A sharp threshold for a random constraint satisfaction problem

Abraham Flaxman ${ }^{1}$
Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA

Abstract

We consider random instances I of a constraint satisfaction problem generalizing k-SAT: given n boolean variables, m ordered k-tuples of literals, and q "bad" clause assignments, find an assignment which does not set any of the k-tuples to a bad clause assignment. We consider the case where $k=\Omega(\log n)$, and generate instance I by including every k-tuple of literals independently with probability p. Appropriate choice of the bad clause assignments results in random instances of k-SAT and not-all-equal k-SAT. For constant q, a second moment method calculation yields the sharp threshold

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}[I \text { is satisfiable }]= \begin{cases}1, & \text { if } p \leq(1-\epsilon) \frac{\ln 2}{q n^{k-1}} \\ 0, & \text { if } p \geq(1+\epsilon) \frac{\ln 2}{q n^{k-1}} .\end{cases}
$$

Key words: Constraint Satisfaction, Threshold Phenomena

1 Introduction

We study the following constraint satisfaction problem (CSP):

Input:

- A set of boolean variables $V=\left\{x_{1}, \ldots, x_{n}\right\}$
- A set of clauses, $C=\left\{C_{1}, \ldots, C_{m}\right\}$, where $C_{i}=\left(s_{i_{1}} x_{i_{1}}, \ldots, s_{i_{k}} x_{i_{k}}\right)$, for $s_{i_{j}} \in\{-1,1\}$

[^0]- A set of "bad" clause assignments $Q \subseteq\{-1,1\}^{k}$ with $|Q|=q$.

Question: Does there exists an assignment $\psi: V \rightarrow\{-1,1\}$ such that for all C_{i}, we have $\left(s_{i_{1}} \psi\left(x_{i_{1}}\right), \ldots, s_{i_{k}} \psi\left(x_{i_{k}}\right)\right) \notin Q$?

An instance $I=(V, C, Q)$ is called satisfiable if such an assignment exists. If no such assignment exists, I is called unsatisfiable.

This note focuses on instances generated by including every k-tuple of literals independently at random with probability $p=p(n)$, while allowing arbitrary sets Q of bad clause assignments (provided that $q=|Q|$ is constant). By considering particular sets of bad clause assignments, CSP specializes to two well known problems, k-SAT and not-all-equal k-SAT.

- k-SAT is a special case of CSP: we take $Q=\left\{-1^{k}\right\}$, i.e. there is one way for a clause to go bad, the setting which makes every literal in the clause false. Random k-SAT has been well studied, and a sharp threshold is known for $k=2[6,10,12,14,15,17,21]$ and $k-\log n \rightarrow \infty$ [16]. For other values of k, in particular $k=3$, a sharp threshold function is known to exist [13], but it is unknown what the function is. Upper and lower bounds are given in [1,4,7-9,11,15,18,20]
- not-all-equal k-SAT is a special case of CSP: we take $Q=\left\{-1^{k}, 1^{k}\right\}$. The satisfiability threshold for random not-all-equal-SAT is studied for $k=3$ in [2] and a sharp threshold is known when k is sufficiently large [3].

In this note, we make the clause size $k=k(n)$ a function satisfying $k \geq$ $D_{\epsilon} \log _{2} n$, where D_{ϵ} is sufficiently large (for $\epsilon \leq \frac{1}{9}, D \geq 5 \frac{1}{\epsilon} \ln \frac{q}{\epsilon}$ is enough). Then for any p and for a family of bad clause assignments $\left\{Q_{i}\right\}$ with $\left|Q_{n}\right|=q$, we define $I=I_{n, p}$ to be $\left(\left\{x_{1}, \ldots, x_{n}\right\}, C_{n, p}, Q_{n}\right)$, where $C_{n, p}$ is generated by including each k-tuple of literals independently at random with probability p.

Theorem 1 For any natural number q and any $\epsilon>0$ there exists D_{ϵ} such that for $k \geq D_{\epsilon} \log n$ and any family of bad clause assignments $\left\{Q_{i}\right\}$ with $\left|Q_{n}\right|=q$ we have

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}\left[I_{n, p} \text { is satisfiable }\right]= \begin{cases}1, & \text { if } p \leq(1-\epsilon) \frac{\ln 2}{q n^{k-1}} \\ 0, & \text { if } p \geq(1+\epsilon) \frac{\ln 2}{q n^{k-1}}\end{cases}
$$

The consideration of "moderately growing clauses" is inspired by the work of Frieze and Wormald [16]. It appears that threshold results which require great labor for constant clause size become much easier when clause size is a sufficiently large function of n. In the following, the minimum necessary clause size $D_{\epsilon} \log n$ will be larger than $\log n$, so Theorem 1 holds for a smaller range of k than the threshold of [16]. However, Theorem 1 does not require as delicate a calculation as [16], and proves thresholds for other interesting
specializations in one go.
Xu and Li obtained similar results using similar techniques for a different type of constraint satisfaction problem in [22]. They consider instances which have clauses of a fixed size k, allow variables to take values from a domain with $d=n^{\alpha}$ values, and have a different bad set for each clause chosen randomly, to prohibit $\Theta\left(d^{k}\right)$ candidate assignments. (In contrast, we have clauses of size $k=\Omega(\log n)$, a boolean domain of size $d=2$, and a bad set prohibiting a constant number candidate assignments, which is the same set for each clause, and chosen non-randomly.)

The remainder of this note will prove Theorem 1. In Section 2 we will show unsatisfiability above the threshold by the first moment method. In Section 3 we will show satisfiability below the threshold by the second moment method.

In this note $\log x$ means $\log _{2} x$. We use $\ln x$ for the natural logarithm, and $\log _{\alpha} x$ for the base- α logarithm.

2 Upper bound

We first show $I=I_{n, p}$ is unsatisfiable above the threshold. The proof is by the first moment method.

Claim 1 Let $p_{0}=\frac{\ln 2}{q n^{k-1}}$. Then for any $p \geq(1+\epsilon) p_{0}$, for any Q with $|Q|=q$, we have

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}\left[I_{n, p} \text { is satisfiable }\right]=0
$$

Proof For a particular assignment ϕ, there are $q n^{k}$ clauses which violate some constraint of Q with respect to ϕ. So the probability that ϕ satisfies I is the probability that none of these clauses occur,

$$
\operatorname{Pr}[\phi \text { satisfies } I]=(1-p)^{q n^{k}} .
$$

Let X denote the expected number of assignments satisfying I.

$$
E[X]=2^{n}(1-p)^{q n^{k}} .
$$

For $p \geq \frac{\ln 2}{q n^{k-1}}(1+\epsilon)$ we have

$$
E[X] \leq 2^{n} \exp (-n(1+\epsilon) \ln 2)=2^{-\epsilon n} .
$$

Therefore

$$
\operatorname{Pr}[X \neq 0] \leq E[X] \leq 2^{-\epsilon n} .
$$

3 Lower bound

We next show $I=I_{n, p}$ is satisfiable below the threshold. The proof is by the second moment method.

Claim 2 Let $p_{0}=\frac{\ln 2}{q n^{k-1}}$. Then for any $p \leq(1-\epsilon) p_{0}$, for any Q with $|Q|=q$, we have

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}\left[I_{n, p} \text { is satisfiable }\right]=1 .
$$

Proof As above, let X denote the number of assignments satisfying I. We begin by calculating the second moment of X. Let $Q_{i}=\left\{\left\{b, b^{\prime}\right\} \in Q \times\right.$ $\left.Q: \operatorname{dist}\left(b, b^{\prime}\right)=i\right\}$, where $\operatorname{dist}\left(b, b^{\prime}\right)$ is the Hamming distance between b and b^{\prime} (in other words, Q_{i} is the set of pairs of bad assignments which differ in i places). Let $q_{i}=\left|Q_{i}\right|$. Note that $q_{0}=q$ and $q_{k} \leq q / 2$.

$$
\begin{aligned}
E\left[X^{2}\right] & =\sum_{\phi} \operatorname{Pr}[\phi \text { satisfies } I] \sum_{\phi^{\prime}} \operatorname{Pr}\left[\phi^{\prime} \text { satisfies } I \mid \phi \text { satisfies } I\right] \\
& =\sum_{\phi} \operatorname{Pr}[\phi \text { satisfies } I] \sum_{s=0}^{n}\binom{n}{s} \operatorname{Pr}\left[\phi^{\prime} \text { satisfies } I \left\lvert\, \begin{array}{c}
\phi \text { satisfies } I \\
\text { dist }\left(\phi, \phi^{\prime}\right)=n-s
\end{array}\right.\right] \\
& =\sum_{\phi}(1-p)^{q n^{k}} \sum_{s=0}^{n}\binom{n}{s}(1-p)^{q n^{k}-\sum_{i=0}^{k} q_{i} s^{k-i}(n-s)^{i}} \\
& =2^{n}(1-p)^{q n^{k}} \sum_{s=0}^{n}\binom{n}{s}(1-p)^{q n^{k}-\sum_{i=0}^{k} q_{i} s^{k-i}(n-s)^{i}} .
\end{aligned}
$$

where the probabilities in the second to last line follow since there are $q n^{k}$ candidate clauses which are bad for assignment $\phi, q n^{k}$ which are bad for assignment ϕ^{\prime}, and $\sum_{i=0}^{k} q_{i} s^{k-i}(n-s)^{i}$ which are bad for both ϕ and ϕ^{\prime}.

We now observe that the ratio $E\left[X^{2}\right] / E[X]^{2}$ is the expected value of a different random variable:

$$
\begin{aligned}
\frac{E\left[X^{2}\right]}{E[X]^{2}} & =\sum_{s=0}^{n}\binom{n}{s} 2^{-n}(1-p)^{-\sum_{i=0}^{k} q_{i} s^{k-i}(n-s)^{i}} \\
& =E\left[(1-p)^{-\sum_{i=0}^{k} q_{i} S^{k-i}(n-S)^{i}}\right] \\
& =E\left[\left(1+\frac{p}{1-p}\right)^{\sum_{i=0}^{k} q_{i} S^{k-i}(n-S)^{i}}\right]
\end{aligned}
$$

where $S \sim B(n, 1 / 2)$.

Letting $Y=\left(1+\frac{p}{1-p}\right)^{\sum_{i=0}^{k} q_{i} S^{k-i}(n-S)^{i}}$, we bound $E[Y]$ in 3 parts using conditional expectations:

$$
E[Y] \leq \sum_{i=1}^{3} E\left[Y\left|\eta_{i-1} \leq|n / 2-S| \leq \eta_{i}\right] \operatorname{Pr}\left[\eta_{i-1} \leq|n / 2-S| \leq \eta_{i}\right]\right.
$$

where

$$
\eta_{0}=0 \quad \eta_{1}=\epsilon \frac{n}{2} \quad \eta_{2}=\frac{n}{2}\left(1-\frac{\epsilon}{\log n}\right) \quad \eta_{3}=\frac{n}{2} .
$$

In the following, we will rely on the fact that $\sum_{i=0}^{k} q_{i}=q(q+1) / 2<q^{2}$.
First Term: Provided $k \geq 2 \log _{\alpha} n$ where $\alpha=\frac{2}{1+\epsilon}$, we have

$$
\begin{aligned}
& E\left[Y\left|\eta_{0} \leq|n / 2-S| \leq \eta_{1}\right] \operatorname{Pr}\left[\eta_{0} \leq|n / 2-S| \leq \eta_{1}\right]\right. \\
& \quad \leq\left(1+\frac{p}{1-p}\right)^{q^{2}\left(\frac{1}{2} n(1+\epsilon)\right)^{k}} \\
& \quad \leq \exp \left(n \frac{q \ln 2(1-\epsilon)}{1-p}\left(\frac{1+\epsilon}{2}\right)^{k}\right) \\
& \quad=1+o(1)
\end{aligned}
$$

Second Term: By the standard Chernoff bound, $\operatorname{Pr}\left[\eta_{1} \leq|n / 2-S| \leq \eta_{2}\right] \leq$ $2 e^{-n \epsilon^{2} / 3}$. So provided $k \geq\left(\frac{2}{\epsilon} \ln \frac{3 q}{\epsilon^{2}}\right) \log n$ we have

$$
\begin{aligned}
E[Y \mid & \left.\eta_{1} \leq|n / 2-S| \leq \eta_{2}\right] \operatorname{Pr}\left[\eta_{1} \leq|n / 2-S| \leq \eta_{2}\right] \\
& \leq\left(1+\frac{p}{1-p}\right)^{q^{2}\left(n\left(1-\frac{\epsilon}{2 \log n}\right)\right)^{k}} e^{-n \epsilon^{2} / 3} \\
& \leq \exp \left(n \frac{q \ln 2(1-\epsilon)}{1-p}\left(1-\frac{\epsilon}{2 \log n}\right)^{k}-n \epsilon^{2} / 3\right) \\
& =o(1)
\end{aligned}
$$

Third Term: Note that $q_{k} \leq q$. So for $\eta_{2} \leq|n / 2-S| \leq \eta_{3}$ we have

$$
\sum_{i=0}^{k} q_{i} S^{k-i}(n-S)^{i} \leq q n^{k}+q\left(\frac{n}{\log n}\right)^{k}+\sum_{i=1}^{k-1} q_{i} S^{k-i}(n-S)^{i} \leq\left(q+q^{2} / \log n\right) n^{k}
$$

and

$$
\begin{aligned}
E[Y \mid & \left.\eta_{2} \leq|n / 2-S| \leq \eta_{3}\right] \operatorname{Pr}\left[\eta_{2} \leq|n / 2-S| \leq \eta_{3}\right] \\
& \leq\left(1+\frac{p}{1-p}\right)^{n^{k}\left(q+q^{2} / \log n\right)} 2\binom{n}{n / 2+\eta_{2}} 2^{-\left(n / 2+\eta_{2}\right)} \\
& \leq 2 e^{n \frac{\ln 2(1-\epsilon)}{1-p}(1+q / \log n)} n^{n \frac{\epsilon}{2 \log n}} 2^{-n\left(1-\frac{\epsilon}{2 \log n}\right)} \\
& =2^{1+n(1-\epsilon)(1+o(1))+n \frac{\epsilon}{2}-n\left(1-\frac{\epsilon}{2 \log n}\right)} \\
& =2^{-\frac{\epsilon}{2} n(1-o(1))} \\
& =o(1) .
\end{aligned}
$$

Putting the parts together and using the second moment inequality, we have

$$
\operatorname{Pr}[X \neq 0] \geq \frac{E[X]^{2}}{E[X]^{2}} \geq 1-o(1)
$$

4 Acknowledgments

Many thanks go to Alan Frieze for suggesting this problem and also for helpful comments and discussion.

References

[1] D. Achlioptas, Setting two variables at a time yields new lower bound for random 3-SAT, Proceedings of the 32nd Annual ACM Symposium on Theory of Computing (2000) 28-37.
[2] D. Achlioptas, A.D. Chtcherba, G. Istrate, and C. Moore, The Phase Transition in 1-in-k SAT and NAE 3-SAT, Proceedings of the 12th Annual ACM-SIAM Symposium on Discrete Algorithms (2001) 721-722.
[3] D. Achlioptas and C. Moore, The two-colorability of random hypergraphs, 6th International Workshop on Randomization and Approximation Techniques in Computer Science (2002).
[4] D. Achlioptas and G. Sorkin, Optimal myopic algorithms for random 3-SAT, Proceedings of the 41 st Annual IEEE Symposium on Foundations of Computing (2000) 590-600.
[5] E. Ben-Sasson and Y. Bilu, A gap in average proof complexity, Electronic Colloquium on Computational Complexity 9 (2002) \#R3.
[6] B. Bollobás, C. Borgs, J. Chayes, J.H. Kim, and D.B. Wilson, The scaling window of the 2-SAT transition. Manuscript, 1999.
[7] A.Z. Broder, A.M. Frieze, and E. Upfal, On the satisfiability and maximum satisfiability of random 3-CNF formulas, Proceedings of the 4th Annual ACMSIAM Symposium on Discrete Algorithms (1993) 322-330.
[8] M.T. Chao and J. Franco, Probabilistic analysis of 2 heuristics for the 3satisfiability problem, SIAM Journal of Computing 15 (1986) 1106-1118.
[9] M.T. Chao and J. Franco, Probabilistic analysis of a generalization of the unitclause literal selection heuristic for the k satisfiability problem, Information Science 51 (1990) 289-314.
[10] V. Chvátal and B. Reed, Mick gets some (the odds are on his side). Proceedings of the 33rd Annual IEEE Symposium on Foundations of Computer Science (1992) 620-627.
[11] O. Dubois, Y. Boufkhad, and J. Mandler, Typical random 3-SAT formulae and the satisfiability threshold, Proceedings of the 11th Annual ACM-SIAM Symposium on Discrete Algorithms (2000) 126-127.
[12] W. Fernandez de la Vega, On Random 2-sat, (1992), manuscript.
[13] E. Friedgut, Necessary and sufficient conditions for sharp thresholds of graph properties, and the k-SAT problem. J. Amer. Math. Soc. 12 (1999) 1017-1054.
[14] A.M. Frieze and G. Sorkin, A note on random 2-SAT with prescribed literal degrees, Proceedings of the 13th Annual ACM-SIAM Symposium on Discrete Algorithms (2002).
[15] A.M. Frieze and S. Suen, Analysis of two simple heuristics on a random instance of k-SAT. J. Algorithms 20, 2 (1996), 312-355.
[16] A.M. Frieze and N.C. Wormald, Random k-SAT: A tight threshold for moderately growing k, Proceedings of the 5th International Symposium on Theory and Applications of Satisfiability Testing (2002) 1-6.
[17] A. Goerdt, A threshold for unsatisfiability, Journal of Computer and System Science 33 (1996) 469-486.
[18] S. Janson, Y. Satmatiou, and M. Vamvakari, Bounding the unsatisfiability threshold of random 3-SAT, Random Structures and Algorithms 17 (2000) 103116.
[19] A.C. Kaporis, L.M. Kirousis, and E.G. Lalas, The probabilistic analysis of a greedy satisfiability algorithm, Proceedings of the 5th International Symposium on Theory and Applications of Satisfiability Testing (2002) 362-376.
[20] L.M. Kirousis, E. Kranakis, D. Krizanc, and Y.C. Stamatiou, Approximating the unsatisfiability threshold of random formulas, Random Structures and Algorithms 17 (2000) 103-116.
[21] Y. Verhoeven, Random 2-SAT and unsatisfiability, Information Processing Letters 72 (1999), 119-123.
[22] K. Xu and W. Li, Exact phase transitions in random constraint satisfaction problems, Journal of Artificial Intelligence Research 12 (2000) 93-103.

[^0]: Email address: abie@cmu.edu (Abraham Flaxman).
 ${ }^{1}$ Supported in part by NSF VIGRE Grant DMS-9819950

