resp. f, g ∈ F
with f 6= g ∈ S), where (fg)(x) := f(x)g(x) for all x ∈ G, etc. The maximum size d(G)
of a permutation difference set has been well studied, with many connections drawn
between such sets and combinatorial objects such as families of pairwise orthogonal
Latin squares. Here we primarily study its natural counterpart, s(G), the maximum
size of a permutation sum set.

The two quantities often differ widely. If p is a prime, we have d(Zp−1) = p−1 while
max(p× 2(p−1)/k,

(p
2

)

) ≤ s(Zp) ≤ p((p− 1)/2)(p−3)/2 where k is the multiplicative order
of −2 mod p. For example d(Z1613) = 1612 while s(Z1613) ≥ 1613 × 231 > 3 × 1012.

1 Introduction

Let G be a (finite) group. We call a bijection from G to G, a permutation on G. We say
a family F of functions from G to G is a permutation sum (resp. difference) set on G if
and only F is a family of permutations and fg (resp. f−1g) is a permutation for every
f, g ∈ F (resp. f, g ∈ F with f 6= g). Here (fg)(x) := f(x)g(x) and g−1(x) := (g(x))−1 for
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x ∈ G. Let s(G) (resp. d(G)) be the maximum cardinality of a permutation sum set (resp.
difference set) on G if this maximum exists. See the concluding remarks section at the end
of the paper for some of the connections between these parameters and families of pairwise
orthogonal Latin squares on G and the orthomorphism graph of G [4]. A problem on Latin
transversals of submatrices of the addition table of Zn studied in [1] is somewhat related to
our problem.

Some known results about d(G) include: d(G) = 1 for |G| ≡ 2 (mod 4), and p−1 ≤ d(G) ≤
|G| − 1 where p is the smallest prime dividing |G| [4].

Theorem 1. If |G| is even, then s(G) = 0. Suppose A is abelian and has canonical form
Zm1

⊕ · · · ⊕ Zmt
where m1|m2| · · · |mt. If mi is odd for i < t and mt is even then d(A) = 1.

Let φ(n) be the Euler phi function, and exp(G), the exponent of the group G, the least
common multiple of the orders of the elements of G.

Theorem 2. If G is a group of odd order, then

s(G) ≥
φ(exp(G))

2m(|G|)

where m(n) is the number of distinct prime factors of n. If A is an abelian group of odd
order then

s(A) ≥ |A|
φ(exp(A))

2m(|A|)
.

Theorem 3. If p ≥ 3 is a prime and k is the order of −2 in Z×
p , then

s(Zp) ≥ p2(p−1)/k.

As a concrete example, since the order of −2 in Z
×
1613 is 52, we have s(1613) ≥ 1613× 231 >

3 × 1012. Contrast this with the lower bound of s(Z1613) ≥
(

1613
2

)

= 1300078 from Theorem
2.

Let Z(G) = {z ∈ G : gz = zg, ∀g ∈ G} be the center of G.

Theorem 4. Let G be a group of odd order. If H ≤ Z(G) and F = G/H then

s(G) ≥ s(H)|F |s(F ).

Corollary 5. If A is an abelian group of odd order and |A| has prime factorization |A| =
p1p2 . . . pm, then

s(A) ≥

m
∏

i=1

s(Zpi
)pi+1pi+2···pm.

Suppose N is a nilpotent group of odd order. Suppose N has ascending central series
1 = Z0 ≤ Z1 ≤ . . . ≤ Zc = G where Zi/Zi−1 = Z(G/Zi−1). If |N | has prime factoriza-
tion |N | = p1p2 · · · pm and we have 0 = j0 < j1 < . . . < jc = m such that |Zi/Zi−1| =
pji−1+1pji−1+2 · · · pji

, then

s(N) ≥

m
∏

i=1

s(Zpi
)pi+1pi+2···pm .
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To optimize the lower bound given by this theorem you may reorder the pi’s any way you
like if G is abelian, and if G is nilpotent only the pi’s within each block jk < i ≤ jk+1.

Using linear algebraic techniques we also obtain

Theorem 6. For all odd n, n ≥ 3,

s(Zn) ≤ n

(

n − 1

2

)
n−3

2

,

and if A is abelian of order |A| = n then

s(A) ≤ n
n−1

2 .

2 Proofs

Proof. (Theorem 1) If |G| is even then by Cayley’s theorem G has an element x of order 2.
If f is a permutation, let y, z ∈ G such that f(y) = 1 and f(z) = x. Then f 2 maps both y, z
to 1, and hence fails to be a permutation. Thus s(G) = 0.

Suppose now that A is abelian of the form specified in the statement of the theorem. For
i < t, the map y → −y on Zmi

has no non-zero fixed point. Indeed, if y0 = −y0, 2y0 = 0 and
thus y0 = ⌈mi/2⌉(2y0) = 0. Thus

∑

a∈Zmi
a = 0 by pairing a with −a for all a 6= 0. Since

mt is even Zmt
has two fixed points under the negation map, 0 and mt/2, thus

∑

a∈Zmt
a =

mt/2 6= 0 has order 2 . Let x =
∑

a∈A a. We claim x is of order 2. Indeed the tth coordinate
of x will be xt = (m1m2 · · ·mt−1)(mt/2) = mt/2 since m1m2 · · ·mt−1 is odd while the other
coordinates will be 0.

Thus for any permutation f on G we have
∑

a∈A f(a) = x 6= 0 and for any two permutations
f, g we have

∑

a∈A(f − g)(a) = 0. Thus f − g cannot be a permutation, and d(A) ≤ 1.

Proof. (Theorem 2) For r ∈ Z we define the power map fr : G → G by fr(x) = xr for all
x ∈ G. We form a permutation sum set of the form F = {fr : r ∈ R} for some R ⊆ Z. We
claim that fr is a permutation if and only if (r, n) = 1 [4]. Indeed if (r, n) = 1 then there
exists r′ such that rr′ ≡ 1 (mod n) and so fr(fr′(x)) = xrr′ = x and fr is a permutation.
On the other hand, if p is a prime, such that p|r and p|n, then by Cayley’s theorem G
has an element x0 of order p, and fr(x0) = 1 = fr(1) and fr fails to be a permutation.
Since exp(G)|n where n = |G|, we need only consider R ⊆ {1, . . . , n − 1}. Note that if
exp(G)|(r − r′) then xr−r′ = 1 for all x ∈ G and fr and fr′ are the same function on G.

Thus F = {fr : r ∈ R} is a permutation sum set of size |R| if and only if R ⊆ Z×
n ,

exp(G) 6 |(r − s) for all r, s ∈ R with r 6= s, and r + s ∈ Z×
n for all r, s ∈ R. Note that

Zn
∼= Zp

e1
1
⊕· · ·⊕Zpem

m
and Z×

n
∼= Z×

p
e1
1

×· · ·×Z
×
pem

m
where n =

∏

pei

i with p1 < · · · < pm primes,

ei > 0. In either case, the isomorphism is r → (r1, . . . , rm) where ri = r (mod pei

i ) [5]. Let
exp(G) =

∏

pfi

i (note fi ≤ ei). For each r = (r1, . . . , rm) ∈ Zn define 0 ≤ ki(r) < pei−1
i and

0 ≤ li(r) < pi such that ri = kipi + li. Let R = {r : ∀i 0 ≤ ki(r) < pfi−1
i , 1 ≤ li(r) ≤

(pi − 1)/2}.
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We claim F = {fr : r ∈ R} is a permutation sum set. Indeed, R ⊆ Z
×
n and r + s ∈ Z

×
n

for all r, s ∈ R. Suppose r, s ∈ R, and exp(G)|(r − s). Then pfi

i |(ri − si) for all i. Viewing
ri,si as integers we have |ri − si| < pfi and hence ri = si for all i and r = s. Finally,
|F| = |R| =

∏

i(p
fi−1
i (pi − 1)/2) is the size claimed.

If A is abelian then let fr,c(x) = rx + c where r ∈ Z and c ∈ A. It is now easy to see that
F ′ = {fr,c : r ∈ R, c ∈ A} is a permutation sum set of the size claimed.

Proof. (Theorem 3) Let c0, . . . , cl−1 be representative elements of the l = (n − 1)/k multi-
plicative cosets of 〈−2〉 in Z×

p . Consider the family F = {fs : s = (s0, . . . , sl−1) ∈ {0, 1}l}
where fs is given by f(0) = 0, and

fs(ki + j) = ci(−2)j+si,

for 0 ≤ i ≤ l − 1 and 0 ≤ j ≤ k − 1. First we prove that fs is a permutation. Note that for
each i with 0 ≤ i ≤ l − 1, the function f i

s(j) := fs(ki + j) is a bijection from {0, . . . , k − 1}
to ci〈−2〉. Since the cosets partition Z×

p and fs(0) = 0, fs is a bijection.

To check that g = fs + f ′
s is a permutation, we will show that for each 0 ≤ i ≤ l − 1,

gi = f i
s + f i

s′ is a bijection from {0, . . . , k − 1} to 2ci〈−2〉. As p is odd, the cosets of 〈−2〉
are permuted by a multiplication by 2 and so g will be a bijection. There are two cases.
If si = si′ = a, clearly gi(j) = ci(−2)j+a + ci(−2)j+a = 2ci(−2)j+a. On the other hand, if
{si, s

′
i} = {0, 1}, then gi(j) = ci(−2)j + ci(−2)j+1 = 2ci(−2)j−1.

Now consider the family of functions F ′ = {fs,t : s ∈ {0, 1}l, t ∈ Zp} where fs,t(x) = fs(x)+t.
Clearly, they form a permutation sum set. Furthermore, they are all distinct. If one has the
values of fs,t one can recover t from fs,t(0) = t, and then the values of fs, and from those
the values of the si.

If H ⊳G and F = G/H then we call G an extension of H by F . We quote here some material
from the theory of group extensions that we will need to use:

Theorem 7. (Compare with Thm 2.7.6 in [7].) Suppose H⊳G and F = G/H. For all σ, τ ∈
F choose t(σ) in the coset of H corresponding to σ (we require t(1) = 1), choose c(σ, τ) in H
such that t(σ)t(τ) = t(στ)c(σ, τ), and define T (σ)(h) = t(σ)−1ht(σ) (note T (σ) ∈ Aut(H)).
Then G is isomorphic to H × F with multiplication (x, σ)(y, τ) := (c(σ, τ)T (τ)(x)y, στ)

As an example, consider G = Z100 with H = Z10, the “ten’s digits”, and F = G/H ∼= Z10,
the “one’s digits”. We have (t, o) + (t′, o′) = (t + t′ + c(o, o′), o + o′) where c(o, o′) = 1 if
o + o′ ≥ 10 (as integers) and 0 otherwise. Note that Theorem 2.7.6 of [7] is more general
than the result we need here and does not prove the isomorphism. However it is easily seen
that the map taking g = t(σ)x ∈ G (where x ∈ H) to (x, σ) ∈ H × F is an isomorphism.

Proof. (Theorem 4) Note if H ≤ Z(G) then the automorphisms T (τ) of Theorem 7 act
trivially on H . Since H is also abelian the multiplication in H ×F looks like (h, f)(h′, f ′) =
(h + h′ + c(f, f ′), ff ′). Let A,B be permutation sum sets on H, F respectively. Define
C := {cA,b|A : F → A, b ∈ B} where cA,b : G → G is defined by cA,b(h, f) := (Af(h), b(f)).
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We claim that C is a permutation sum set on C of size |C| = |A||F ||B|. This suffices to prove
the theorem.

We first show that each cA,b is an injection and hence a bijection. Suppose cA,b(h, f) =
cA,b(h

′, f ′). Then b(f) = b(f ′) and f = f ′ since b is a permutation. Since Af = Af ′ is a
permutation, Af(h) = Af ′(h′) implies h = h′. Thus cA,b is an injection as claimed. Now
we show that cA,b + cA′,b′ is an injection. Suppose (cA,b + cA′,b′)(h, f) = (cA,b + cA′,b′)(h

′, f ′).
Then (bb′)(f) = (bb′)(f ′) and f = f ′ since bb′ is a permutation. We also have (Af +A′

f )(h)+
c(b(f), b′(f)) = (Af ′ +A′

f ′)(h′)+c(b(f ′), b′(f ′)) or (Af +A′
f)(h) = (Af +A′

f)(h
′) since f = f ′.

But this implies h = h′ as Af + A′
f is a permutation. It is not hard to recover A and f from

the values of cA,b and thus the functions cA,b are all distinct.

Proof. (Corollary 5) Suppose A is abelian of odd order and the prime factorization of |A| is
|A| = p1 · · · pm. We prove

s(A) ≥

m
∏

i=1

s(Zpi
)pi+1···pm. (1)

by induction on m. If m = 1, clearly we have s(A) = s(Zp1
). Suppose m > 1. By Cayley’s

theorem there is an element x of order p1 in A. Let H = 〈x〉 ∼= Zp1
. Since Z(A) = A we

apply Theorem 4 to get
s(A) ≥ s(H)|A/H|s(A/H).

But A/H is abelian of odd order with |A/H| = p2 · · · pm so by induction we have

s(A) ≥ s(Zp1
)p2···pm

m
∏

i=2

s(Zpi
)pi+1···pm

or (1), as desired.

Suppose N is nilpotent of odd order with ascending central series 1 = Z0 ≤ Z1 ≤ Zc = G
where Zi/Zi−1 = Z(G/Zi−1). We first prove

s(G) ≥

c
∏

i=1

s(Zi/Zi−1)
|G/Zi| (2)

by induction on c. If c = 1 this is trivial. Suppose c > 1. Since H = Z1/Z0 = Z(G) we can
apply Theorem 4 to get

s(G) ≥ s(Z1)
|G/Z1|s(G/Z1).

Since G/Z1 is nilpotent with ascending central series 1 = Z1/Z1 ≤ Z2/Z1 ≤ · · · ≤ Zc/Z1 =
G/Z1 we apply induction and the fact that (Zi/Z1)/(Zj/Z1) ∼= Zi/Zj for i > j to get

s(G) ≥ s(Z1)
|G/Z1|

c
∏

i=2

s(Zi/Zi−1)
|G/Zi|

or (2), as desired.
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If each |Zi/Zi−1| has prime factorization |Zi/Zi−1| = pji−1+1 · · · pji
then, since each Zi/Zi−1

is abelian we have

s(Zi/Zi−1) ≥

ji
∏

k=ji−1+1

s(Zpk
)pk+1···pji

by (1). Plugging this in to (2) our earlier formula gives

s(N) ≥
m
∏

i=1

s(Zpi
)pi+1···pm.

For the proof of Theorem 6 we need here some information on bilinear forms collected from
[6]. Let V be a finite dimensional vector space over a field k with a symmetric bilinear form
f (for each v ∈ V the mappings f(·, v), f(v, ·) : V → k are k-linear and f(x, y) = f(y, x)
for all x, y ∈ V ). For S ⊂ V , v ∈ V we write v ⊥ S if and only if f(v, s) = 0 for all
s ∈ S and define S⊥ := {v ∈ S : v ⊥ S}. Note S⊥ is always a subspace of V . We say
f is non-degenerate or non-singular if V ⊥ = 0. If f is non-degenerate and W ≤ V then
dim W + dim W⊥ = dim V [6]. Following [2],[3] we call W isotropic if and only if W ≤ W⊥.
In this case we have dim W ≤ ⌊dim(V )/2⌋.

Proof. (Theorem 6) We use linear algebraic methods. Suppose F = {f1, . . . , fm} is a per-
mutation sum set on Zn. For 1 ≤ q ≤ m define the vector vq = (vq(k)) ∈ C

n by

vq(k) := e2πifq(k)/n, 0 ≤ k ≤ n − 1,

where we identify the elements of Zn and {0, . . . , n − 1} in the obvious way. Let W ⊆ C
n

be the subspace spanned by {v1, . . . , vm}. We define a symmetric bilinear form on V = Cn

by f(v, w) =
∑n−1

k=0 vkwk. Note that if v 6= 0 then f(v, v∗) =
∑

k vkvk = ||v||22 > 0 and so f
is non-degenerate. W is isotropic. Indeed, for all 1 ≤ q, r ≤ m, we have

f(vq, vr) =
n−1
∑

k=0

e2πi(fq(k)+fr(k))/n = 0,

since fq + fr is a permutation. So dim W ≤ ⌊n/2⌋ = n−1
2

, since n is odd.

Let m = dim W , and let w1, . . . , wm be a basis for W . Consider the matrix M whose columns
are the wi’s. M has rank m, so let I = {i1, . . . , im} be an index set of m independent rows
of W . Then for any v′ = (v′(1), . . . , v′(m)) ∈ Cm, there is a unique vector v ∈ V so that
v(ik) = v′(k) for k ∈ {1, . . . , m}. In particular each permutation in F is determined by
its value on a certain fixed set of m coordinates. There are at most n((n − 1)/2)m−1 such
possible restrictions of permutations from F . The first coordinate c can be chosen freely.
The second coordinate cannot be c nor for any d can there be two restrictions (c, d, . . .)
and (c, 2c − d, . . .). These restrictions would sum to (2c, 2c, . . .) which would not extend to
a permutation, a contradiction. Thus there are at most (n − 1)/2 choices for the second
through mth coordinates of the restriction. Thus |F| ≤ n((n − 1)/2)(n−3)/2 as claimed.
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We may assume A =
⊕t

k=1 Zmk
(in not necessarily canonical form). Thus n = |A| =

m1m2 · · ·mk. Let A = {a1, . . . , an} and for a ∈ A, 1 ≤ k ≤ t, let c(a, k) be the coordinate of
a in Zmk

. Suppose F is a permutation sum set on A. For each permutation f in F create
the vector v(f) ∈ Cnt

v(f)j,k = exp(2πic(f(aj)), k)

for 1 ≤ j ≤ n, 1 ≤ k ≤ t.

For each 1 ≤ k ≤ t let Vk = {(v(f)j,k)
n
j=1 : f ∈ F} and let Wk the subspace of Cn spanned

by Vk. Since F is a permutation sum set, Wk is isotropic and hence there is a set of at
most (n − 1)/2 coordinates that determine its vectors. Thus there are at most m

(n−1)/2
k

vectors in Vk. Distinct f are not mapped to distinct vectors (v(f)j,k)
n
j=1 in Vk, however

they are mapped distinct vectors v(f) in V = {v(f) : f ∈ F}. We have |F| ≤ |V | ≤

m
(n−1)/2
1 m

(n−1)/2
2 · · ·m

(n−1)/2
t = n(n−1)/2.

3 Concluding Remarks

Although we believe the parameters s(G) and d(G) to be of considerable interest in them-
selves, there is much previous work on d(G) especially in the connections between permuta-
tion difference sets to other combinatorial objects [4].

There is a connection between d(G) and families of orthogonal Latin squares over G. Recall
that a Latin square over a set of symbols S is an |S|×|S| matrix L over S such that each row
and each column of L form a permutation of S. Two such Latin squares L, L′ are orthogonal
if the map f(s, s′) = (Lss′, L

′
ss′) is a bijection on S × S. If S is a set, let L = L(S) be the

graph whose vertices are the Latin squares on S and where two squares are adjacent if and
only if they are orthogonal. Let L(n) be the maximum size of a set of pairwise orthogonal
Latin squares on a set of size n. If G is of order n we have L(n) = ω(L(G)), where ω(H)
is the size of the largest clique in the graph H. Given permutations f, g on G, the matrix
Lf defined by Lf (x, x′) = xf(x′) for x, x′ ∈ G, is a Latin square on G. Also Lf and Lg

are orthogonal if and only if f−1g is a permutation [4]. Let S = S(G) be the graph whose
vertices are the permutations on G and where permutations f, g are adjacent if and only
if f−1g is a permutation. Then d(G) = ω(S(G)). Thus a permutation difference set F is
a clique of S which in turn corresponds to a clique {Lf : f ∈ F} in L. Thus we have
L(n) = ω(L) ≥ ω(S) = d(G). Other results in this vein are L(n) ≤ n − 1, d(G) ≤ |G| − 1,
d(G) = 1 if |G| ≡ 2 (mod 4), etc. [4].

The neighbors in S of the identity permutation e (that is, e(x) = x for all x in G) are
called orthomorphisms of G and the restriction of S to the orthomorphisms is called the
orthomorphism graph O = O(G) of G [4]. A family {Lf : f ∈ F} of pairwise orthogonal
Latin squares may be transformed by simultaneous column permutations until it contains Le.
So when looking for a family of this form, we may as well restrict our attention to O. Every
clique F ′ in O corresponds to a clique F = F ′ ∪ {e} in S and so d(G) = ω(S) = ω(O) + 1.
Orthomorphisms are also of interest in the construction of nets, transversal designs, affine
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and projective planes, difference matrices, and generalized Hadamard matrices [4].

Our results on s(G) say something further about the structure of L and S. What is bc(L),
the maximum k such that the biclique Kk,k is contained in L? If F is a permutation sum
set on G, every member of X = {Lf−1 : f ∈ F} is orthogonal with every member of
Y = {Lg : g ∈ F}, so we have bc(L) ≥ bc(S) ≥ s(G). Contrast this with the rather smaller
ω(S) ≤ ω(L) ≤ |G| − 1.
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